Demonstration of directly modulated silicon Raman laser

Similar documents
Self-phase-modulation induced spectral broadening in silicon waveguides

Low threshold continuous wave Raman silicon laser

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

A continuous-wave Raman silicon laser

Energy harvesting in silicon optical modulators

Ultra-fast all-optical wavelength conversion in silicon waveguides using femtosecond pulses

Wavelength switching using multicavity semiconductor laser diodes

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

All-optical logic based on silicon micro-ring resonators

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Inverse Raman Scattering in Silicon

R. J. Jones Optical Sciences OPTI 511L Fall 2017

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

SILICON has many desirable physical and economical properties

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

Suppression of Stimulated Brillouin Scattering

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Graphene electro-optic modulator with 30 GHz bandwidth

CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Physics of Waveguide Photodetectors with Integrated Amplification

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Testing with Femtosecond Pulses

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Ultrafast pulse characterization using XPM in silicon

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

A new picosecond Laser pulse generation method.

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers

Two-Photon Photovoltaic Effect in Silicon Sasan Fathpour, Member, IEEE, Kevin K. Tsia, Member, IEEE, and Bahram Jalali, Fellow, IEEE

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

2-R REGENERATION EXPLOITING SELF-PHASE MODULATION IN A SEMICONDUCTOR OPTICAL AMPLIFIER

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

OFC SYSTEMS Performance & Simulations. BC Choudhary NITTTR, Sector 26, Chandigarh

Multiwatts narrow linewidth fiber Raman amplifiers

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

The Past, Present, and Future of Silicon Photonics

High-power fibre Raman lasers at the University of Southampton

All-Optical Signal Processing and Optical Regeneration

Frequency conversion over two-thirds of an octave in silicon nanowaveguides

Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers

Longitudinal Multimode Dynamics in Monolithically Integrated Master Oscillator Power Amplifiers

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH

Elements of Optical Networking

Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultrasmall modal volumes

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

Suppression of Rayleigh-scattering-induced noise in OEOs

High order cascaded Raman random fiber laser with high spectral purity

Cavity QED with quantum dots in semiconductor microcavities

Electrostatic actuation of silicon optomechanical resonators Suresh Sridaran and Sunil A. Bhave OxideMEMS Lab, Cornell University, Ithaca, NY, USA

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

SUPPLEMENTARY INFORMATION

1 Introduction. Dissertation advisor: Dimitris Syvridis, Professor

Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Optical MEMS in Compound Semiconductors Advanced Engineering Materials, Cal Poly, SLO November 16, 2007

Vertical External Cavity Surface Emitting Laser

Analysis of Stimulated Brillouin Scattering Characteristics in Frequency Domain

Generation of gigantic nanosecond pulses through Raman-Brillouin- Rayleigh cooperative process in single-mode optical fiber

Lecture 4 INTEGRATED PHOTONICS

SILICON MICRORING WITHIN A FIBER LASER CAVITY FOR HIGH-REPETITION-RATE PULSE TRAIN GENERATION

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops

Optical solitons in a silicon waveguide

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Bistability in Bipolar Cascade VCSELs

Notes on Optical Amplifiers

High-power semiconductor lasers for applications requiring GHz linewidth source

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Controllable optical analog to electromagnetically induced transparency in coupled high-q microtoroid cavities

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

Introduction Fundamental of optical amplifiers Types of optical amplifiers

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

Spurious-Mode Suppression in Optoelectronic Oscillators

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18.

Transcription:

Demonstration of directly modulated silicon Raman laser Ozdal Boyraz and Bahram Jalali Optoelectronic Circuits and Systems Laboratory University of California, Los Angeles Los Angeles, CA 995-1594 jalali@ucla.edu http://www.ee.ucla.edu/~oecs/ Abstract: The first Raman laser with intra-cavity electronic switching is demonstrated. Digital control of intra-cavity gain is attained by using a diode gain cavity. In contrast to traditional Raman lasers, the Raman laser reported here is made from pure silicon and can be directly modulated to transmit data. Room temperature operation with 2.5W peak laser output power is demonstrated. 25 Optical Society of America OCIS codes: (19.439) Nonlinear optics, integrated optics, (23.432) Nonlinear optical devices, (23.737) Waveguides, (25.53) Photonic integrated circuits, (14.355) Lasers, Raman, (14.596) Semiconductor lasers References and links 1. R. Claps, D. Dimitropoulos, and B. Jalali, Stimulated Raman scattering in silicon waveguides, Electronics Lett. 38, 1352-1354 (22). 2. Ozdal Boyraz and Bahram Jalali, Demonstration of a silicon Raman laser, Opt. Express 12, 5269-5273 (24), http://www.opticsexpress.org/abstract.cfm?uri=opex-12-21-5269 3. R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, A fiber Raman ring laser, IEEE J. Quantum Electronics QE-14, 86-862, (1978). 4. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, Ultralow-threshold Raman laser using spherical dielectric microcavity, Nature 415, 621-623, (22). 5. A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, On cavity modification of stimulated Raman scattering, J. of Opt. B 5, 272-278 (23). 6. Soref, R.A., Bennett, B. R., Electrooptical effects in silicon, IEEE J. Quantum Electronics 23, 123-129, (1987). 7. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-verlag, New York, 24). 8. C.A.,Barrios, V.R.,de Almeida, M.,Lipson, Low-power-consumption short-length and high-modulationdepth silicon electrooptic modulator, J. Lightwave Technol. 21, 189-198, (23). 9. A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor, Nature 427, 615-618 (24). 1. Ozdal Boyraz, Dimitri Dimitropoulos and Bahram Jalali, Observation of simultaneous Stokes and anti- Stokes emission in a silicon Raman laser, IEICE Electron. Express 1, 435-441, (24). 11. P. Koonath, T. Indukuri and B. Jalali, Vertically-coupled microdisk resonators realized using threedimensional sculpting in Silicon, Appl. Phys. Lett. 85, 118-12, (24). 12. Ming-Chang M. Lee and Ming C. Wu, A MEMS-Actuated Tunable Microdisk Resonator, Proceedings of IEEE International Conference on Optical MEMS, 23, MC3 13. G.T., Reed, S.P.,Chan, W.,Headley, V.M.N., Passaro, L A.,iu. and M., Paniccia, Polarization independent devices in small SOI waveguides, Proc. of Int. Conf. on Group IV photonics, FB5, (24). 14. T.K. Liang, H.K. Tsang; Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides, Appl. Phys. Lett. 84, 2745-2747 (24). 15. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Influence of nonlinear absorption on Raman amplification in Silicon waveguides, Opt. Express 12, 2774-278 (24), http://www.opticsexpress.org/abstract.cfm?uri=opex-12-12-2774 (C) 25 OSA 7 February 25 / Vol. 13, No. 3 / OPTICS EXPRESS 796

Until recently, the indirect bandgap of Silicon had prevented the realization of long the awaited silicon laser. Raman scattering, which is approximately 1 4 times stronger in silicon than that in silica glass, has been proposed as a means to bypass the electronic band structure limitation of silicon [1]. Using this effect, the first silicon laser was recently demonstrated [2]. The Raman effect is widely utilized in fiber based amplifiers and lasers [3]. In general, the Raman lasers require another laser to pump them, and for that reason, they are considered a tool for extending the wavelength range of other lasers [4-5]. However, the lack of on-chip electronic switching capability casts a shadow over the usefulness of a Raman laser in optoelectronic applications. A typical laser consists of an optical gain element placed inside a resonant cavity. In the case of a Raman laser, atomic vibrations provide energy transfer from the pump to a new wave (Stokes wave). Lasing at the Stokes wavelength occurs when the amplification per round trip exceeds the loss per round trip. The output of the laser can be switched or modulated electronically if the intra-cavity loss can be altered. The optical loss in silicon is a linear function of free carrier (electrons and holes) density [6-7] and this can be altered by many orders using a diode. This offers a unique ability to electronically switch the silicon laser output using a diode laser cavity. This is where a semiconductor (silicon) Raman laser has a unique advantage over conventional counterparts that are made from insulators (silica) to achieve on-chip lasing and switching. The free carrier effect has previously been used to create silicon light valves to modulate the light generated by non-silicon lasers [7-9]. The purpose of this paper is to report the proof-of-concept demonstration of electronic switching in a Raman laser. To the best of our knowledge, this is the first such demonstration. The silicon device achieves digital control of intra-cavity gain using a diode laser cavity. In contrast to the traditional Raman lasers, this laser can be directly modulated to transmit data, and can be part of a silicon optoelectronic integrated circuit. For the demonstration purpose, a laser was constructed using a silicon chip and a fiber loop cavity [2] as it is illustrated in Fig. 1. The chip contains a waveguide plus a p-n junction diode (inset of Fig. 2). The p-n junctions are 8µm away from the edge of the rib waveguide and they do not induce additional propagation loss due to this large gap. The waveguide is 2 cm long, has input and output tapers, and has a total insertion loss of 1dB. The modal area is Electronic SMF Modulation Modelocked Laser WDM 5/95 WDM Pump 156 nm EDFA Silicon 1698 nm Signal Waveguide PC Oscilloscope OSA Autocorrelator Fig. 1. The experimental setup used for electronically switched silicon Raman laser. A diode laser cavity is used as a gain medium. By using an external current supply the laser output is electronically controlled. approximately 5 µm 2. We used 3ps pump pulses at 2MHz repetition rate and at a wavelength of 156nm. These were generated by broadening 1 ps pulses generated by a Calmar Optocom modelocked fiber laser in a piece of standard single mode fiber. The laser cavity is formed using a fiber ring configuration. Following the silicon waveguide a tap coupler with 5 to 95% splitting ratio is used to extract 5% of the power as the output. The 95% output of the tap coupler is looped back into the WDM coupler to form the ring cavity for Stokes wavelength while blocking the residual pump wave. The length of the fiber was (C) 25 OSA 7 February 25 / Vol. 13, No. 3 / OPTICS EXPRESS 797

chosen such that cavity roundtrip time equals the pump pulse period. The relative polarization of the pump and Stokes were adjusted for maximum efficiency using two polarization controllers. The total cavity loss, including the silicon waveguide, measured at the Stokes wavelength (1675 nm) is measured to be 3.7 db. At the output port, a second WDM coupler is used to separate the pump and signal wavelengths. To switch the laser on and off a function generator is connected to the diode laser cavity. A sampling oscilloscope, an autocorrelator and an Optical Spectrum Analyzer (OSA) are used to measure the output characteristics of the laser. The observed threshold characteristics of the laser are shown in Fig. 2. Data is plotted in logarithmic scale to elucidate the near threshold behavior. The lower abscissa shows the peak power of pump pulses while the upper abscissa displays the average pump power. Below threshold, the output power is around -4 dbm level and is limited by the noise floor of the optical spectrum analyzer used in the experiment. Once the lasing threshold is reached, there Average Pump Power (mw) Laser Output Power (dbm) -1-2 -3-4 2.6 5.2 7.8 1.4 13 Gain Control V n+ p+ -5 5 1 15 2 25 Peak Pump Power (W) Fig. 2. Input-output characteristic of the silicon Raman laser exhibiting a sharp threshold at 9W peak pump pulse power. Inset shows the geometry of the device used in our experiments. is a sudden 1 fold (3 db) increase in the output power. Above threshold the output power increases linearly as expected, and a high peak output power of 2.5 W is obtained when the peak pump power is 2 W. The slope efficiency, defined here as the ratio of peak output power and peak pump power, is calculated to be 12.5%. Broadening of pump pulses due to self phase modulation was evident at high powers and can also account for the observed saturation behavior. As shown in Figure 3, Coherent Anti-Stokes Raman Scattering (CARS) was also measured in our experiment [1]. The peak emission was at a wavelength of 1443 nm which corresponds to the pump frequency after it is up-converted by the 15.6 THz optical phonon frequency of silicon. Since the CARS generation depends on the presence of Stokes frequency, the anti-stokes frequency will be turned off when the laser is switched off. Thus, dual wavelength lasing with simultaneous switching can be possible in silicon. The laser presented here is modelocked, the CARS line width, >2GHz, and the laser linewidth, ~4 GHz, are broader than a typical CW laser as expected. The amplitude of the anti-stokes wave was approximately ~1-5 times lower than the Stokes wave. The efficiency of the CARS process depends on phase matching and drops sharply away from the phase matched condition. This explains the low anti-stokes conversion efficiency as no attempt was made to affect phase matching in the silicon waveguide. (C) 25 OSA 7 February 25 / Vol. 13, No. 3 / OPTICS EXPRESS 798

Normalized Intensity (db) -1-2 -3-4 1442 1443 1444 Wavelength (nm) Fig. 3. Measured coherent anti-stokes emission at 1443 nm. Wavelength of anti- Stokes emission matches the expected 15.6 THz up shifting of the 156 nm pump laser. A key attribute of the silicon Raman laser is its electronic modulation capability. Optical loss in silicon and hence the net optical gain in the laser cavity is proportional to the free 17 carrier density in silicon, with a dependence that is described as: α = 1.7 1 N, where α is the change in loss caused by N change in free carrier density [7-8]. The linear dependence of free carrier density on diode forward current provides direct electronic modulation of the intra cavity gain. The laser will be turned off when the loss induced by diode current exceeds the gain per round trip in the cavity. Hence the device will function as a normally on switch that is turned off when forward bias is applied to the p-n junction diode. Figure 4 shows the switching characteristics of the laser when a digital electrical waveform with 2.5 ma peak current and 2 ps rise/fall time is applied to the diode. The output pulse train of the laser is switched on and off as expected, with a measured turn-on time of 1µs and a turn-off time of 5ns. The turn off time will depend on the rate of carrier injection and hence on the switching time of the diode, whereas the turn on time will depend on the photon lifetime in the laser cavity. For a ring laser cavity, the roundtrip time is defined by c /( n l) where c is the speed of light, n is the refractive index and l is the cavity length. Because of the 5% coupler use to extract the output from the cavity, we expect the photon lifetime to be 2.16.14 Amplitude (V).12.1.8.6.4.2 2 4 6 8 Time (µs) Fig. 4. Demonstration of electronic switching of the silicon Raman laser. 2.5 ma peak current with 2 ps rise and fall times is applied to the on-chip diode. (C) 25 OSA 7 February 25 / Vol. 13, No. 3 / OPTICS EXPRESS 799

times the cavity round trip time which corresponds to a value of 2x5ns = 1µs. Figure 5 shows the laser output with 1 MHz modulation applied to the p-n junction diode. While the modulation speed is limited in these experiments, the results clearly demonstrate the electronic switching feature of the silicon Raman laser. The use of a monolithic silicon micro-cavity bodes well for high speed switching of the laser, since both the rise and fall times scale with the cavity size. Passive silicon micro disk Normalized Amplitude (au) 1.8.6.4.2 1 2 3 4 5 Time (µs) Fig. 5. Electronic modulation results of the silicon Raman laser. and micro ring cavities have recently been demonstrated [11-13] and represent the natural evolution of the silicon Raman laser. As an example, a micro ring with circumference of 1mm results in a roundtrip time of 1 ps, or an equivalent turn-on time of 2ps. This assumes that the diode s current can be switched within this time scale. Because of its capacitance scale with device dimensions, the electrical switching time of the diode will also scale with device dimensions, a fortuitous trend as it relates to high speed performance. Using MOS structure as it is reported in silicon modulators [9] can in principle be also used to improve switching speed of the laser. Moreover, the index change due to free carrier injection will alter the effective cavity length and hence the resonance frequency of the micro cavity resonators and result in faster switching speeds. Switching time of the diode can be further increased by operation in the depletion mode as opposed to the injection mode. Depleting the gain medium will also enable Continuous Wave (CW) operation of the laser. In the present experiment, the laser was operating in the pulsed mode in order to mitigate losses associated with free carriers that are generated by two photon absorption [14-15]. CW operation can be achieved by using p-n junction to deplete such carriers. While the present device is not optimized for this function preventing the laser from CW operation, an optimized version can attain electronically switched CW operation. In this configuration the diode will operate in depletion mode and the laser would be a normally switched off switch. In summary, we have proposed and demonstrated intra-cavity switching in a silicon Raman laser. Direct modulation and switching is a unique feature of the silicon Raman laser that is not shared by traditional silica Raman lasers. Acknowledgments This work is supported by DARPA. The authors are grateful to Dr. Jagdeep Shah for his support of this work. (C) 25 OSA 7 February 25 / Vol. 13, No. 3 / OPTICS EXPRESS 8