Impact of Cycling Feature on Longevity and Recharge Interval Activa PC, Activa RC, and Activa SC

Similar documents
VERCISE DIRECTIONAL SYSTEMS* VERCISE NEURAL NAVIGATOR 2.1 PROGRAMMING TUTORIAL

VNS Therapy System Overview and Dosing

MH8001 Four Channels Pre-Programmed TENS and EMS combo device

Fundamentals of Pacing Therapy

Spectra WaveWriter System Implantable Pulse Generator

Low Pass Filtering for Checker with Input Noise from Mechanical Relays

Component Technical Specifications

Figure Derive the transient response of RLC series circuit with sinusoidal input. [15]

For Experimenters and Educators

STMISOLA LINEAR ISOLATED STIMULATOR

Direct Current Waveforms

Isolation Amplifier (electrically isolated input-output) ISO 6, ISO 4 and ISO 2. Instrumentation Amplifier (low drift) IA 6, IA 4, IA 2

Voltage Volts AC RMS , 1 Phase

Specification for Conducted Emission Test

8253 functions ( General overview )

1 Table of Contents 1.1 List of Tables 1.2 List of Figures 2 Introduction 3 Global Neurostimulation Devices Market - An Overview 3.

Electronic Circuits. Laboratory 6 - Solution

Section 10: Radio Frequency Communication

BEST BMET CBET STUDY GUIDE MODULE ONE

EN Assignment No.1 - TRANSFORMERS

Part VI: Requirements for ISDN Terminal Equipment

HANWELL UTILITY DATA SHEET

Agilent 33220A Function Generator Tutorial

potentiostat/galvanostat/impedance analyser

LM4130 Precision Micropower Low Dropout Voltage Reference

305 Stimulus Isolator. Description

A Single-Battery Switching Boost Converting Pulse Generator for Functional Electrical Stimulation in Rehabilitation Application

RS7 testing G.Rutter Ltd 2013

HomeBrew RF Siganl Generator FET Follower

DI-1100 USB Data Acquisition (DAQ) System Communication Protocol

Activity 3: Mechanical Waves and Energy Transfer

Precision Spectra System Programming Manual

ME-5265 Isolated 16 bit/2 MS/s DAQ Board

Sirindhorn International Institute of Technology Thammasat University

Lone Star Neuromodulation

Boston Scientific Precision Spectra System Programming Manual

SGD-EEM «MEDUSA» GEOELECTRICAL MULTIFUNCTION RECEIVER

PRODUCT SHEET IMPORTANT SAFETY NOTES!

Transducer for Measurement Bridges SCM90, SIGS15

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Application Note 175 Using the STMISOC Stimulus Isolator

DOBLE F6150e TECHNICAL SPECIFICATIONS

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd

Common External Interfaces (CEI)

WiFi/Bluetooth Ceramic Chip Antenna Model: AA055A TELA chip antenna Product Number: H2U34W1H1Z0400 REFERENCE SPECIFICATION

Adaptive Digital Slope Compensation for Peak Current Mode Control. Peter Ide, Frank Schafmeister, Tobias Grote

MODEL: M2XPA3. [2] EXCITATION 2: 4 V DC / 20 ma 3: 8 V DC / 20 ma 4: 12 V DC / 20 ma Configurator software is used to change the excitation value.

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

LC35/2-DA-iC. 35 W Dimmable two channel intelligent Colour LED driver. 35 W V 0 / Hz. Functional Description. Mains Characteristics

DS275S. Line-Powered RS-232 Transceiver Chip PIN ASSIGNMENT FEATURES ORDERING INFORMATION

Leksell Neuro Generator

Part VI: Requirements for Integrated Services Digital Network Terminal Equipment

THERMAL NOISE. Advanced Laboratory, Physics 407, University of Wisconsin. Madison, Wisconsin 53706

ETL-40V CABLE TEST VAN SYSTEM. tel.: +380 (57) fax: +380 (57) high voltage testing equipment

Wireless Neural Loggers

Unit 3.C Electrical Theory, Circuits Essential Fundamentals of Electrical Theory, Circuits

IEEE CX4 Quantitative Analysis of Return-Loss

Project (02) Dc 2 AC Inverter

ENGR4300 Fall 2005 Test 4A. Name solutions. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

Part I. Circuits & Ohm s Law

Electronic Counters. Sistemi Virtuali di Acquisizione Dati Prof. Alessandro Pesatori

OPERATING INSTRUCTIONS AND SYSTEM DESCRIPTION FOR THE. ISO-STIM 01D STIMULUS ISOLATION UNIT ±100 V / ±10 ma, bipolar output

NAU82011WG 2.9 W Mono Filter-Free Class-D Audio Amplifier. 1 Description VIN. Output Driver VIP. Class D Modulator VDD VSS

FDG901D Slew Rate Control IC for P-Channel MOSFETs

PM 6669 High-Precision Frequency Counter Specifications

Technische Spezifikation (Technical Specification)

Bionic Navigator 3D System Programming Manual

VHF LAND MOBILE SERVICE

Power-off Isolation, 6, 1.8 V to 5.5 V, SPDT Analog Switch (2:1 Multiplexer)

Arduino Workshop 01. AD32600 Physical Computing Prof. Fabian Winkler Fall 2014

Function Generator MODEL FG-500 Instruction Manual ELENCO

This Errata Sheet contains corrections or changes made after the publication of this manual.

ENGR4300 Test 3A Fall 2002

THERMAL NOISE. Advanced Laboratory, Physics 407, University of Wisconsin. Madison, Wisconsin 53706

Experiment #2 Half Wave Rectifier

Model BSI-1A BIPHASIC STIMULUS ISOLATOR

Parallel Port Relay Interface

SAS-2 6Gbps PHY Specification

Appnote - Realtime Spectrum Analyzer vs Spectrum Analyzer

CHAPTER 6. Motor Driver

Introduction...1 Overview...2. Beacon Transmitter...7. Beacon Receiver Trouble Shooting...15

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

Impedance of HART Transmitters Nesebar, Inc.

Chapter 4: AC Circuits and Passive Filters

HomeBrew RF Siganl Generator Emitter Follower

Specifications. 744 Users Manual

Premier-LC User Guide

Low-Voltage Single SPDT Analog Switch

PIEZO FILM LAB AMPLIFIER

Using the EnerChip in Pulse Current Applications

4. Digital Measurement of Electrical Quantities

ELR 4202C Project: Finger Pulse Display Module

Watts P D Linear Derating Factor W/ C T J = 0V, I D. (ON) Max, V GS = 12V, 24.5A) = 600v, V GS = 0V) = 480V, V GS = 0V, T C = ±30V, V DS = 0V)

Used to overcome ventricular fibrillation may be due to coronary occlusion, shock, or abnormalities in blood chemistry

Bio-Tuner Model BT7. A Consumer Product

Trouble Shooting MagnaPLUS / Mariner / Harsh Duty

Wavelets and wavelet convolution and brain music. Dr. Frederike Petzschner Translational Neuromodeling Unit

Low-Voltage Single-Supply, SPDT Analog Switch in SC-70

Advanced Test Equipment Rentals ATEC (2832)

GRAAD 12 NATIONAL SENIOR CERTIFICATE GRADE 12

Transcription:

Impact of Cycling Feature on Longevity and Recharge Interval Activa PC, Activa RC, and Activa SC Current labeling indicates the use of cycling improves battery longevity and recharge interval under all programming scenarios; however, enabling cycling at certain parameter settings may decrease the recharge interval for rechargeable devices and the device longevity of non-rechargeable devices. Neurostimulators impacted by this issue when cycling is enabled at some parameter settings: Brain Modulation Neurostimulators (Model) Activa RC (37612) Activa SC (37602 and 37603) Activa PC (37601) Activa PC+S (37604) (investigational use) The following information represents an overview of changes that will be made to labeling. Impacted Product Name (Model Number) 1 Activa PC (37601) Activa SC (37602 and 37603) Summary of Corrections to Labeling The use of cycling may cause a reduction in battery longevity. When calculated adjusted energy use values are at or above 184, cycling at intervals less than 15 seconds on and less than 15 seconds off may reduce battery longevity. Cycling is not recommended for improving battery longevity for devices with calculated adjusted energy use values below 184. Activa RC (37612) <End Summary> The corrected method for estimating battery longevity can be found in the section below titled Method of calculation for estimating battery longevity for Activa PC and Activa SC Neurostimulators. The use of cycling may cause a reduction in time between recharge sessions. An additional reminder will be added: Battery charge levels should be monitored using either the recharger or patient programmer. 1 Activa PC+S Model 37604 is impacted but is for investigational use only February 2014 online at professional.medtronic.com/cycling Page 1 of 9

Method of calculation for estimating battery longevity for Activa PC and Activa SC Neurostimulators. The following formula estimates the approximate period of time that a new Activa PC and Activa SC Neurostimulator battery will last. The estimation is based on the settings for one group. Programs 3 and 4 are available in Activa PC only. Steps for estimating battery longevity 1. The estimation formula is based on expected programmed values, the modes of operation, the measured impedance, and how often the therapy is used: Expected programmed values Program 1 Program 2 Program 3 a Program 4 a Amplitude: V/mA Amplitude: V/mA Amplitude: V/mA Amplitude: V/mA Rate b : Hz Rate b : Hz Rate b : Hz Rate b : Hz Pulse width: μsec Pulse width: μsec Pulse width: μsec Pulse width: μsec Impedance: ohms Impedance: ohms Impedance: ohms Impedance: ohms Modes of operation and use Hours of Stimulation/day: Hours/day a Programs 3 and 4 are available in Activa PC only. b Rates for Programs 1, 2, 3, and 4 are the same. Program 1 (P1) 2. Using the amplitude, rate, and pulse width, locate the energy use (EU) for Program 1 from Table 1 (if voltage mode is applied) or from Table 3 (if current mode is applied): 3. Locate the Impedance Correction Factor (ICF) for Program 1 based on the measured impedance from Table 2 (voltage mode) or Table 4 (current mode): 4. Compute the Program 1 Factor (P1F): P1EU P1ICF = P1F Program 2 (P2) 5. For a second program, repeat steps 1 3 to compute the Program 2 Factor (P2F): P2EU P2ICF = P2F Program 3 (P3) Activa PC only 6. For a third program, repeat steps 1 3 to obtain the Program 3 Factor (P3F): February 2014 online at professional.medtronic.com/cycling Page 2 of 9

P3EU P3ICF = P3F Program 4 (P4) Activa PC only 7. For a fourth program, repeat steps 1 3 to obtain the Program 4 Factor (P4F): P4EU P4ICF = P4F Computing the multi-program factor (MPF) 8. Compute the MPF (use 0 for unused programs): P1F + P2F + P3F + P4F = MPF 9. Determine the Usage Correction Factor (UCF) using the hours of stimulation per day: Hours of stimulation per day 24 hours = UCF 10. Compute the adjusted Energy Use value: MPF UCF + [24.4 x (1 - UCF )] = Adjusted Energy Use 11. Use the adjusted Energy Use value and determine the battery longevity from Figure 1 and Figure 2. February 2014 online at professional.medtronic.com/cycling Page 3 of 9

Figure 1. Activa PC Neurostimulator longevity estimates (years) for energy use and cycling impact. February 2014 online at professional.medtronic.com/cycling Page 4 of 9

Figure 2. Activa SC Neurostimulator longevity estimates (years) for energy use and cycling impact. February 2014 online at professional.medtronic.com/cycling Page 5 of 9

Table 1. Activa PC and Activa SC Neurostimulator energy use for voltage mode a Pulse width Amplitude (V) Rate 60 120 210 450 130 27 36 48 79 1 180 36 47 63 105 250 48 62 86 141 130 36 51 74 131 2 180 47 67 99 177 250 63 92 134 239 130 67 100 149 281 3 180 89 135 202 381 250 122 184 304 513 130 102 160 251 484 4 180 138 218 343 656 250 188 300 470 883 130 125 227 380 725 5 180 188 330 525 975 250 268 460 720 1300 130 176 298 492 975 6 180 240 396 630 1294 250 330 545 862 1790 130 234 393 633 1300 7 180 319 540 867 1678 250 438 744 1187 NA 130 318 531 851 1658 8 180 436 730 1165 NA 250 602 1005 1594 NA 130 372 653 1063 NA 9 180 511 896 1454 NA 250 706 1233 1989 NA 130 480 833 1345 NA 10 180 666 1143 1840 NA 250 919 1573 NA NA a Use values that are closest to the expected values (round to the next highest value). February 2014 online at professional.medtronic.com/cycling Page 6 of 9

Table 2. Activa PC and Activa SC Neurostimulator final impedance correction factor (ICF) for voltage mode a Impedance ICF 500 1.70 750 1.20 1000 1.00 1100 0.91 1200 0.85 1300 0.79 1400 0.76 1500 0.73 2000 b 0.65 2500 c 0.50 a Use value closest to the measured impedance value (round to the next lowest impedance value). b With a programmed amplitude of 1V, calculated longevity may overestimate actual longevity by 1 to 2 years. c Calculated longevity may overestimate actual longevity by 1 to 2 years. February 2014 online at professional.medtronic.com/cycling Page 7 of 9

Table 3. Activa PC and Activa SC Neurostimulator energy use for current mode a Pulse width Amplitude (ma) Rate 60 120 210 450 130 23 30 50 86 1.0 180 28 38 64 114 250 34 57 83 157 130 42 65 100 196 2.0 180 53 86 135 291 250 72 118 187 404 130 77 127 201 407 3.0 180 103 174 276 562 250 136 234 382 809 130 109 180 285 671 4.0 180 140 237 383 927 250 183 319 521 1352 130 149 265 444 992 5.0 180 209 366 632 1391 250 281 507 874 1920 130 201 356 587 1386 6.0 180 268 481 800 1942 250 360 656 1099 2843 130 264 496 833 1721 7.0 180 364 682 1148 NA 250 518 950 1590 NA 130 307 597 NA NA 8.0 180 421 NA NA NA 250 580 NA NA NA a Use values that are closest to the expected values (round to the next highest value). February 2014 online at professional.medtronic.com/cycling Page 8 of 9

Table 4. Activa PC and Activa SC Neurostimulator final impedance correction factor (ICF) for current mode a Impedance ICF 500 b 0.75 750 b 0.80 1000 1.00 1100 1.08 1200 1.16 1300 1.24 1400 1.32 1500 1.40 2000 1.45 2500 1.80 a Use value closest to the measured impedance value (round to the next highest impedance value). b With a programmed amplitude of 1 ma, calculated longevity may overestimate actual longevity by 1 to 2 years. February 2014 online at professional.medtronic.com/cycling Page 9 of 9