V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

Similar documents
V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

IRLR3717 IRLU3717 HEXFET Power MOSFET

IRFR3709ZPbF IRFU3709ZPbF

IRLR8721PbF IRLU8721PbF

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

IRF7821PbF. HEXFET Power MOSFET

IRF3709ZCS IRF3709ZCL

V DSS R DS(on) max Qg

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

IRL3714Z IRL3714ZS IRL3714ZL

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

V DSS R DS(on) max Qg

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

IRL8113 IRL8113S IRL8113L

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

IRF6602/IRF6602TR1 HEXFET Power MOSFET

IRL3714ZPbF IRL3714ZSPbF IRL3714ZLPbF

IRLR8726PbF IRLU8726PbF

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

SMPS MOSFET. V DSS R DS(on) max (mω) I D

IRFR24N15DPbF IRFU24N15DPbF

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRFR24N15D IRFU24N15D

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IRF9910PbF HEXFET Power MOSFET R DS(on) max

SMPS MOSFET. V DSS R DS(on) max I D

IRFR4105ZPbF IRFU4105ZPbF

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRLS3034PbF IRLSL3034PbF

V DSS R DS(on) max I D

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

IRFS4127PbF IRFSL4127PbF

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRFR3806PbF IRFU3806PbF

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

IRFR1018EPbF IRFU1018EPbF

SMPS MOSFET. V DSS R DS(on) max I D

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

SMPS MOSFET. V DSS R DS(on) max I D

IRF3808S IRF3808L HEXFET Power MOSFET

IRLR3915PbF IRLU3915PbF

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

IRFR540ZPbF IRFU540ZPbF

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFB260NPbF HEXFET Power MOSFET

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 500V 0.125Ω 170ns 34A

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRF6646 DirectFET Power MOSFET

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

IRFS3004-7PPbF HEXFET Power MOSFET

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

l Advanced Process Technology TO-220AB IRF640NPbF

FASTIRFET IRFHE4250DPbF

SMPS MOSFET. V DSS Rds(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

Transcription:

Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Benefits l l l Very Low RDSon) at 4.5V V GS Ultra-Low Gate Impedance Fully Characterized Avalanche Voltage and Current IRLR833 IRLU833 HEXFET Power MOSFET V DSS R DSon) max Qg 3V 4.5m: 33nC D-Pak IRLR833 PD - 9454A I-Pak IRLU833 Absolute Maximum Ratings Parameter Max. Units V DS Drain-to-Source Voltage 3 V V GS Gate-to-Source Voltage ± I D @ T C = 5 C Continuous Drain Current, V GS @ V 4f I D @ T C = C Continuous Drain Current, V GS @ V 99f A I DM Pulsed Drain Current c 56 P D @T C = 5 C Maximum Power Dissipation g 4 W P D @T C = C Maximum Power Dissipation g Linear Derating Factor.95 W C T J Operating Junction and -55 to 5 C T STG Storage Temperature Range Soldering Temperature, for seconds Mounting torque, 6-3 or M3 screw 3.6mm from case) lbfxin.nxm) Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case.5 R θja Junction-to-Ambient PCB Mount) g 5 CW R θja Junction-to-Ambient Notes through are on page www.irf.com 394

IRLRU833 Static @ T J = 5 C unless otherwise specified) Parameter Min. Typ. Max. Units BV DSS Drain-to-Source Breakdown Voltage 3 V ΒV DSS T J Breakdown Voltage Temp. Coefficient 9 mv C R DSon) Static Drain-to-Source On-Resistance 3.6 4.5 mω 4.4 5.5 V GS = 4.5V, I D = A f V GSth) Gate Threshold Voltage.4.3 V V DS = V GS, I D = 5µA V GSth) T J Gate Threshold Voltage Coefficient -6. mv C I DSS Drain-to-Source Leakage Current. µa V DS = 4V, V GS = V 5 V DS = 4V, V GS = V, T J = 5 C I GSS Gate-to-Source Forward Leakage na V GS = V Gate-to-Source Reverse Leakage - V GS = -V gfs Forward Transconductance 66 S V DS = 5V, I D = A Q g Total Gate Charge 33 5 Q gs Pre-Vth Gate-to-Source Charge 8. V DS = 6V Q gs Post-Vth Gate-to-Source Charge. nc V GS = 4.5V Q gd Gate-to-Drain Charge 3 I D = A Q godr Gate Charge Overdrive 9.9 See Fig. 6 Q sw Switch Charge Q gs Q gd ) 5 Q oss Output Charge nc t don) Turn-On Delay Time 4 t r Rise Time 6.9 t doff) Turn-Off Delay Time 3 ns t f Fall Time 5 C iss Input Capacitance 4 C oss Output Capacitance 95 pf C rss Reverse Transfer Capacitance 4 Avalanche Characteristics Parameter Typ. Max. Units E AS Single Pulse Avalanche Energyd 53 mj I AR Avalanche Currentc A E AR Repetitive Avalanche Energy c 4 mj Diode Characteristics Parameter Min. Typ. Max. Units I S Continuous Source Current 4f Conditions V GS = V, I D = 5µA Reference to 5 C, I D = ma V GS = V, I D = 5A f V DS = 6V, V GS = V V DD = 5V, V GS = 4.5V f I D = A Clamped Inductive Load V GS = V V DS = 5V ƒ =.MHz Conditions MOSFET symbol D Body Diode) A showing the I SM Pulsed Source Current 56 integral reverse G Body Diode)ch p-n junction diode. S V SD Diode Forward Voltage. V T J = 5 C, I S = A, V GS = V f t rr Reverse Recovery Time 39 58 ns T J = 5 C, I F = A, V DD = 5V Q rr Reverse Recovery Charge 3 55 nc didt = Aµs f t on Forward Turn-On Time Intrinsic turn-on time is negligible turn-on is dominated by LSLD) www.irf.com

I D, Drain-to-Source Current Α) R DSon), Drain-to-Source On Resistance Normalized) I D, Drain-to-Source Current A) I D, Drain-to-Source Current A) IRLRU833 VGS TOP V 5.V 4.5V 3.5V 3.V.V.5V BOTTOM.5V VGS TOP V 5.V 4.5V 3.5V 3.V.V.5V BOTTOM.5V...5V µs PULSE WIDTH Tj = 5 C. V DS, Drain-to-Source Voltage V).5V µs PULSE WIDTH Tj = 5 C. V DS, Drain-to-Source Voltage V) Fig. Typical Output Characteristics Fig. Typical Output Characteristics.. T J = 5 C. I D = 3A V GS = V.5.. T J = 5 C. V DS = 5V µs PULSE WIDTH.. 3. 4. 5. 6. V GS, Gate-to-Source Voltage V).5-6 -4-4 6 8 4 6 8 T J, Junction Temperature C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3

I SD, Reverse Drain Current A) I D, Drain-to-Source Current A) C, CapacitancepF) V GS, Gate-to-Source Voltage V) IRLRU833 V GS = V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd 6. 5. I D = A V DS = 4V V DS = 5V 4. C iss 3. C oss C rss... 3 4 5 V DS, Drain-to-Source Voltage V) Q G Total Gate Charge nc) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage. OPERATION IN THIS AREA LIMITED BY R DS on). T J = 5 C. µsec T. J = 5 C V GS = V...5..5..5 V SD, Source-to-Drain Voltage V) Tc = 5 C Tj = 5 C Single Pulse msec msec V DS, Drain-to-Source Voltage V) Fig. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

V GSth) Gate threshold Voltage V) IRLRU833 5.5 LIMITED BY PACKAGE 5. I D, Drain Current A) 5 5 5.5..5 I D = 5µA 5 5 5 5 5 5 T C, Case Temperature C). -5-5 -5 5 5 5 5 5 5 T J, Temperature C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig. Threshold Voltage vs. Temperature Thermal Response Z thjc ). D =.5...5.. SINGLE PULSE THERMAL RESPONSE). Peak T J = P DM x Z thjc T C...... t, Rectangular Pulse Duration sec) Notes:. Duty factor D = t t P DM t t Fig. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

E AS, Single Pulse Avalanche Energy mj) IRLRU833 R G V DS V V GS tp L D.U.T IAS.Ω 5V DRIVER - V DD A 5 5 5 I D TOP 8.A 4A BOTTOM A Fig a. Unclamped Inductive Test Circuit 5 tp V BR)DSS 5 5 5 5 5 5 Starting T J, Junction Temperature C) Fig c. Maximum Avalanche Energy Vs. Drain Current I AS Fig b. Unclamped Inductive Waveforms V DS R D V GS D.U.T. R G - V DD Current Regulator Same Type as D.U.T. V GS Pulse Width µs Duty Factor. % 5KΩ V.µF.3µF Fig 4a. Switching Time Test Circuit D.U.T. V - DS V DS 9% V GS 3mA I G I D Current Sampling Resistors % V GS t don) t r t doff) t f Fig 3. Gate Charge Test Circuit Fig 4b. Switching Time Waveforms 6 www.irf.com

IRLRU833 - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current didt D.U.T. V DS Waveform Diode Recovery dvdt D = P.W. Period V GS =V V DD * R G dvdt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 5. Peak Diode Recovery dvdt Test Circuit for N-Channel HEXFET Power MOSFETs Vds Id Vgs Vgsth) Qgs Qgs Qgd Qgodr Fig 6. Gate Charge Waveform www.irf.com

IRLRU833 Power MOSFET Selection for Non-Isolated DCDC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q and Q. Power losses in the high side switch Q, also called the Control FET, are impacted by the R dson) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q are given by; P loss = P conduction P switching P drive P output This can be expanded and approximated by; P loss = I rms R dson ) ) I Q gd V in f I Q gs V in f i g ) Q g V g f Q oss V in f This simplified loss equation includes the terms Q gs and Q oss which are new to Power MOSFET data sheets. Q gs is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q gs and Q gs, can be seen from Fig 6. Q gs indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I dmax at which time the drain voltage begins to change. Minimizing Q gs is a critical factor in reducing switching losses in Q. Q oss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Q oss is formed by the parallel combination of the voltage dependant nonlinear) capacitance s C ds and C dg when multiplied by the power supply input buss voltage. i g Synchronous FET The power loss equation for Q is approximated by; * P loss = P conduction P drive P output ) P loss = I rms R dson) ) Q g V g f Q oss V in f Q rr V in f *dissipated primarily in Q. ) For the synchronous MOSFET Q, R dson) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q oss and reverse recovery charge Q rr both generate losses that are transfered to Q and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs susceptibility to Cdvdt turn on. The drain of Q is connected to the switching node of the converter and therefore sees transitions between ground and V in. As Q turns on and off there is a rate of change of drain voltage dvdt which is capacitively coupled to the gate of Q and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current. The ratio of Q gd Q gs must be minimized to reduce the potential for Cdvdt turn on. Figure A: Q oss Characteristic 8 www.irf.com

IRLRU833 TO-5AA D-Pak) Package Outline Dimensions are shown in millimeters inches) 5.46.5) 5..5) 6.3.65) 6.35.5) - A -..5).88.35).38.94).9.86).4.45).89.35).58.3).46.8) 4..4).64.5).5.6).5.45) X.4.45).6.3) 3 3X 6..45) 5.9.35) - B -.89.35).64.5).5.) M A M B.4.4) 9.4.3) 6.45.45) 5.68.4).5.) MIN..58.3).46.8) LEAD ASSIGNMENTS - GATE - DRAIN 3 - SOURCE 4 - DRAIN.8.9) 4.5.8) NOTES: DIMENSIONING & TOLERANCING PER ANSI Y4.5M, 98. CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-5AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX..6.6). TO-5AA D-Pak) Part Marking Information 5 % 8 5 3, 5, < 5 ) % 6,5,6,6, : 3 ; ' & ' 8 ),5 5,,) & 5 ' & 5 < * : : ' % 6. :, < % 6,, < % 6 ' & www.irf.com 9

IRLRU833 I-Pak TO-5AA) Package Outline Dimensions are shown in millimeters inches) 5.46.5) 5..5).5.6).5.45) 6.3.65) 6.35.5) - A - 4 6..45) 5.9.35)..5).88.35).38.94).9.86).58.3).46.8) 6.45.45) 5.68.4) LEAD ASSIGNMENTS - GATE - DRAIN 3 - SOURCE 4 - DRAIN 3 - B -.8.9).9.5) 9.65.38) 8.89.35) NOTES: DIMENSIONING & TOLERANCING PER ANSI Y4.5M, 98. CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-5AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX..6.6). 3X.4.45).6.3).8.9) X 3X.89.35).64.5).5.) M A M B.4.45).89.35).58.3).46.8) I-Pak TO-5AA) Part Marking Information www.irf.com

IRLRU833 D-Pak TO-5AA) Tape & Reel Information Dimensions are shown in millimeters inches) TR TRR TRL 6.3.64 ) 5..69 ) 6.3.64 ) 5..69 )..46 ).9.469 ) FEED DIRECTION 8..38 ).9.3 ) FEED DIRECTION NOTES :. CONTROLLING DIMENSION : MILLIMETER.. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS INCHES ). 3. OUTLINE CONFORMS TO EIA-48 & EIA-54. 3 INCH NOTES :. OUTLINE CONFORMS TO EIA-48. 6 mm Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting T J = 5 C, L =.6mH, R G = 5Ω, I AS = A. ƒ Pulse width 4µs; duty cycle %. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 3A. When mounted on " square PCB FR-4 or G- Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 33 Kansas St., El Segundo, California 945, USA Tel: 3) 5-5 TAC Fax: 3) 5-93 Visit us at www.irf.com for sales contact information.34 www.irf.com

Note: For the most current drawings please refer to the IR website at: http:www.irf.compackage