DATASHEET ISL Features. Applications. Ordering Information. Pinout. 8MHz Rail-to-Rail Composite Video Driver. FN6104 Rev 5.

Similar documents
DATASHEET EL5462. Features. Pinout. Applications. Ordering Information. 500MHz Low Power Current Feedback Amplifier. FN7492 Rev 0.

ISL Features. Multi-Channel Buffers Plus V COM Driver. Ordering Information. Applications. Pinout FN Data Sheet December 7, 2005

DATASHEET ISL Features. Applications. Ordering Information. Typical Application Circuit. MMIC Silicon Bipolar Broadband Amplifier.

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005

EL5027. Dual 2.5MHz Rail-to-Rail Input-Output Buffer. Features. Applications. Ordering Information. Pinout. Data Sheet May 4, 2007 FN7426.

DATASHEET HA Features. Applications. Ordering Information. Pinouts. 250MHz Video Buffer. FN2924 Rev 8.00 Page 1 of 12.

DATASHEET EL8108. Features. Applications. Pinouts. Video Distribution Amplifier. FN7417 Rev 2.00 Page 1 of 14. January 29, FN7417 Rev 2.

EL2142. Features. Differential Line Receiver. Applications. Ordering Information. Pinout. Data Sheet February 11, 2005 FN7049.1

HA MHz Video Buffer. Features. Applications. Ordering Information. Pinouts. Data Sheet February 6, 2006 FN2924.8

DATASHEET ISL9021A. Features. Pinouts. Applications. 250mA Single LDO with Low I Q, Low Noise and High PSRR LDO. FN6867 Rev 2.

DATASHEET EL8102, EL8103. Features. Applications. Ordering Information. Pinouts. 500MHz Rail-to-Rail Amplifiers. FN7104 Rev 7.

Data Sheet May 10, Features. Pinout

DATASHEET EL7104. Features. Ordering Information. Applications. Pinout. High Speed, Single Channel, Power MOSFET Driver. FN7113 Rev 2.

DATASHEET E L2480. Features. Ordering Information. Applications. Pinout. 250MHz/3mA Current Mode Feedback Amplifier. FN7055 Rev 1.

SALLEN-KEY LOW PASS FILTER

DATASHEET EL2125. Features. Applications. Ordering Information. Pinouts. Ultra-Low Noise, Low Power, Wideband Amplifier. FN7045 Rev 3.

DATASHEET ISL Features. Applications. Ordering Information. Pinout. High Supply Voltage 200MHz Unity-Gain Stable Operational Amplifier

DATASHEET. Features. Applications. Pinouts EL5170, EL MHz Differential Twisted-Pair Drivers. FN7309 Rev Page 1 of 14.

DATASHEET ISL6208. Features. Applications. Related Literature. Ordering Information. Pinout. High Voltage Synchronous Rectified Buck MOSFET Driver

DATASHEET ISL Features. Applications. Simplified Block Diagram. Pinout. Ordering Information. Pin Descriptions

DATASHEET HC5503T. Features. Applications. Ordering Information. Block Diagram. Balanced PBX/Key System SLIC, Subscriber Line Interface Circuit

HA-2520, HA MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers. Features. Applications. Ordering Information

DATASHEET ISL Features. Applications. Ordering Information. Pinout. High Supply Voltage 200MHz Unity-Gain Stable Operational Amplifier

DATASHEET HA Features. Applications. Pinout. Ordering Information. Quad, 3.5MHz, Operational Amplifier. FN2922 Rev 5.00 Page 1 of 8.

DATASHEET EL5175, EL5375. Features. Applications. Pinouts. Ordering Information. 550MHz Differential Line Receivers. FN7306 Rev 7.

Features TEMP. RANGE ( C)

SGM9111 8MHz Rail-to-Rail Composite Video Driver with 6dB Gain

DATASHEET HA-2520, HA-2522, HA Features. Applications. Ordering Information

DATASHEET EL2126. Features. Applications. Pinouts. Ultra-Low Noise, Low Power, Wideband Amplifier. FN7046 Rev 4.00 Page 1 of 19.

DATASHEET HA Features. Applications. Ordering Information. 110MHz, High Slew Rate, High Output Current Buffer. FN2921 Rev 12.

DATASHEET. Features. Applications. Related Literature ISL V, Low Quiescent Current, 50mA Linear Regulator. FN7970 Rev 2.

EL5175, EL MHz Differential Line Receivers. Features. Applications. Pinouts. Data Sheet February 11, 2005 FN7306.5

DATASHEET ISL6700. Features. Ordering Information. Applications. Pinouts. 80V/1.25A Peak, Medium Frequency, Low Cost, Half-Bridge Driver

Features V OUT = 12V IN TEMPERATURE ( C) FIGURE 3. QUIESCENT CURRENT vs LOAD CURRENT (ADJ VERSION AT UNITY GAIN) V IN = 14V

DATASHEET HA Features. Applications. Pinout. Part Number Information. 12MHz, High Input Impedance, Operational Amplifier

DATASHEET CA3127. Features. Applications. Ordering Information. Pinout. High Frequency NPN Transistor Array. FN662 Rev.5.00 Page 1 of 9.

ISL4089. Features. DC-Restored Video Amplifier. Applications. Related Documents. Ordering Information. Pinout FN Data Sheet June 28, 2006

EL5172, EL MHz Differential Line Receivers. Features. Applications. Ordering Information. Pinouts FN Data Sheet August 3, 2005

Nano Power, Push/Pull Output Comparator

DATASHEET CA3054. Features. Applications. Ordering Information. Pinout. Dual Independent Differential Amp for Low Power Applications from DC to 120MHz

SGM9111 8MHz Rail-to-Rail Composite Video Driver with 6dB Gain

EL5175, EL MHz Differential Line Receivers. Features. Applications. Pinouts. Data Sheet May 10, 2007 FN7306.6

DATASHEET. Features. Applications ISL mA Dual LDO with Low Noise, High PSRR, and Low I Q. FN6832 Rev 1.00 Page 1 of 11.

Features TEMP. RANGE ( C)

EL5170, EL MHz Differential Twisted-Pair Drivers. Features. Applications. Pinouts FN Data Sheet May 7, 2007

EL5171, EL5371. Features. 250MHz Differential Twisted-Pair Drivers. Applications. Ordering Information. Pinouts FN Data Sheet October 30, 2006

DATASHEET. Features. Applications. Pinouts EL5174, EL MHz Differential Twisted-Pair Drivers. FN7313 Rev 9.00 Page 1 of 15.

DATASHEET EL7202, EL7212, EL7222. Features. Pinouts. Applications. High Speed, Dual Channel Power MOSFET Drivers. FN7282 Rev 2.

MARKING RANGE ( C) PACKAGE DWG. # HA-2600 (METAL CAN)

250MHz Differential Twisted-Pair Driver

Data Sheet September 3, Features TEMP. RANGE ( C)

DATASHEET ISL9005A. Features. Pinout. Applications. Ordering Information. LDO with Low ISUPPLY, High PSRR. FN6452 Rev 2.

DATASHEET ISL Features. Applications Ordering Information. Pinouts. 5MHz, Single Precision Rail-to-Rail Input-Output (RRIO) Op Amp

DATASHEET. Features. Related Literature. Applications ISL9021A. 250mA Single LDO with Low I Q, Low Noise and High PSRR LDO

DATASHEET EL5127, EL5227, EL5327, EL5427. Features. Applications. 2.5MHz 4-, 8-, 10- and 12-Channel Rail-to-Rail Buffers. FN7111 Rev 4.

DATASHEET HA Features. Applications. Ordering Information. Pinout. 400MHz, Fast Settling Operational Amplifier. FN2897 Rev.5.

DATASHEET HFA1112. Features. Applications. Related Literature. Pin Descriptions. Ordering Information

NOT RECOMMENDED FOR NEW DESIGNS

DATASHEET EL1503A. Features. Applications. Pinouts. High Power Differential Line Driver. FN7039 Rev 2.00 Page 1 of 17. March 26, FN7039 Rev 2.

HA Features. Quad, 3.5MHz, Operational Amplifier. Applications. Pinout. Ordering Information. Data Sheet July 2004 FN2922.5

EL5172, EL MHz Differential Line Receivers. Features. Applications. Pinouts FN Data Sheet January 25, 2008

DATASHEET HA-5127/883. Features. Applications. Ordering Information. Pinout. Ultra Low Noise, Precision Operational Amplifier

DATASHEET. Features. Applications. Pinouts EL5173, EL MHz Differential Twisted-Pair Drivers. FN7312 Rev Page 1 of 15.

(8 LD SOIC, MSOP) (24 LD QSOP)

DATASHEET EL5156, EL5157, EL5256, EL5257. Features. Applications. Pinouts. <1mV Voltage Offset, 600MHz Amplifiers

SGM MHz Rail-to-Rail Composite Video Driver with 6dB Gain FEATURES PRODUCT DESCRIPTION APPLICATIONS BLOCK DIAGRAM. PIN CONFIGURATION (Top View)

DATASHEET EL2045. Features. Applications. Ordering Information. Pinout. Low-Power 100MHz Gain-of-2 Stable Operational Amplifier

DATASHEET EL2072. Features. Applications. Pinout. Ordering Information. 730MHz Closed Loop Buffer

DATASHEET ICL8069. Features. Pinouts. Ordering Information. Low Voltage Reference. FN3172 Rev.3.00 Page 1 of 6. Jan FN3172 Rev.3.00.

DATASHEET EL8200, EL8201, EL8401. Features. Applications. Pinouts. 200MHz Rail-to-Rail Amplifiers. FN7105 Rev 5.00 Page 1 of 16.

SGM9116 Triple, 35MHz, 6th Order HDTV Video Filter Driver

DATASHEET EL4332. Features. Applications. Pinout. Ordering Information. Demo Board. Triple 2:1 300MHz Mux-Amp AV = 2. FN7163 Rev 2.

550MHz Differential Twisted-Pair Drivers

DATASHEET HA4314B. Features. Ordering Information. Applications. Truth Table. 400MHz, 4x1 Video Crosspoint Switch. FN3679 Rev 12.

SGM9119 Triple, 5th Order, Standard Definition Video Filter Driver

EL5174, EL MHz Differential Twisted-Pair Drivers. Features. Applications. Pinouts. Data Sheet October 30, 2007 FN7313.6

DATASHEET. Features. Applications. Related Literature ISL1550. Single Port, VDSL2 Differential Line Driver. FN6795 Rev 0.

Features PART MARKING

SGM9154 Single Channel, Video Filter Driver for HD (1080p)

DATASHEET EL5100, EL5101, EL5300. Features. Applications. 200MHz Slew Enhanced VFA. FN7330 Rev 3.00 Page 1 of 15. May 3, FN7330 Rev 3.

DATASHEET HA5023. Features. Applications. Ordering Information. Pinout. Quad 125MHz Video CurrentFeedback Amplifier with Disable

PART NUMBER PACKAGE REEL PKG. DWG. # 4 EN SS

DATASHEET HI-200, HI-201. Features. Applications. Ordering Information. Functional Diagram. Dual/Quad SPST, CMOS Analog Switches

250MHz Differential Twisted-Pair Drivers

DATASHEET CA Applications. Pinout. Ordering Information. General Purpose NPN Transistor Array. FN483 Rev.6.00 Page 1 of 7.

SGM9119 Triple, 5th Order, Standard Definition Video Filter Driver

DATASHEET HA-4741/883. Features. Description. Applications. Ordering Information. Pinouts. Quad Operational Amplifier. FN3704 Rev 0.

DATASHEET ISL28271, ISL Features. Ordering Information. Applications. Related Literature. Pinout

18+1 Channel Voltage Buffers for TFT LCD. Features. Applications. A,B,Q,R: Rail to Rail OPAMPs

DATASHEET ISL Features. Applications. Related Literature. Single Port, PLC Differential Line Driver

SGM9119 Triple, 5th-Order, Standard Definition Video Filter Driver

POSSIBLE SUBSTITUTE PRODUCT HA-2842, HA-2544

HA Features. 650ns Precision Sample and Hold Amplifier. Applications. Functional Diagram. Ordering Information. Pinout

DATASHEET HA-5137A. Features. Applications. Ordering Information. Pinout. 63MHz, Ultra-Low Noise Precision Operational Amplifier

TEMP. PKG. -IN 1 16 S/H CONTROL PART NUMBER RANGE

DATASHEET EL5220T. Features. Applications*(see page 13) 12MHz Rail-to-Rail Input-Output Operational Amplifier. FN6892 Rev 0.

HA5023. Dual 125MHz Video Current Feedback Amplifier. Features. Applications. Ordering Information. Pinout. Data Sheet September 30, 2015 FN3393.

HA Features. 12MHz, High Input Impedance, Operational Amplifier. Applications. Pinout. Part Number Information. Data Sheet May 2003 FN2893.

DATASHEET X9511. Single Push Button Controlled Potentiometer (XDCP ) Linear, 32 Taps, Push Button Controlled, Terminal Voltage ±5V

Ordering Information PART NUMBER PART MARKING TAPE & REEL PACKAGE PKG. DWG. # ELIWT-T7 8 7 (3k pcs) Ld TSOT MDP49 ELIWT-T7A 8 7 (2 pcs) Ld TSOT MDP49

Transcription:

DATASHEET ISL59110 8MHz Rail-to-Rail Composite Video Driver The ISL59110 is a single rail-to-rail 3-pole output reconstruction filter with a -3dB roll-off frequency of 8MHz and a slew rate of 40V/µs, with input signal DC restoration accomplished with an internal sync tip clamp. Operating from single supplies ranging from +2.5V to +3.6V and sinking an ultra-low 2mA quiescent current, the ISL59110 is ideally suited for low power, battery-operated applications. It also features inputs capable of reaching down to 0.15V below the negative rail. Additionally, an enable high pin shuts the part down in under 14ns. The ISL59110 is designed to meet the needs for very low power and bandwidth required in battery-operated communication, instrumentation and modern industrial applications, such as video on demand, cable set-top boxes, DVD players and HDTV. The ISL59110 is offered in a spacesaving SC-70 package guaranteed to a 1mm maximum height constraint and specified for operation from -40 C to +85 C temperature range. Ordering Information PART NUMBER (Note 1) PART MARKING (Note 2) TAPE & REEL PACKAGE (Pb-Free) PKG. DWG. # ISL59110IEZ-T7 CNA 7 (3k pcs) 6 Ld SC-70 P6.049A NOTES: 1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 2. The part marking is located on the bottom of the part. Features 3rd order 8MHz reconstruction filter 40V/µs slew rate Low supply current = 2mA Power-down current less than 3µA Supplies from 2.5V to 3.6V Rail-to-rail output Input to 0.15V below V S - Input sync tip clamp FN6104 Rev 5.00 SAG correction reduces AC coupling capacitor size RoHS compliant Applications Video amplifiers Portable and handheld products Communications devices Video on demand Cable set-top boxes Satellite set-top boxes DVD players HDTV Personal video recorders Pinout ISL59110 (6 LD SC-70)* TOP VIEW IN+ 1 LPF 6 VS+ GND 2 + - 5 EN SAG 3 4 OUT *1mm MAXIMUM HEIGHT GUARANTEED FN6104 Rev 5.00 Page 1 of 10

Absolute Maximum Ratings (T A = +25 C) Supply Voltage from V S + to GND....................... 3.6V Input Voltage....................... V S + +0.3V to GND -0.3V Continuous Output Current........................... 40mA ESD Rating Human Body Model (Per MIL-STD-883 Method 3015.7)...3000V Machine Model (Per EIAJ ED-4701 Method C-111)........300V Thermal Information Storage Temperature........................-65 C to +125 C Ambient Operating Temperature................-40 C to +85 C Operating Junction Temperature...................... +125 C Power Dissipation............................. See Curves Pb-free reflow profile..........................see link below http://www.intersil.com/pbfree/pb-freereflow.asp CAUTION: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: T J = T C = T A Electrical Specifications V S + = 3.3V, T A = +25 C, R L = 150 to GND, C L = 0.1µF, unless otherwise specified. DESCRIPTION PARAMETER CONDITIONS MIN TYP MAX UNIT INPUT CHARACTERISTICS V CC Supply Voltage Range 2.5 3.6 V I DD(ON) Quiescent Supply Current V IN = 500mV, EN = V DD, no load 2 2.75 ma I DD(OFF) Shutdown Supply Current EN = 0V 3 µa V OLS Output Level Shift Voltage V IN = 0V, no load 60 130 200 mv V CLAMP Input Voltage Clamp I IN = -1mA -40-15 +10 mv I CLAMP_CHG Clamp Charge Current V IN = V CLAMP - 100mV -6-3 ma I CLAMP_DCHG Clamp Discharge Current V IN = 500mV 2.5 5 7.5 µa R IN Input Resistance 0.5V < V IN < 1.0V 0.5 3 M A V Voltage Gain R L = 150 1.95 2.0 2.04 V/V A SAG SAG Correction DC Gain to V OUT SAG open 2.25 V/V PSRR DC Power Supply Rejection V DD = 2.7V to 3.3V 43 63 db V OH Output Voltage High Swing V IN = 2V, R L = 150 to GND 2.85 3.2 V I SC Output Short-Circuit Current V IN = 2V, to GND through 10-94 -65 ma V IN = 100mV, out short to V DD through 10 65 115 ma I ENABLE Enable Current ±3.3V, enable pin = 0V -3 0 +3 µa V IL Disable Threshold V DD = 2.7V to 3.3V 0.8 V V IH Enable Threshold V DD = 2.7V to 3.3V 1.6 V R OUT Shutdown Output Impedance EN = 0V DC 3.6 4.5 5.9 k EN = 0V, f = 4.5MHz 3.4 k AC PERFORMANCE BW ±0.1dB Bandwidth R L = 150, C L = 5pF 4 MHz BW -3dB Bandwidth R L = 150, C L = 5pF 8 MHz Normalized Stopband Gain f = 27MHz -24.2 db dg Differential Gain NTSC and PAL DC coupled 0.10 % NTSC and PAL AC coupled 0.84 % dp Differential Phase NTSC and PAL DC coupled 0.05 NTSC and PAL AC coupled 0.62 D/DT Group Delay Variation f = Hz, 5MHz 5.4 ns FN6104 Rev 5.00 Page 2 of 10

Electrical Specifications V S + = 3.3V, T A = +25 C, R L = 150 to GND, C L = 0.1µF, unless otherwise specified. (Continued) DESCRIPTION PARAMETER CONDITIONS MIN TYP MAX UNIT SNR Signal To Noise Ratio 100% white signal 65 db t ON Enable Time V IN = 500mV, V OUT to 1% 200 ns t OFF Disable Time V IN = 500mV, V OUT to 1% 14 ns +SR Positive Slew Rate 10% to 90%, V IN = 1V step 20 41 70 V/µs -SR Negative Slew Rate 90% to 10%, V IN = 1V step -20-30 -70 V/µs t F Fall Time 2.5V STEP, 80% - 20% 25 ns t R Rise Time 2.5V STEP, 20% - 80% 22 ns Typical Performance Curves NORMALIZED GAIN (db) 0.5 0.3 0.1-0.1-0.3 V DD =+3.3V R L =150 C L =5pF -0.1dB BW @ 4MHz -0.5 1M 10M FREQUENCY (Hz) FIGURE 1. GAIN vs FREQUENCY -0.1dB FIGURE 2. GAIN vs FREQUENCY -3dB POINT FIGURE 3. GAIN vs FREQUENCY -3dB FIGURE 4. GAIN vs FREQUENCY FOR VARIOUS R LOAD FN6104 Rev 5.00 Page 3 of 10

Typical Performance Curves (Continued) FIGURE 5. GAIN vs FREQUENCY FOR VARIOUS C LOAD FIGURE 6. MAXIMUM OUTPUT MAGNITUDE vs INPUT MAGNITUDE 1k 10k FIGURE 7. PHASE vs FREQUENCY FIGURE 8. PSRR vs FREQUENCY 100 V DD =+3.3V OUTPUT IMPEDANCE ( ) 10 1 0.1 0.01 10k 1M 10M 100M FREQUENCY (Hz) FIGURE 9. OUTPUT IMPEDANCE vs FREQUENCY FIGURE 10. ISOLATION vs FREQUENCY FN6104 Rev 5.00 Page 4 of 10

Typical Performance Curves (Continued) FIGURE 11. MAXIMUM OUTPUT vs LOAD RESISTANCE FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE t t t t FIGURE 13. LARGE SIGNAL STEP RESPONSE FIGURE 14. SMALL SIGNAL STEP RESPONSE FIGURE 15. ENABLE TIME FIGURE 16. DISABLE TIME FN6104 Rev 5.00 Page 5 of 10

Typical Performance Curves (Continued) FIGURE 17. HARMONIC DISTORTION vs FREQUENCY FIGURE 18. HARMONIC DISTORTION vs OUTPUT VOLTAGE FIGURE 19. GROUP DELAY vs FREQUENCY FIGURE 20. -3dB BANDWIDTH vs INPUT RESISTANCE FIGURE 21. SLEW RATE vs SUPPLY VOLTAGE FN6104 Rev 5.00 Page 6 of 10

Typical Performance Curves (Continued) POWER DISSIPATION (W) 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 JEDEC JESD51-3 LOW EFFECTIVE THERMAL CONDUCTIVITY TEST BOARD 450mW SC70-6 JA = +220 C/W POWER DISSIPATION (W) 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 JEDEC JESD51-7 HIGH EFFECTIVE THERMAL CONDUCTIVITY TEST BOARD 500mW SC70-6 JA = +200 C/W 0 0 25 50 75 85 100 125 AMBIENT TEMPERATURE ( C) 150 0 0 25 50 75 85 100 125 AMBIENT TEMPERATURE ( C) 150 FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE FIGURE 23. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE SYNC CLAMP V DD V DD V DD SALLEN KEY LOW PASS FILTER IN R IN C IN 100nF IN + - C 2 R 1 R 2 R 3 V DC C 1 C 3 + + - SAG NETWORK R 6 (1.5k) OUT SAG AC COUPLING CAPACITOR C 5 47µF C 4 R OUT 75 R L 75 EN R 7 (1k) R 5 (0.6k) 22µF GND EN = GND: SHUTDOWN I DD ~0 EN = V DD : ACTIVE I DD ~1.5mA R 4 (1.2k) FIGURE 24. BLOCK DIAGRAM Application Information The ISL59110 is a single supply rail-to-rail output amplifier achieving a -3dB bandwidth of around 8MHz and slew rate of about 40V/µs while demanding only 2mA of supply current. This part is ideally suited for applications with specific micropower consumption and high bandwidth demands. As the performance characteristics above and the features described below, the ISL59110 is designed to be very attractive for portable composite video applications. The ISL59110 features a sync clamp, low pass function, and SAG network at the output facilitating reduction of typically large AC coupling capacitors. See Figure 24. Internal Sync Clamp The typical embedded video DAC operates from a ground referenced single supply. This becomes an issue because the lower level of the sync pulse output may be at a 0V reference level to some positive level. The problem is presenting a 0V FN6104 Rev 5.00 Page 7 of 10

input to most single supply driven amplifiers will saturate the output stage of the amplifier resulting in a clipped sync tip and degrading the video image. A larger positive reference may offset the input above its positive range. The ISL59110 features an internal sync clamp and offset function to level shift the entire video signal to the best level before it reaches the input of the amplifier stage. These features are also helpful to avoid saturation of the output stage of the amplifier by setting the signal closer to the best voltage range. The simplified block diagram of the ISL59110 in Figure 24 is divided into four sections. The first, Section A is the Sync Clamp. The AC coupled video sync signal is pulled negative by a current source at the input of the comparator amplifier. When the sync tip goes below the comparator threshold the output comparator is driven negative, The PMOS device turns on clamping sync tip to near ground level. The network triggers on the sync tip of video signal. The Sallen Key Low Pass Filter The Sallen Key is a classic low pass configuration illustrated in Figure 24. This provides a very stable low pass function, and in the case of the ISL59110, a three-pole roll-off at around 8MHz. The three-pole function is accomplished with an RC low pass network placed in series with and before the Sallen Key. One pole provided by the RC network and poles two and three provided by the Sallen Key for a nice three-pole roll-off at around 8MHz. If more aggressive, multiple-pole roll-offs are needed, multiple ISL59110 can be placed in series. There will, of course, be a loss of bandwidth as additional devices are added. AC Output Coupling and the SAG Network Composite video signals carry viable information at frequencies as low as 30Hz up to 5MHz. When a video system output is AC coupled it is critical that the filter represented by the output coupling capacitor and the surrounding resistance network provide a band pass function with a low pass band low enough to exclude very low frequencies down to DC, and with a high pass band pass sufficiently high to include frequencies at the higher end of the video spectrum. Typically this is accomplished with 220µF coupling capacitor, a large and somewhat costly solution providing a low frequency pole around 5Hz. If the size of this capacitor is even slightly reduced we have found that the accompanying phase shift in the 50Hz to 100Hz frequency range results in field tilt resulting in a degraded video image. The internal SAG network of the ISL59110 replaces the 220µF AC coupling capacitor with a network of two smaller capacitors as shown in Figure 25. Additionally, the network is designed to place a zero in the ~30Hz range, providing a small amount of peaking to compensate the phase response associated with field tilt. DC Output Coupling The ISL59110 internal sync clamp makes it possible to DC couple the output to a video load, eliminating the need for any AC coupling capacitors, thereby saving board space and additional expense for capacitors. This makes the ISL59110 extremely attractive for portable video applications. Additionally, this solution completely eliminates the issue of field tilt in the lower frequency. The trade off is greater demand of supply current. Typical load current for AC coupled is around 3mA, compared to typical 6mA used when DC coupling. + - ENABLE R OUT FIGURE 26. DC COUPLE TELEVISION OR VCR SAG NETWORK AC COUPLING CAPACITOR C 5 R OUT R 6 R 7 C 4 R L R 5 R 4 FIGURE 25. SAG NETWORK AND AC COUPLING CAPACITORS FN6104 Rev 5.00 Page 8 of 10

Output Drive Capability The ISL59110 does not have internal short circuit protection circuitry. If the output is shorted indefinitely, the power dissipation could easily overheat the die or the current could eventually compromise metal integrity. Maximum reliability is maintained if the output current never exceeds ±40mA. This limit is set by the design of the internal metal interconnect. Note that in transient applications, the part is robust. Short circuit protection can be provided externally with a back match resistor in series with the output placed close as possible to the output pin. In video applications this would be a 75 resistor and would provide adequate short circuit protection to the device. Care should still be taken not to stress the device with a short at the output. Power Dissipation With the high output drive capability of the ISL59110, it is possible to exceed the +125 C absolute maximum junction temperature under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for an application to determine if load conditions or package types need to be modified to assure operation of the amplifier in a safe operating area. The maximum power dissipation allowed in a package is determined according to Equation 1: T JMAX T AMAX PD MAX = -------------------------------------------- JA Where: (EQ. 1) Where: V S = Supply voltage I SMAX = Maximum quiescent supply current V OUT = Maximum output voltage of the application R LOAD = Load resistance tied to ground I LOAD = Load current By setting the two P DMAX equations equal to each other, we can solve the output current and R LOAD to avoid the device overheat. Power Supply Bypassing Printed Circuit Board Layout As with any modern operational amplifier, a good printed circuit board layout is necessary for optimum performance. Lead lengths should be as short as possible. The power supply pin must be well bypassed to reduce the risk of oscillation. For normal single supply operation, a single 4.7µF tantalum capacitor in parallel with a 0.1µF ceramic capacitor from V S + to GND will suffice. Printed Circuit Board Layout For good AC performance, parasitic capacitance should be kept to a minimum. Use of wire wound resistors should be avoided because of their additional series inductance. Use of sockets should also be avoided if possible. Sockets add parasitic inductance and capacitance that can result in compromised performance. T JMAX = Maximum junction temperature T AMAX = Maximum ambient temperature JA = Thermal resistance of the package The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or: for sourcing: V OUT PD MAX = V S I SMAX + V S V OUT --------------- R L (EQ. 2) for sinking: PD MAX = V S I SMAX + V OUT V S I LOAD (EQ. 3) FN6104 Rev 5.00 Page 9 of 10

Small Outline Transistor Plastic Packages (SC70-6) A C L A2 SEATING PLANE b 6 0.20 (0.008) M 5 C L e1 D C L e 4 1 2 3 C 4X 1 4X 1 WITH PLATING c C A1 E 0.10 (0.004) C BASE METAL L L1 b b1 R1 C L SEATING PLANE R -C- c1 VIEW C GAUGE PLANE L2 E1 C P6.049A 6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE INCHES MILLIMETERS SYMBOL MIN MAX MIN MAX NOTES A 0.031 0.039 0.80 1.00 - A1 0.001 0.004 0.025 0.10 - A2 0.034 0.036 0.85 0.90 - b 0.006 0.012 0.15 0.30 - b1 0.006 0.010 0.15 0.25 - c 0.004 0.008 0.10 0.20 6 c1 0.004 0.006 0.10 0.15 6 D 0.073 0.085 1.85 2.15 3 E 0.084 BSC 2.1 BSC - E1 0.045 0.053 1.15 1.35 3 e 0.0256 Ref 0.65 Ref - e1 0.0512 Ref 1.30 Ref - L 0.010 0.018 0.26 0.46 4 L1 0.016 Ref. 0.400 Ref. - L2 0.006 BSC 0.15 BSC - N 6 6 5 R 0.004-0.10 - - 0 8 0 8 - Rev. 0 7/05 NOTES: 1. Dimensioning and tolerance per ASME Y14.5M-1994. 2. Package conforms to EIAJ SC70 and JEDEC MO203AB. 3. Dimensions D and E1 are exclusive of mold flash, protrusions, or gate burrs. 4. Footlength L measured at reference to gauge plane. 5. N is the number of terminal positions. 6. These Dimensions apply to the flat section of the lead between 0.08mm and 0.15mm from the lead tip. 7. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only VIEW C Copyright Intersil Americas LLC 2005-2014. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN6104 Rev 5.00 Page 10 of 10