DATASHEET HIP6602B. Features. Ordering Information. Applications. Dual Channel Synchronous Rectified Buck MOSFET Driver. FN9076 Rev 6.

Similar documents
NOT RECOMMENDED FOR NEW DESIGNS

DATASHEET ISL6208. Features. Applications. Related Literature. Ordering Information. Pinout. High Voltage Synchronous Rectified Buck MOSFET Driver

HIP6601B, HIP6603B, HIP6604B

DATASHEET ISL6207. Features. Applications. Related Literature. Pinouts. High Voltage Synchronous Rectified Buck MOSFET Driver

DATASHEET ISL6700. Features. Ordering Information. Applications. Pinouts. 80V/1.25A Peak, Medium Frequency, Low Cost, Half-Bridge Driver

DATASHEET ISL6209. Features. Applications. Ordering Information. Related Literature. High Voltage Synchronous Rectified Buck MOSFET Driver

DATASHEET. Features. Applications. Related Literature ISL6208C. High Voltage Synchronous Rectified Buck MOSFET Drivers. FN8395 Rev 1.

Features TEMP. RANGE ( C)

DATASHEET. Features. Applications. Related Literature ISL High Voltage Synchronous Rectified Buck MOSFET Driver. FN8689 Rev 2.

DATASHEET. Features. Applications. Related Literature ISL6208, ISL6208B. High Voltage Synchronous Rectified Buck MOSFET Drivers

HIP V, 300mA Three Phase High Side Driver. Features. Applications. Ordering Information. Pinout. July 2004

DATASHEET HI-200, HI-201. Features. Applications. Ordering Information. Functional Diagram. Dual/Quad SPST, CMOS Analog Switches

DATASHEET EL7104. Features. Ordering Information. Applications. Pinout. High Speed, Single Channel, Power MOSFET Driver. FN7113 Rev 2.

SALLEN-KEY LOW PASS FILTER

DATASHEET HC5503T. Features. Applications. Ordering Information. Block Diagram. Balanced PBX/Key System SLIC, Subscriber Line Interface Circuit

DATASHEET ISL Features. Applications. Ordering Information. Typical Application Circuit. MMIC Silicon Bipolar Broadband Amplifier.

DATASHEET HIP2101. Features. Ordering Information. Applications. 100V/2A Peak, Low Cost, High Frequency Half Bridge Driver

DATASHEET HA Features. Applications. Ordering Information. Pinouts. 250MHz Video Buffer. FN2924 Rev 8.00 Page 1 of 12.

DATASHEET ISL6614B. Features. Applications. Related Literature. Dual Advanced Synchronous Rectified Buck MOSFET Drivers with Pre-POR OVP

DATASHEET CA Applications. Pinout. Ordering Information. General Purpose NPN Transistor Array. FN483 Rev.6.00 Page 1 of 7.

DATASHEET ICL8069. Features. Pinouts. Ordering Information. Low Voltage Reference. FN3172 Rev.3.00 Page 1 of 6. Jan FN3172 Rev.3.00.

DATASHEET CA3127. Features. Applications. Ordering Information. Pinout. High Frequency NPN Transistor Array. FN662 Rev.5.00 Page 1 of 9.

Features V OUT = 12V IN TEMPERATURE ( C) FIGURE 3. QUIESCENT CURRENT vs LOAD CURRENT (ADJ VERSION AT UNITY GAIN) V IN = 14V

Features. TEMP. RANGE ( C) PACKAGE PKG. DWG. # HIP4020IB (No longer available, recommended replacement: HIP4020IBZ)

DATASHEET ISL9021A. Features. Pinouts. Applications. 250mA Single LDO with Low I Q, Low Noise and High PSRR LDO. FN6867 Rev 2.

DATASHEET HIP1020. Features. Applications. Ordering Information. Pinout. Single, Double or Triple-Output Hot Plug Controller

DATASHEET ISL9005A. Features. Pinout. Applications. Ordering Information. LDO with Low ISUPPLY, High PSRR. FN6452 Rev 2.

DATASHEET CA3054. Features. Applications. Ordering Information. Pinout. Dual Independent Differential Amp for Low Power Applications from DC to 120MHz

DATASHEET X9511. Single Push Button Controlled Potentiometer (XDCP ) Linear, 32 Taps, Push Button Controlled, Terminal Voltage ±5V

DATASHEET. Features. Applications. Related Literature ISL V, Low Quiescent Current, 50mA Linear Regulator. FN7970 Rev 2.

ISL6536A. Four Channel Supervisory IC. Features. Applications. Typical Application Schematic. Ordering Information. Data Sheet May 2004 FN9136.

NOT RECOMMENDED FOR NEW DESIGNS

DATASHEET EL8108. Features. Applications. Pinouts. Video Distribution Amplifier. FN7417 Rev 2.00 Page 1 of 14. January 29, FN7417 Rev 2.

DATASHEET ISL Features. Applications. Simplified Block Diagram. Pinout. Ordering Information. Pin Descriptions

HA MHz Video Buffer. Features. Applications. Ordering Information. Pinouts. Data Sheet February 6, 2006 FN2924.8

DATASHEET HA Features. Applications. Pinout. Part Number Information. 12MHz, High Input Impedance, Operational Amplifier

DATASHEET HA-2520, HA-2522, HA Features. Applications. Ordering Information

PART NUMBER PACKAGE REEL PKG. DWG. # 4 EN SS

DATASHEET CD22M3494. Features. Applications. Block Diagram. 16 x 8 x 1 BiMOS-E Crosspoint Switch. FN2793 Rev 8.00 Page 1 of 10.

DATASHEET. Features. Related Literature. Applications ISL9021A. 250mA Single LDO with Low I Q, Low Noise and High PSRR LDO

ISL Features. Multi-Channel Buffers Plus V COM Driver. Ordering Information. Applications. Pinout FN Data Sheet December 7, 2005

Nano Power, Push/Pull Output Comparator

DATASHEET EL7202, EL7212, EL7222. Features. Pinouts. Applications. High Speed, Dual Channel Power MOSFET Drivers. FN7282 Rev 2.

DATASHEET ISL6612, ISL6613. Features. Applications. Related Literature. Advanced Synchronous Rectified Buck MOSFET Drivers with Protection Features

DATASHEET ISL Features. Applications. Related Literature. Single Port, PLC Differential Line Driver

DATASHEET ISL6609, ISL6609A. Features. Applications. Related Literature. Synchronous Rectified MOSFET Driver. FN9221 Rev 2.

DATASHEET. Features. Applications ISL mA Dual LDO with Low Noise, High PSRR, and Low I Q. FN6832 Rev 1.00 Page 1 of 11.

DATASHEET. Features. Applications. Related Literature ISL1550. Single Port, VDSL2 Differential Line Driver. FN6795 Rev 0.

DATASHEET HA Features. Applications. Ordering Information. 110MHz, High Slew Rate, High Output Current Buffer. FN2921 Rev 12.

DATASHEET ISL6840, ISL6841, ISL6842, ISL6843, ISL6844, ISL6845. Features. Applications. Pinouts

Features TEMP. RANGE ( C)

DATASHEET HFA1112. Features. Applications. Related Literature. Pin Descriptions. Ordering Information

DATASHEET X Features. Pinout. Ordering Information. Dual Digitally Controlled Potentiometers (XDCPs ) FN8187 Rev 1.

HI-200, HI-201. Dual/Quad SPST, CMOS Analog Switches. Features. Applications. Ordering Information. Functional Diagram FN3121.8

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005

EL2142. Features. Differential Line Receiver. Applications. Ordering Information. Pinout. Data Sheet February 11, 2005 FN7049.1

DATASHEET HA Features. Applications. Pinout. Ordering Information. Quad, 3.5MHz, Operational Amplifier. FN2922 Rev 5.00 Page 1 of 8.

RT9610C High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer General Description Features Drives Two N-MOSFETs

DATASHEET EL5462. Features. Pinout. Applications. Ordering Information. 500MHz Low Power Current Feedback Amplifier. FN7492 Rev 0.

HA5023. Dual 125MHz Video Current Feedback Amplifier. Features. Applications. Ordering Information. Pinout. Data Sheet September 30, 2015 FN3393.

DATASHEET ISL Features. Applications. Ordering Information. Pinout. 8MHz Rail-to-Rail Composite Video Driver. FN6104 Rev 5.

RT9610A/B. High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer. General Description. Features.

ISL6412. Triple Output, Low-Noise LDO Regulator with Integrated Reset Circuit. Features. Ordering Information. Applications FN9067.

HA-2520, HA MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers. Features. Applications. Ordering Information

RT9624B. Single Phase Synchronous Rectified Buck MOSFET Driver. Features. General Description. Applications. Simplified Application Circuit

RT9603. Synchronous-Rectified Buck MOSFET Drivers. General Description. Features. Applications. Ordering Information. Pin Configurations

Features OUTA OUTB OUTA OUTA OUTB OUTB

HA Features. 12MHz, High Input Impedance, Operational Amplifier. Applications. Pinout. Part Number Information. Data Sheet May 2003 FN2893.

DATASHEET ISL Features. Ordering Information. Pinout

ISL6610, ISL6610A. Features. Dual Synchronous Rectified MOSFET Drivers. Related Literature. Ordering Information. Applications

DATASHEET EL1848. Features. Ordering Information. Applications. Typical Connection. White LED Step-Up Regulator. FN7427 Rev 0.

DATASHEET ISL54409, ISL Features. Applications*(see page 11) Related Literature* (see page 11)

DATASHEET X Features. Pinout. Ordering Information. Dual Digitally Controlled Potentiometers (XDCPs ) FN8186 Rev 1.

DATASHEET CA3096, CA3096A, CA3096C. Description. Applications. CA3096, CA3096A, CA3096C Essential Differences. Part Number Information.

DATASHEET HA4314B. Features. Ordering Information. Applications. Truth Table. 400MHz, 4x1 Video Crosspoint Switch. FN3679 Rev 12.

RT9607/A Dual Channel Synchronous-Rectified Buck MOSFET Driver General Description Features Drives Four N-MOSFETs Adaptive Shoot-Through Protection

ISL Ambient Light Photo Detect IC. Features. Applications. Pinout. Ordering Information. Data Sheet August 3, 2006 FN6117.3

HI-201HS. Features. High Speed, Quad SPST, CMOS Analog Switch. Applications. Ordering Information. Pinout (Switches Shown For Logic 1 Input) FN3123.

High Voltage Synchronous Rectified Dual-Channel Buck MOSFET Driver for Notebook Computer. Features BOOT1 PHASE1 Q LG1 UGATE2 C15 BOOT2 PHASE2 Q LG2

DATASHEET ISL9209B. Features. Applications. Ordering Information. Related Literature. Typical Application Circuit. Pinout

MARKING RANGE ( C) PACKAGE DWG. # HA-2600 (METAL CAN)

DATASHEET ISL83204A. Features. Applications. Ordering Information. Pinout. 60V/2.5A Peak, High Frequency Full Bridge FET Driver

RT9624A. Single Phase Synchronous Rectified Buck MOSFET Driver. General Description. Features. Applications. Simplified Application Circuit

DATASHEET ISL Features. Applications Ordering Information. Pinouts. 5MHz, Single Precision Rail-to-Rail Input-Output (RRIO) Op Amp

NOT RECOMMENDED FOR NEW DESIGNS

DATASHEET EL2125. Features. Applications. Ordering Information. Pinouts. Ultra-Low Noise, Low Power, Wideband Amplifier. FN7045 Rev 3.

Data Sheet September 3, Features TEMP. RANGE ( C)

MP6901 Fast Turn-off Intelligent Controller

DATASHEET. Features. Applications. Pin Configurations EL8176. Micropower Single Supply Rail-to-Rail Input/Output Precision Op Amp

HA-2520, HA-2522, HA-2525

DATASHEET HFA3102. Features. Ordering Information. Applications. Pinout/Functional Diagram. Dual Long-Tailed Pair Transistor Array

DATASHEET D Features. Digital Amplifier Power Stage. Digital Audio Amplifier Power Stage. FN7678 Rev 0.00 Page 1 of 20.

DATASHEET. Features. Applications. Related Literature ISL High Performance 500mA LDO. FN8770 Rev 1.00 Page 1 of 13.

600kHz/1.2MHz PWM Step-Up Regulator

DATASHEET ISL9105. Features. Applications. Ordering Information. Pinout. 600mA Low Quiescent Current 1.6MHz High Efficiency Synchronous Buck Regulator

RT9610B High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer General Description Features Drives Two N-MOSFETs

ISL6298. Li-ion/Li-Polymer Battery Charger. Features. Applications. Related Literature. Ordering Information. Pinouts. Data Sheet.

DATASHEET ISL9001A. Features. Pinout. Applications. LDO with Low ISUPPLY, High PSRR. FN6433 Rev 3.00 Page 1 of 12. December 10, FN6433 Rev 3.

DATASHEET. Features. Applications. Ordering Information. Related Literature ISL MHz, Dual Precision Rail-to-Rail Input-Output (RRIO) Op Amps

DATASHEET HI1171. Ordering Information. Typical Application Circuit. Pinout. 8-Bit, 40 MSPS, High Speed D/A Converter. FN3662 Rev.3.

Transcription:

NOT RECOMMENDED FOR NEW DESIGNS INTERSIL RECOMMENDS: ISL6612, ISL6612A, ISL6613, ISL6613A, ISL6614, ISL6614A, ISL6622, ISL6625A Dual Channel Synchronous Rectified Buck MOSFET Driver DATASHEET FN976 Rev 6. The HIP662B is a high frequency, two power channel MOSFET driver specifically designed to drive four power N-Channel MOSFETs in a synchronous rectified buck converter topology. This device is available in either a 14-lead SOIC or a 16-lead QFN package with a PAD to thermally enhance the package. These drivers combined with a HIP63xx or ISL65xx series of Multi-Phase Buck PWM controllers and MOSFETs form a complete core voltage regulator solution for advanced microprocessors. The HIP662B drives both upper and lower gates over a range of 5V to 12V. This drive-voltage flexibility provides the advantage of optimizing applications involving trade-offs between switching losses and conduction losses. The output drivers in the HIP662B have the capacity to efficiently switch power MOSFETs at high frequencies. Each driver is capable of driving a 3pF load with a 3ns propagation delay and 5ns transition time. This device implements bootstrapping on the upper gates with a single external capacitor and resistor required for each power channel. This reduces implementation complexity and allows the use of higher performance, cost effective, N-Channel MOSFETs. Adaptive shoot-through protection is integrated to prevent both MOSFETs from conducting simultaneously. Ordering Information PART NUMBER TEMP. RANGE ( C) PACKAGE PKG. DWG. # HIP662BCB to 85 14 Ld SOIC M14.15 HIP662BCB-T 14 Ld SOIC Tape and Reel HIP662BCBZ (Note 1) to 85 14 Ld SOIC (Pb-Free) M14.15 HIP662BCBZ-T (Note 1) 14 Ld SOIC Tape and Reel (Pb-Free) HIP662BCR to 85 16 Ld 5x5 QFN L16.5x5 HIP662BCR-T 16 Ld 5x5 QFN Tape and Reel HIP662BCRZ (Note 1) to 85 16 Ld 5x5 QFN (Pb-Free) L16.5x5 HIP662BCRZ-T (Note 1) 16 Ld 5x5 QFN Tape and Reel (Pb-Free) HIP662BCRZA (Note 1) to 85 16 Ld 5x5 QFN (Pb-Free) L16.5x5 HIP662BCRZA-T (Note 1) 16 Ld 5x5 QFN Tape and Reel (Pb-Free) NOTE: 1. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 1% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-2. Features Drives Four N-Channel MOSFETs Adaptive Shoot-Through Protection Internal Bootstrap Devices Supports High Switching Frequency - Fast Output Rise Time - Propagation Delay 3ns Small 14-Lead SOIC Package Smaller 16-Lead QFN Thermally Enhanced Package 5V to 12V Gate-Drive Voltages for Optimal Efficiency Three-State Input for Bridge Shutdown Supply Undervoltage Protection Pb-Free Plus Anneal Available (RoHS Compliant) QFN Package: - Compliant to JEDEC PUB95 MO-22 QFN - Quad Flat No Leads - Package Outline - Near Chip Scale Package footprint, which improves PCB efficiency and has a thinner profile Applications Core Voltage Supplies for Intel Pentium III and AMD Athlon TM Microprocessors. High-Frequency, Low-Profile DC/DC Converters High-Current, Low-Voltage DC/DC Converters FN976 Rev 6. Page 1 of 12

Pinouts HIP662B (SOIC) TOP VIEW HIP662 (16 LD QFN) TOP VIEW 1 2 3 14 13 12 PHASE1 UGATE1 PHASE1 16 15 14 13 LGATE1 4 11 BOOT1 1 12 UG1 5 1 BOOT2 LG1 2 11 BOOT1 6 9 UGATE2 3 1 BOOT2 LGATE2 7 8 PHASE2 4 9 UG2 5 6 7 8 NC LG2 PHASE2 NC Block Diagram BOOT1 +5V 1K SHOOT- THROUGH PROTECTION UGATE1 PHASE1 1K LGATE1 +5V CONTROL LOGIC BOOT2 1K UGATE2 1K SHOOT- THROUGH PROTECTION PHASE2 HIP662B LGATE2 PAD For HIP662BCR, the PAD on the bottom side of the package MUST be soldered to the PC board FN976 Rev 6. Page 2 of 12

Typical Application - 2 Channel Converter Using a HIP632 and a HIP662B Gate Driver +5V BOOT1 FB VSEN COMP V CC UGATE1 PHASE1 ISEN1 PGOOD LGATE1 VID MAIN CONTROL HIP632 DUAL DRIVER HIP662B BOOT2 +5V/12V +V CORE UGATE2 FS/DIS ISEN2 PHASE2 LGATE2 FN976 Rev 6. Page 3 of 12

Typical Application - 4 Channel Converter Using a HIP633 and HIP662B Gate Driver BOOT1 UGATE1 PHASE1 LGATE1 +5V DUAL DRIVER HIP662B +5V/12V FB COMP BOOT2 VSEN V CC UGATE2 ISEN1 PGOOD PHASE2 EN VID MAIN ISEN2 CONTROL HIP633 LGATE2 +V CORE ISEN3 FS/DIS PWM3 PWM4 BOOT3 ISEN4 UGATE3 PHASE3 LGATE3 DUAL DRIVER HIP662B BOOT4 +5V/12V UGATE4 PWM3 PHASE4 PWM4 LGATE4 FN976 Rev 6. Page 4 of 12

Absolute Maximum Ratings Supply Voltage ().................................15V Supply Voltage ()......................... +.3V BOOT Voltage (V BOOT - V PHASE ).......................15V Input Voltage (V PWM )...................... -.3V to 7V UGATE.......V PHASE - 5V(<4ns pulse width) to V BOOT +.3V V PHASE -.3V(>4ns pulse width) to V BOOT +.3V LGATE......... - 5V(<4ns pulse width) to V +.3V -.3V(>4ns pulse width) to V +.3V PHASE.................. -5V(<4ns pulse width) to 15V -.3V(>4ns pulse width) to 15V ESD Rating Human Body Model (Per MIL-STD-883 Method 315.7).....3kV Machine Model (Per EIAJ ED-471 Method C-111)........V Operating Conditions Ambient Temperature Range..................... C to 85 C Maximum Operating Junction Temperature............... 125 C Supply Voltage,............................ 12V 1% Supply Voltage Range..................... 5V to 12V Thermal Information Thermal Resistance JA ( C/W) JC ( C/W) SOIC Package (Note 2)............ 68 N/A QFN Package (Note 3)............. 36 6 Maximum Junction Temperature (Plastic Package)........ 15 C Maximum Storage Temperature Range........... -65 C to 15 C Maximum Lead Temperature (Soldering 1s)............. 3 C (SOIC - Lead Tips Only) For Recommended soldering conditions see Tech Brief TB389. CAUTION: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 2. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 3. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with direct attach features. JC, the case temp is measured at the center of the exposed metal pad on the package underside. See Tech Brief TB379. Electrical Specifications Recommended Operating Conditions, unless otherwise specified. PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS SUPPLY CURRENT Bias Supply Current I f PWM = 5kHz, V = 12V - 3.7 5. ma Power Supply Current I f PWM = 5kHz, V = 12V - 2. 4. ma POWER-ON RESET Rising Threshold 9.7 9.95 1.4 V Falling Threshold 7.3 7.6 8. V PWM INPUT Input Current I PWM V PWM = or 5V (See Block Diagram) - 5 - µa PWM Rising Threshold V = 12V - 3.6 - V PWM Falling Threshold V = 12V - 1.45 - V UGATE Rise Time TR UGATE V = V = 12V, 3nF Load - 2 - ns LGATE Rise Time TR LGATE V = V = 12V, 3nF Load - 5 - ns UGATE Fall Time TF UGATE V = V = 12V, 3nF Load - 2 - ns LGATE Fall Time TF LGATE V = V = 12V, 3nF Load - 2 - ns UGATE Turn-Off Propagation Delay TPDL UGATE V = V = 12V, 3nF Load - 3 - ns LGATE Turn-Off Propagation Delay TPDL LGATE V = V = 12V, 3nF Load - 2 - ns Shutdown Window 1.4-3.6 V Shutdown Holdoff Time - 23 - ns OUTPUT Upper Drive Source Impedance R UGATE V = 12V, V = 5V - 1.7 3. V = V = 12V - 3. 5. Upper Drive Sink Impedance R UGATE V = 12V, V = 5V - 2.3 4. V = V = 12V - 1.1 2. Lower Drive Source Current I LGATE V = 12V, V = 5V 4 58 - ma V = V = 12V 5 73 - ma Lower Drive Sink Impedance R LGATE V = 12V, V = 5V or 12V - 1.6 4. FN976 Rev 6. Page 5 of 12

Functional Pin Descriptions (Pin 1) and (Pin 2), (Pins 15 and 16 QFN) The PWM signal is the control input for the driver. The PWM signal can enter three distinct states during operation, see the three-state PWM Input section under DESCRIPTION for further details. Connect this pin to the PWM output of the controller. (Pin 3), (Pin 1 QFN) Bias and reference ground. All signals are referenced to this node. LGATE1 (Pin 4) and LGATE2 (Pin 7), (Pins 2 and 6QFN) Lower gate drive outputs. Connect to gates of the low-side power N-Channel MOSFETs. (Pin 5), (Pin 3 QFN) This pin supplies the upper and lower gate drivers bias. Connect this pin from down to +5V. (Pin 6), (Pin 4 QFN) This pin is the power ground return for the lower gate drivers. PHASE2 (Pin 8) and PHASE1 (Pin 13), (Pins 7 and 13 QFN) Connect these pins to the source of the upper MOSFETs and the drain of the lower MOSFETs. The PHASE voltage is monitored for adaptive shoot-through protection. These pins also provide a return path for the upper gate drive. UGATE2 (Pin 9) and UGATE1 (Pin 12), (Pins 9 and 12 QFN) Upper gate drive outputs. Connect to gate of high-side power N-Channel MOSFETs. Timing Diagram. BOOT 2 (Pin 1) and BOOT 1 (Pin 11), (Pins 1 and 11 QFN) Floating bootstrap supply pins for the upper gate drivers. Connect a bootstrap capacitor between these pins and the corresponding PHASE pin. The bootstrap capacitor provides the charge to turn on the upper MOSFETs. A resistor in series with boot capacitor is required in certain applications to reduce ringing on the BOOT pin. See the Internal Bootstrap Device section under DESCRIPTION for guidance in choosing the appropriate resistor and capacitor value. (Pin 14), (Pin 14 QFN) Connect this pin to a bias supply. Place a high quality bypass capacitor from this pin to. To prevent forward biasing an internal diode, this pin should be more positive then during converter start-up Description Operation Designed for versatility and speed, the HIP662B two channel, dual MOSFET driver controls both high-side and low-side N-Channel FETs from two externally provided PWM signals. The upper and lower gates are held low until the driver is initialized. Once the voltage surpasses the Rising Threshold (See Electrical Specifications), the PWM signal takes control of gate transitions. A rising edge on PWM initiates the turn-off of the lower MOSFET (see Timing Diagram). After a short propagation delay [TPDL LGATE ], the lower gate begins to fall. Typical fall times [TF LGATE ] are provided in the Electrical Specifications section. Adaptive shoot-through circuitry monitors the LGATE voltage and determines the upper gate delay time [TPDH UGATE ] based on how quickly the LGATE voltage drops below 2.2V. This prevents both the lower and upper MOSFETs from conducting simultaneously or shoot-through. Once this delay period is complete the upper gate drive begins to rise [TR UGATE ] and the upper MOSFET turns on. PWM TPDH UGATE TPDL UGATE TR UGATE TF UGATE UGATE LGATE TF LGATE TR LGATE TPDL LGATE TPDH LGATE FN976 Rev 6. Page 6 of 12

A falling transition on PWM indicates the turn-off of the upper MOSFET and the turn-on of the lower MOSFET. A short propagation delay [TPDL UGATE ] is encountered before the upper gate begins to fall [TF UGATE ]. Again, the adaptive shoot-through circuitry determines the lower gate delay time, TPDH LGATE. The PHASE voltage is monitored and the lower gate is allowed to rise after PHASE drops below.5v. The lower gate then rises [TR LGATE ], turning on the lower MOSFET. Three-State PWM Input A unique feature of the HIP662B drivers is the addition of a shutdown window to the PWM input. If the PWM signal enters and remains within the shutdown window for a set holdoff time, the output drivers are disabled and both MOSFET gates are pulled and held low. The shutdown state is removed when the PWM signal moves outside the shutdown window. Otherwise, the PWM rising and falling thresholds outlined in the Electrical Specifications determine when the lower and upper gates are enabled. Adaptive Shoot-Through Protection The drivers incorporate adaptive shoot-through protection to prevent upper and lower MOSFETs from conducting simultaneously and shorting the input supply. This is accomplished by ensuring the falling gate has turned off one MOSFET before the other is allowed to rise. During turn-off of the lower MOSFET, the LGATE voltage is monitored until it reaches a 2.2V threshold, at which time the UGATE is released to rise. Adaptive shoot-through circuitry monitors the PHASE voltage during UGATE turn-off. Once PHASE has dropped below a threshold of.5v, the LGATE is allowed to rise. If the PHASE does not drop below.5v within 25ns, LGATE is allowed to rise. This is done to generate the bootstrap refresh signal. PHASE continues to be monitored during the lower gate rise time. If the PHASE voltage exceeds the.5v threshold during this period and remains high for longer than 2µs, the LGATE transitions low. This is done to make the lower MOSFET emulate a diode. Both upper and lower gates are then held low until the next rising edge of the PWM signal. Power-On Reset (POR) Function During initial start-up, the voltage rise is monitored and gate drives are held low until a typical rising threshold of 9.95V is reached. Once the rising threshold is exceeded, the PWM input signal takes control of the gate drives. If drops below a typical falling threshold of 7.6V during operation, then both gate drives are again held low. This condition persists until the voltage exceeds the rising threshold. Internal Bootstrap Device The HIP662B features an internal bootstrap device. Simply adding an external capacitor across the BOOT and PHASE pins completes the bootstrap circuit. The bootstrap capacitor must have a maximum voltage rating above + 5V. The bootstrap capacitor can be chosen from the following equation: Q GATE C BOOT ----------------------- V BOOT Where Q GATE is the amount of gate charge required to fully charge the gate of the upper MOSFET. The V BOOT term is defined as the allowable droop in the rail of the upper drive. As an example, suppose a HUF76139 is chosen as the upper MOSFET. The gate charge, Q GATE, from the data sheet is 65nC for a 1V upper gate drive. We will assume a mv droop in drive voltage over the PWM cycle. We find that a bootstrap capacitance of at least.325µf is required. The next larger standard value capacitance is.33µf. In applications which require down conversion from or higher and is connected to a source, a boot resistor in series with the boot capacitor is required. The increased power density of these designs tend to lead to increased ringing on the BOOT and PHASE nodes, due to faster switching of larger currents across given circuit parasitic elements. The addition of the boot resistor allows for tuning of the circuit until the peak ringing on BOOT is below 29V from BOOT to and 17V from BOOT to. A boot resistor value of 5 typically meets this criteria. In some applications, a well tuned boot resistor reduces the ringing on the BOOT pin, but the PHASE to peak ringing exceeds 17V. A gate resistor placed in the UGATE trace between the controller and upper MOSFET gate is recommended to reduce the ringing on the PHASE node by slowing down the upper MOSFET turn-on. A gate resistor value between 2 to 1 typically reduces the PHASE to peak ringing below 17V. Gate Drive Voltage Versatility The HIP662B provides the user flexibility in choosing the gate drive voltage. Simply applying a voltage from 5V up to 12V on will set both driver rail voltages. Power Dissipation Package power dissipation is mainly a function of the switching frequency and total gate charge of the selected MOSFETs. Calculating the power dissipation in the driver for a desired application is critical to ensuring safe operation. Exceeding the maximum allowable power dissipation level will push the IC beyond the maximum recommended operating junction temperature of 125 C. The maximum allowable IC power dissipation for the 14 lead SOIC package is approximately 1mW. Improvements in thermal transfer may be gained by increasing the PC board copper area around the HIP662B. Adding a ground pad under the IC to help transfer heat to the outer peripheral of the board will help. Also keeping the leads to the IC as wide as possible and widening this these leads as soon as possible to further enhance heat transfer will also help. FN976 Rev 6. Page 7 of 12

When designing the driver into an application, it is recommended that the following calculation be performed to ensure safe operation at the desired frequency for the selected MOSFETs. The total chip power dissipation is approximated as: 3_ 2 P = 1.5 x f SW x V [ (Q U1 + Q U2 ) + (Q L1 + Q L2 )] + I DDQ x where f sw is the switching frequency of the PWM signal. Q U and Q L is the upper and lower gate charge determined by MOSFET selection and any external capacitance added to the gate pins. The I DDQ product is the quiescent power of the driver and is typically 4mW. The 1.5 term is a correction factor derived from the following characterization. The base circuit for characterizing the drivers for different loading profiles and frequencies is provided. C U and C L are the upper and lower gate load capacitors. Decoupling capacitors [.15µF] are added to the and pins. The bootstrap capacitor value in the test circuit is.1µf. The power dissipation approximation is a result of power transferred to and from the upper and lower gates. But, the internal bootstrap device also dissipates power on-chip during the refresh cycle. Expressing this power in terms of the upper MOSFET total gate charge is explained below. The bootstrap device conducts when the lower MOSFET or its body diode conducts and pulls the PHASE node toward. While the bootstrap device conducts, a current path is formed that refreshes the bootstrap capacitor. Since the upper gate is driving a MOSFET, the charge removed from the bootstrap capacitor is equivalent to the total gate charge of the MOSFET. Therefore, the refresh power required by the bootstrap capacitor is equivalent to the power used to charge the gate capacitance of the upper MOSFETs. P REFRESH = f SW Q V = f LOSS SW Q V U where Q LOSS is the total charge removed from the bootstrap capacitors and provided to the upper gate loads. In Figure 2, C U and C L values are the same and frequency is varied from 1kHz to 1.5MHz. and are tied together to a supply. Figure 3 shows the dissipation in the driver with 1nF loading on both gates and each individually. Figure 4 is the same as Figure 3 except the capacitance is increased to 3nF. The impact of loading on power dissipation is shown in Figure 5. Frequency is held constant while the gate capacitors are varied from 1nF to 5nF. and are tied together and to a supply. Figures 6, 7 and 8 show the same characterization for tied to +5V instead of. The gate supply voltage,, within the HIP662B sets both upper and lower gate driver supplies at the same 5V level for the last three curves. Test Circuit +5V OR.15µF +5V OR.15µF HIP662B BOOT1.1µF UGATE1 PHASE1 LGATE1.1µF BOOT2 UGATE2 PHASE2 LGATE2 C L C L 2N72 2N72 2N72 2N72 FIGURE 1. HIP662B TEST CIRCUIT 1k 1k C U C U FN976 Rev 6. Page 8 of 12

Typical Performance Curves 1 1 8 6 4 C U = C L = 5nF C U = C L = 4nF C U = C L = 3nF C U = C L = 2nF C U = C L = 1nF = 12V = 12V 1 1 8 6 4 = = 12V C U = C L = 1nF C L = 1nF, C U = nf C U = 1nF, C L = nf 5 1 15 FREQUENCY (khz) FIGURE 2. POWER DISSIPATION vs FREQUENCY 5 1 15 FREQUENCY (khz) FIGURE 3. 1nF LOADING PROFILE 1 1 8 6 4 = = 12V C U = C L = 3nF C L = 3nF, C U = nf C U = 3nF, C L = nf 1 1 8 6 4 = = 12V 5kHz khz 1kHz 3kHz 1kHz 5 1 FREQUENCY (khz) FIGURE 4. 3nF LOADING PROFILE 15 1 2 3 4 5 GATE CAPACITANCE (C U = C L ), (nf) FIGURE 5. POWER DISSIPATION vs LOADING 8 7 6 = 5V, = 12V C U = C L = 3nF C U = C L = 5nF C U = C L = 4nF 35 3 25 = 5V, = 12V C U = C L = 1nF 5 4 3 1 C U = C L =1nF C U = C L = 2nF 15 1 5 C L = 1nF, C U = nf C U = 1nF, C L = nf 5 1 15 FREQUENCY (khz) FIGURE 6. POWER DISSIPATION vs FREQUENCY, = 5V 5 1 15 FREQUENCY (khz) FIGURE 7. POWER DISSIPATION vs FREQUENCY, = 5V FN976 Rev 6. Page 9 of 12

Typical Performance Curves (Continued) 6 5 4 3 1 = 5V, = 12V 2MHz 1.5MHz 1MHz 5kHz khz 1kHz 1 2 3 4 GATE CAPACITANCE (C U = C L ), (nf) 3kHz 5 FIGURE 8. POWER DISSIPATION vs LOADING, = 5V Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision. DATE REVISION CHANGE FN976.6 Added recommended replacement parts ISL6622 and ISL6625A. Added Rev History and About Intersil Verbiage. Updated POD M14.15 to most current version. Rev change as follows: Added land pattern and moved dimensions from table onto drawing. About Intersil Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask. Reliability reports are also available from our website at www.intersil.com/support Copyright Intersil Americas LLC 2-215. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO91 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN976 Rev 6. Page 1 of 12

Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP) L16.5x5 16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-22VHHB ISSUE C) MILLIMETERS SYMBOL MIN NOMINAL MAX NOTES A.8.9 1. - A1 - -.5 - A2 - - 1. 9 A3.2 REF 9 b.28.33.4 5, 8 D 5. BSC - D1 4.75 BSC 9 D2 2.55 2.7 2.85 7, 8 E 5. BSC - E1 4.75 BSC 9 E2 2.55 2.7 2.85 7, 8 e.8 BSC - k.25 - - - L.35.6.75 8 L1 - -.15 1 N 16 2 Nd 4 3 Ne 4 4 3 P - -.6 9 - - 12 9 Rev. 2 1/2 NOTES: 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. 2. N is the number of terminals. 3. Nd and Ne refer to the number of terminals on each D and E. 4. All dimensions are in millimeters. Angles are in degrees. 5. Dimension b applies to the metallized terminal and is measured between.15mm and.3mm from the terminal tip. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance. 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389. 9. Features and dimensions A2, A3, D1, E1, P & are present when Anvil singulation method is used and not present for saw singulation. 1. Depending on the method of lead termination at the edge of the package, a maximum.15mm pull back (L1) maybe present. L minus L1 to be equal to or greater than.3mm. FN976 Rev 6. Page 11 of 12

Package Outline Drawing M14.15 14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 1, 1/9 8.65 4.1 C A-B 2X A 3 6 14 8 D DETAIL"A".22±.3 3.9 6. 4.1 C D 2X PIN NO.1 ID MARK 5.31-.51 B.25MCA-B D 3 6 7.2 C 2X (.35) x 45 4 ± 4 TOP VIEW.1 C 1.75 MAX 1.25 MIN H 1.27.1-.25.25 GAUGE PLANE C SEATING PLANE.1 C SIDE VIEW DETAIL "A" (1.27) (.6) (5.4) (1.5) NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSEY14.5m-1994. 3. Datums A and B to be determined at Datum H. 4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed.25mm per side. 5. The pin #1 indentifier may be either a mold or mark feature. 6. Does not include dambar protrusion. Allowable dambar protrusion shall be.1mm total in excess of lead width at maximum condition. 7. Reference to JEDEC MS-12-AB. TYPICAL RECOMMENDED LAND PATTERN FN976 Rev 6. Page 12 of 12