Link optimisation for DWDM transmission with an optical phase conjugation

Similar documents
Link optimization for DWDM transmission with an optical phase conjugation

Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping

High order cascaded Raman random fiber laser with high spectral purity

4 Tbit/s transmission reach enhancement using 10x400 Gbit/s super-channels and polarization insensitive dual band optical phase conjugation

Current Trends in Unrepeatered Systems

Powerful Narrow Linewidth Random Fiber Laser

Rayleigh-Based Raman Fiber Laser With Passive Erbium-Doped Fiber for Secondary Pumping Effect in Remote L-Band Erbium-Doped Fiber Amplifier

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

Practical Aspects of Raman Amplifier

Analytical Estimation in Differential Optical Transmission Systems Influenced by Equalization Enhanced Phase Noise

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

IN order to maximize the capacity of single mode fiber based

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION

The Affection of Fiber Nonlinearity in Coherent Optical Communication System

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Optical Fiber Technology

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

REDUCTION OF CROSSTALK IN WAVELENGTH DIVISION MULTIPLEXED FIBER OPTIC COMMUNICATION SYSTEMS

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

COHERENT DETECTION OPTICAL OFDM SYSTEM

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Fiber Nonlinearity Compensation Methods (used by our group)

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Semiconductor Optical Amplifiers (SOAs) as Power Boosters. Applications Note No. 0001

Emerging Subsea Networks

Fiber-wireless links supporting high-capacity W-band channels

Turbulent broadening of optical spectra in ultralong Raman fiber lasers

Next-Generation Optical Fiber Network Communication

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Sensors & Transducers Published by IFSA Publishing, S. L.,

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Mitigation of Chromatic Dispersion using Different Compensation Methods in Optical Fiber Communication: A Review

Digital Nonlinearity Compensation in High- Capacity Optical Fibre Communication Systems: Performance and Optimisation

Role of distributed amplification in designing high-capacity soliton systems

Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM

UNREPEATERED SYSTEMS: STATE OF THE ART

The Reduction of FWM effects using Duobinary Modulation in a Two-Channel D-WDM System

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Network Challenges for Coherent Systems. Mike Harrop Technical Sales Engineering, EXFO

from ocean to cloud THE FUTURE IS NOW - MAXIMIZING SPECTRAL EFFICIENCY AND CAPACITY USING MODERN COHERENT TRANSPONDER TECHNIQUES

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating

Nonlinear mitigation using carrier phase estimation and digital backward propagation in coherent QAM transmission

Pilot-based blind phase estimation for coherent optical OFDM system

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

from ocean to cloud LOW COMPLEXITY BACK-PROPAGATION FOR UPGRADING LEGACY SUBMARINE SYSTEMS

TECHNOLOGIES for extended-reach unrepeated wavelength-division-multiplexing

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Emerging Subsea Networks

Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link

A PIECE WISE LINEAR SOLUTION FOR NONLINEAR SRS EFFECT IN DWDM FIBER OPTIC COMMUNICATION SYSTEMS

Optical Fibre Amplifiers Continued

Design of Ultra High Capacity DWDM System with Different Modulation Formats

from ocean to cloud EFFICIENCY OF ROPA AMPLIFICATION FOR DIFFERENT MODULATION FORMATS IN UNREPEATERED SUBMARINE SYSTEMS

THEORETICALLY the capacity of a fixed bandwidth Gaussian

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Research Article Signal Processing Algorithms for Down-Stream Traffic in Next Generation 10 Gbit/s Fixed-Grid Passive Optical Networks

from ocean to cloud TCM-QPSK PROVIDES 2DB GAIN OVER BPSK IN FESTOON LINKS

Multiwatts narrow linewidth fiber Raman amplifiers

Emerging Subsea Networks

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

S Optical Networks Course Lecture 4: Transmission System Engineering

Single- versus Dual-Carrier Transmission for Installed Submarine Cable Upgrades

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Optimized Dispersion Compensation with Post Fiber Bragg Grating in WDM Optical Network

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Effects of MPI noise on various modulation formats in distributed Raman amplified system

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

All Optical Broad-Band Multi-Raman Amplifier for Long-Haul UW-WDM Optical Communication Systems

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Power penalty caused by Stimulated Raman Scattering in WDM Systems

Achievable information rates in optical fiber communications

from ocean to cloud DIMINISHED NONLINEAR IMPACT OF BIT-ALIGNED POLARIZATION MULTIPLEXING WITH ADVANCED MODULATION FORMATS ON SUBSEA CABLES

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands

DESIGN OF BIDIRECTIONAL PASSIVE OPTICAL NETWORK USING DIFFERENT MODULATIONS

Suppression of Stimulated Brillouin Scattering

40Gb/s Coherent DP-PSK for Submarine Applications

Gain-clamping techniques in two-stage double-pass L-band EDFA

Polarization Mode Dispersion compensation in WDM system using dispersion compensating fibre

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres

SCIENCE CHINA Technological Sciences. A flexible multi-16qam transmitter based on cascaded dual-parallel Mach-Zehnder modulator and phase modulator

Visible to infrared high-speed WDM transmission over PCF

Generation of gigantic nanosecond pulses through Raman-Brillouin- Rayleigh cooperative process in single-mode optical fiber

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Technologies for Optical Transceivers and Optical Nodes to Increase Transmission Capacity to 100 Tbps

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

RECENTLY, random Raman fiber lasers (RRFLs) have

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Peter J. Winzer Bell Labs, Alcatel-Lucent. Special thanks to: R.-J. Essiambre, A. Gnauck, G. Raybon, C. Doerr

Demonstration of Nonlinear Inverse Synthesis Transmission over Transoceanic Distances

Transcription:

Link optimisation for DWDM transmission with an optical phase conjugation Paweł Rosa, Giuseppe Rizzelli, and Juan Diego Ania-Castañón Instituto de Óptica, Consejo Superior de Investigaciones Cientificas, Madrid 8006, Spain p.g.rosa@icloud.com Abstract: We numerically optimise the span length that gives the lowest signal power asymmetry between transmitted and conjugated channels in a DWDM transmission with fibre based mid-link optical phase conjugation. 016 Optical Society of America OCIS codes: (060.1660) Coherent communications; (060.0) Fibre optics amplifiers and oscillators; (060.70) Nonlinear optics, fibers. References and links 1. P. P. Mitra and J. B. Stark, Nonlinear limits to the information capacity of optical fibre communications, Nature, 11, 7 0 (001).. A. D. Ellis, J. Zhao, and D. Cotter Approaching the Non-Linear Shannon Limit, J. Lightw. Technol. 8(), (0).. I. R. Gabitov and P. M. Lushnikov, Nonlinearity management in a dispersion-managed system, Opt. Lett. 7(), 11 115 (00).. J. D. Ania-Castañòn, I.O. Nasieva, N. Kurukitkoson, S.K. Turitsyn, C. Borsier, and E. Pincemin, Nonlinearity management in fiber transmission systems with hybrid amplification, Opt. Commun. ( 6), 5 57 (00). 5. Arthur James Lowery, Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM, Opt. Express 15(0), 1965 1970 (007). 6. E. Ip and J. M. Kahn, Compensation of dispersion and nonlinear impairments using digital backpropagation, J. Lightw. Technol., 6(0), 16 5 (008). 7. D. Rafique, J. Zhao, and A. D. Ellis, Digital back-propagation for spectrally efficient WDM 11 Gbit/s PM m-ary QAM transmission, Opt. Exp., 19(6), 519 5 (011). 8. E. Temprana, E. Myslivets, B.P.-P. Kuo, L. Liu, V. Ataie, N. Alic, S. Radic, Overcoming Kerr-induced capacity limit in optical fiber transmission, Science 6, 8(6), 15 18 (015). 9. S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, P. M. Krummrich, and S. Spalter Phase conjugation for increased system robustness in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 006), paper OTuK.. M. D. Pelusi and B. J. Eggleton Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation, Opt. Express 0(7), 8015 80 (01). 11. I. D. Phillips, M. Tan, M.F.C. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, and A. D. Ellis Exceeding the nonlinear Shannon limit using Raman fibre based amplification and optical phase conjugation, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 01), paper MC.1. 1. M. Tan, P. Rosa, I. D. Phillips, and P. Harper Extended Reach of 116 Gb/s DP-QPSK Transmission using Random DFB Fiber Laser Based Raman Amplification and Bidirectional Second-order Pumping, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 015), paper WE.1. 1. P. Rosa, G. Rizzelli, M. Tan, P. Harper, and J. D. Ania-Castañòn, Characterisation of random DFB Raman laser amplifier for WDM transmission, Opt. Express (), 86 869 (015). 1. M. Tan, P. Rosa, S. T. Le, Md. A. Iqbal, I. D. Phillips, and P. Harper Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping. Opt. Express (), 15 1 (016).

15. P. Rosa, G. Rizzelli, and J. D. Ania-Castañón Signal power symmetry optimization for optical phase conjugation using Raman amplification, in Proceedings of Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 015), paper NWA.6. 16. P. Rosa, S. T. Le, G. Rizzelli, M. Tan, and J. D. Ania-Castañón Signal power asymmetry optimisation for optical phase conjugation using Raman amplification, Opt. Express (5), 177 1778 (015). 17. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, E. V. Podivilov Random distributed feedback fibre laser, Nature Photonics, 1 5, (0). 18. M. Alcon-Camas, A. E. El-Taher, J. D. Ania-Castañón, and P. Harper Gain Bandwidth Optimisation and Enhancement in Ultra-long Raman Fibre Laser based Amplifiers, in European Conference and Exhibition on Optical Communication (ECOC), (IEEE, 0), paper P1.17. 19. M. Tan, P. Rosa, Md. A. Iqbal, I. D. Phillips, J. D. Ania-Castañón and P. Harper RIN Mitigation in Second Order Pumped Raman Fibre Laser Based Amplification, in Asia Communications and Photonics Conference, (OSA 015), paper AME.6. 0. C. R. S. Fludger, V. Handerek and R. J. Mears Pump to Signal RIN Transfer in Raman Fiber Amplifiers, J. Light. Tech. 19(8), (001). 1. M. Tan, P. Rosa, I. D. Phillips, and P. Harper Long-haul Transmission Performance Evaluation of Ultra-long Raman Fiber Laser Based Amplification Influenced by Second Order Co-pumping, in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 01), paper ATh1E... M. Tan, P. Rosa, S. T. Le, I. D. Phillips, and P. Harper Evaluation of 0G DP-QPSK long-haul transmission performance using second order co-pumped Raman laser based amplification, Opt. Express (17), 181-189 (015).. K. Solis-Trapala, T. Inoue, and S. Namiki Signal power asymmetry tolerance of an optical phase conjugationbased nonlinear compensation system, in European Conference and Exhibition on Optical Communication (ECOC), (IEEE, 01), paper We..5. 1. Introduction The nonlinear-shannon limit sets a cap to maximum capacity in single mode optical fibres [1,]. Several techniques have been proposed over the years to compensate or partially mitigate fibre nonlinear effects, pre-shaping and in-line nonlinearity management [ 6] to digital compensation through techniques such as back-propagation [6 8]. Amongst these options, mid-link [9] or transmitter-based [] optical phase conjugation (OPC) has proven to be one of the most promising, enabling real time compensation of all deterministic (signal signal) nonlinear impairments. However, the degree of nonlinear compensation using mid-link OPC is related to the symmetry match of the conjugated and transmitted signal power evolution in the fibre. Meaningful performance improvement has only been demonstrated in Raman-based amplification optical links [11], thanks to the better control over signal symmetry provided by distributed amplification, as well as its improved noise performance. The key to maximise performance in OPC-assisted systems lies in reducing signal power asymmetry within the periodic spans while ensuring a low impact of noise and non-deterministic nonlinear impairments in the overall transmission link. It has been demonstrated that half- open-cavity random distributed feedback (DFB) Raman laser amplifier with bidirectional nd order pumping [1 1] can reduce signal power evolution asymmetry inside the span with respect to its middle point and shows the highest level of symmetry achieved up to date [15, 16]. In order to investigate the best practical Raman-based link design and the potential impact of the reduced asymmetry between transmitted and conjugated channels, we consider two DWDM grids (original and conjugated) of 0 channels with a 5 GHz spacing (original and conjugated) that are simulated independently across the C-band with frequency range from 19-195,775 THz. We also show the optimised single channel in-span signal power asymmetry variation due to wavelength dependent Raman gain and attenuation at different frequencies and span lengths.

. Amplification setup In our search for an optimal setup for WDM transmission with an OPC we consider random DFB Raman fibre laser amplifier [1, 1] that shows the best in-span asymmetry performance comparing with other Raman amplification schemes [15, 16]. The schematic design is shown in Fig. 1. Raman Pump 166 nm Random distributed feedback FBG TX RX Raman Pump 166 nm Fig. 1. Schematic design of random DFB Raman laser amplifier. To form a distributed nd order random DFB Raman laser amplifier amplifier, fully depolarised Raman fibre laser pumps are downshifted in wavelength by two Stokes with respect to the frequency of the signal. High reflectivity (99%) FBG centred at 155 nm with a 00 GHz bandwidth was deployed at the end of the transmission line to reflect Stokes-shifted light from the backward pump at 166 nm and form a random DFB lasing [17] at the frequency specified by the wavelength of the FBG acting as a first order pump that amplified the signal in the C- band. The advantage of this model is that the gain bandwidth and profile can be modified by selecting appropriate FBG [18] rather than deploying a seed at different wavelength. The lack of an FBG on the side of the forward pump reduces the RIN transfer [19] from the forward pump to the Stokes-shifted light at 155 nm at the cost of a reduction in the power efficiency conversion in comparison to the 1 st order Raman and URFL amplification schemes. This is particularly important, as forward-pumping RIN transfer from inherently noisy high-power pumps can seriously hinder data transmission [0 ].. Wavelength dependent asymmetry To show wavelength dependent in-span asymmetry we simulated single channel across the 0 nm C-band (151-1561 nm) with a 5 GHz step. Our broadband amplification model includes not only cascaded amplification, but takes also into account residual Raman gain from the primary pump at 166 nm to the signal in the C-band, pump depletion from both pumps to the lower order pumps and signal components, double Rayleigh scattering and amplified spontaneous emission noise for each of the signals as well as parameters (attenuation curve at different frequencies, Rayleigh backscattering and Raman gain coefficients) for standard SMF- 8 fibre used in the simulations. The full description can be found in [1]. The span length ranged from 50-70 km and the pump powers were optimised to give 0 dbm net gain and the lowest in-span asymmetry at each distance. 16 1 1 8 6 Measurement Simulation 15 0 5 0 5 0 5 50 Forward/backward pump power split [%] Fig.. Asymmetry excursion dependence on the forward and backward pump power split measured at the central wavelength at 155 nm in a 60 km span.

The forward and backward pump power split for an optimised asymmetry within the span can vary with distance. In Fig. we show the experimental measurement with simulated fit of a pump power split measured at the central wavelength at 155 nm in a 60 km span. a 8 6 0 1.9 1.95 1.9 1.95 1.9 1.95 1.95 1.955 Frequency [Hz] x 5 Corresponding OSNR [db] 7 b 6 5 1.9 1.95 1.9 1.95 1.9 1.95 1.95 1.955 Frequency [Hz] x 5 L=50 km L=5 km L=5 km L=56 km L=58 km L=60 km L=6 km L=6 km L=66 km L=68 km L=70 km Fig.. Signal power asymmetry at given frequency for different span lengths (a) and the corresponding OSNR (b). The lowest asymmetry (calculated as in []) and corresponding OSNR at given frequency for each distance is shown in Fig.. With the higher span length the asymmetry variation across the residual grid is more pronounced, hence the optimisation of the link for the wideband DWDM transmission is important as the performance of an OPC is directly related to the symmetry of the transmitted and conjugated channel. The flattest and the lowest overall asymmetry excursion across the simulated band was found at 58 km (Fig. ). 1.6 Asymmety Excursion [%] 1. 1. 1 0.8 0.6 0. 0. 50 5 5 56 58 60 6 6 Length [Km] Fig.. Asymmetry excursion of a single channel across C band (151-1561 nm). The lowest asymmetry as well as asymmetry excursion across the measured band is found to be for the span lengths below 6 km (solid curves in Fig. [a]), hence further optimisation for WDM transmission will be performed in that region.. DWDM transmission with a mid-link OPC In DWDM transmission with a mid-link OPC we independently simulate the power evolution of the original channels and their conjugated copies, that is shifted in frequency. The channel count was set to 0, with a 5 GHz spacing. We assumed 00 GHz spacing for optical phase conjugator. The grid was then being downshifted in wavelength by 500 GHz until the 0 nm band (151-1561 nm) was fully covered. A diagram depicting the simulated frequency sections is shown in Fig. 5. The asymmetry between transmitted and conjugated channels (inter-span asymmetry) was calculated using the formula: Asymmetry = L 0 P 1(z) P (L z) dz L 0 P 1(z) 0 (1)

Fig. 5. Frequency sections of transmitted and conjugated channels. where L is the span length, P 1 and P represents average signal power evolution of the transmitted and conjugated channels, respectively. 0 15 5 Section I 0 19 19.1 19. 19. 19. 19.5 5 19 19.1 19. 19. 19. 19.5.5.5 Section III Section V L=50km L=5km L=5km L=56km L=58km L=60km L=6km.5.5 8 6 Section II 19.5 19.6 19.7 19.8 19.9 19 Section IV 19.5 19.6 19.7 19.8 19.9 19 5 Section VI 19 19.1 19. 19. 19. 19.5 19.5 19.6 19.7 19.8 19.9 195 Fig. 6. Optimised asymmetry between transmitted and conjugated WDM channels at different frequency sections. The Y axes refers to frequencies of the transmitted WDM grid. Each section of the band was optimised to the channel that gave the best overall asymmetry performance: the grid was simulated to give 0 db net gain for the first channel, then the rest of the channels were simulated with the same pump power, next we optimised the grid to a second channel and so on. The same logic was applied to the conjugated copy and finally we compared the asymmetry between original and conjugated channels with all possible combinations. The optimised results with the lowest achievable asymmetry in each section for the distances from 50 to 6 km links is shown in Fig. 6. Due to the frequency dependence of the attenuation and Raman gain coefficient profiles, the asymmetry in the residual windows (I and II) is most

pronounced. This is also valid for single channel in-span asymmetry as shown in Fig. (a). As a result, the symmetry between transmitted and conjugated channels is greatest for the sections with the best in-span symmetry. Asymmetries below % are found to be achievable for all frequency sections from 19-195.775 THz (window III, IV, V and VI) at all span lengths considered. Comparing the results from Fig. 6 we can notice the importance of span length optimisation for wide band WDM transmission with an OPC. A span length difference of only km can lead to a strong performance decrease in nonlinear compensation using OPC due to the associated increase in asymmetry. 5. Conclusion We have evaluated, for the first time, signal power asymmetry between transmitted and conjugated channels in a WDM transmission in Raman-amplified systems with mid-link OPC. We have shown that for the chosen typical fibre-based OPC characteristics and a 0-channel, 5 GHz-spaced grid, a 56 km span length provides most suitable solution that gives the best asymmetry performance, with values below % across most of the C-band. In terms of optimal channel location, the spectral window starting in 19.5 THz (window IV) offers the best possible performance for all span lengths studied. 6. Acknowledgement We acknowledge the support of the EU through the Marie Skłodowska-Curie IF CHAOS for P. Rosa (65898) and FP7 ITN programme ICONE (608099), Spanish MINECO grant ANOMALOS (TEC015-7117-C) and Comunidad de Madrid grant SINFOTON (S01/MIT-790-SINFOTON-CM).