IR Receiver Modules for Remote Control Systems

Similar documents
IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

TSOP39256CZ1. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors

IR Receiver Modules for Remote Control Systems

TSOP381.., TSOP383.., TSOP385.., TSOP391.., TSOP393.., IR Receiver Modules for Remote Control Systems

TSOP591.. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors

IR Receiver Modules for Remote Control Systems

TSOP48.. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors

TSOP312.. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors

Photo Modules for PCM Remote Control Systems

IR Receiver Modules for Remote Control Systems

TSOP312.. IR Receiver Modules for Remote Control Systems VISHAY. Vishay Semiconductors

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

TSOP21.., TSOP23.., TSOP41.., TSOP43.., TSOP25.., TSOP IR Receiver Modules for Remote Control Systems

Photo Modules for PCM Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Data Transmission

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

Photo Modules for PCM Remote Control Systems

Photo Modules for PCM Remote Control Systems

IR Sensor Module for Remote Control Systems

S186P. Silicon PIN Photodiode. Vishay Semiconductors

IR Receiver Modules for Data Transmission

IR Sensor Module for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Sensor Module for Remote Control Systems

BPW46L. Silicon PIN Photodiode. Vishay Semiconductors

BPV11. Silicon NPN Phototransistor. Vishay Semiconductors

IR Detector for Mid Range Proximity Sensor

TEPT5600. Ambient Light Sensor. Vishay Semiconductors

IR Detector for Mid Range Proximity Sensor

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

IR Sensor Module for Remote Control Systems

BPV22NF(L) Silicon PIN Photodiode. Vishay Semiconductors

High Power Infrared Emitting Diode, 950 nm, GaAlAs/GaAs

IR Sensor Module for Remote Control Systems

Linear Optocoupler, PCMCIA Package

IR Receiver Module for Light Barrier Systems

IR Receiver Modules for Remote Control Systems

TSHG6400. High Speed IR Emitting Diode in T-1¾ Package. Vishay Semiconductors

TSOP62.. IR Receiver Modules for Remote Control Systems. Vishay Semiconductors

Part Ordering code Type Marking Remarks BAT41 BAT41-TR or BAT41-TAP BAT41 Tape and Reel/Ammopack

Optocoupler, Photodarlington Output, AC Input, Internal R BE

BPW17N. Silicon NPN Phototransistor. Vishay Semiconductors

Part Ordering code Marking Remarks BAV99-V BAV99-V-GS18 or BAV99-V-GS08 JE Tape and Reel

IL388DAA. Linear Optocoupler, PCMCIA package. Vishay Semiconductors

TDCG1050M, TDCG1060M, TDCR1050M, TDCR1060M Clock Display

BPW41N. Silicon PIN Photodiode. Vishay Semiconductors

Optocoupler, Phototransistor Output, AC Input

Optocoupler, Phototransistor Output, no Base Connection

Clock Display FEATURES APPLICATIONS. (nm) I F I F

Transmissive Optical Sensor with Phototransistor Output

Standard SMD LED PLCC-2

Part Ordering code Type Marking Remarks BAS85 BAS85-GS18 or BAS85-GS08 - Tape and Reel

IR Receiver Modules for Remote Control Systems

Part Ordering code Marking Remarks BAW56-V BAW56-V-GS18 or BAW56-V-GS08 JD Tape and Reel

IR Receiver for High Data Rate PCM at 455 khz


BAS81 / 82 / 83. Small Signal Schottky Diodes. Vishay Semiconductors. Features Integrated protection ring against static discharge

IR Receiver Modules for Remote Control Systems

MCL103A / 103B / 103C

BPV10NF. High Speed Silicon PIN Photodiode. Vishay Semiconductors

Optocoupler, Phototransistor Output, Very High Isolation Voltage

Low Current 7 mm 7-Segment Display

TEFT4300. Silicon NPN Phototransistor. Vishay Semiconductors

ZMY3V9 to ZMY100. Zener Diodes. Vishay Semiconductors

Optocoupler, Phototransistor Output, SOP-6L5, Half Pitch, Long Mini-Flat Package

DAFTAR PUSTAKA. Andrianto Heri. Pemrograman Mikrokontroller AVR ATMEGA16. Informatika. Bandung : Bandung 2008.

Optocoupler, Phototransistor Output, SOP-4L, Long Mini-Flat Package

Low Current 10 mm 7-Segment Display


Linear Optocoupler, PCMCIA Package

BPV23NF(L) Silicon PIN Photodiode. Vishay Semiconductors

SD103AW-V/103BW-V/103CW-V

Optocoupler, Phototransistor Output, High Reliability, 5300 V RMS

TDSG / O / Y51.. Standard 7- Segment Display 13 mm VISHAY. Vishay Semiconductors


IR Receiver Module for Light Barrier Systems

Silicon PIN Photodiode, RoHS Compliant, Released for Lead (Pb)-free Solder Process, AEC-Q101 Released

Ambient Light Sensor, RoHS Compliant, Released for Lead (Pb)-free Solder Process, AEC-Q101 Released

Parameter Test condition Symbol Value Unit Power dissipation T L 25 C P tot 500 mw Z-current I Z P tot /V Z ma

Optocoupler, Phototransistor Output, Low Input Current

BP104. Silicon PIN Photodiode. Vishay Semiconductors

Type Ordering Code Remarks

IR Receiver Modules for Remote Control Systems

IR Receiver Modules for Remote Control Systems

TCMT11.. Series/ TCMT4100

IR Receiver Modules for Remote Control Systems

Part Ordering code Type Marking Remarks BAT85S BAT85S-TR or BAT85S-TAP BAT85S Tape and Reel/Ammopack

Transcription:

TSOP34.., TSOP343.. IR Receiver Modules for 2 3 MECHANICAL DATA Pinning: = OUT, 2 = GND, 3 = V S 6672 FEATURES Very low supply current Photo detector and preamplifier in one package Internal filter for PCM frequency e3 Improved shielding against EMI Supply voltage: 2.5 V to 5.5 V Improved immunity against ambient light Insensitive to supply voltage ripple and noise Component in accordance to RoHS 22/95/EC and WEEE 22/96/EC DESCRIPTION The TSOP34.., TSOP343.. series are miniaturized receivers for infrared remote control systems. A PIN diode and a preamplifier are assembled on a lead frame, the epoxy package acts as an IR filter. The demodulated output signal can be directly decoded by a microprocessor. The TSOP34.. is compatible with all common IR remote control data formats. The TSOP343.. is optimized to better suppress spurious pulses from energy saving fluorescent lamps but will also suppress some data signals. This component has not been qualified according to automotive specifications. PARTS TABLE CARRIER FREQUENCY SHORT BURSTS AND HIGH DATA RATES (AGC) NOISY ENVIRONMENTS AND SHORT BURSTS (AGC3) 3 khz TSOP343 TSOP3433 33 khz TSOP3433 TSOP34333 36 khz TSOP3436 TSOP34336 38 khz TSOP3438 TSOP34338 4 khz TSOP344 TSOP3434 56 khz TSOP3456 TSOP34356 BLOCK DIAGRAM APPLICATION CIRCUIT 6833 Input AGC Band pass Demodulator 3 kω 3 V S OUT 77_5 Transmitter with TSALxxxx IR receiver Circuit V S OUT GND R C V O µc + V S GND 2 PIN Control circuit GND R and C are recommended for protection against EOS. Components should be in the range of 33 Ω < R < kω, C >. µf. Document Number: 8737 www.vishay.com Rev..2, 9-Aug-8 5

TSOP34.., TSOP343.. IR Receiver Modules for ABSOLUTE MAXIMUM RATINGS () PARAMETER TEST CONDITION SYMBOL VALUE UNIT Supply voltage (pin 3) V S -.3 to + 6. V Supply current (pin 3) I S 3 ma Output voltage (pin ) V O -.3 to (V S +.3) V Output current (pin ) I O 5 ma Junction temperature T j C Storage temperature range T stg - 25 to + 85 C Operating temperature range T amb - 25 to + 85 C Power consumption T amb 85 C P tot mw Soldering temperature t s, mm from case T sd 26 C Note () Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating condtions for extended periods may affect the device reliability. ELECTRICAL AND OPTICAL CHARACTERISTICS () PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT E v =, V S = 3.3 V I SD 7.35.45 ma Supply current (pin 3) E v = 4 klx, sunlight I SH.45 ma Supply voltage V S 2.5 5.5 V Transmission distance Output voltage low (pin ) Minimum irradiance Maximum irradiance Note () T amb = 25 C, unless otherwise specified TYPICAL CHARACTERISTICS T amb = 25 C, unless otherwise specified E v =, test signal see fig., IR diode TSAL62, I F = 25 ma I OSL =.5 ma, =.7 mw/m 2, test signal see fig. Pulse width tolerance: t pi - 5/f o < t po < t pi + 6/f o, test signal see fig. t pi - 5/f o < t po < t pi + 6/f o, test signal see fig. d 45 m V OSL mv min.. 5 mw/m 2 max. 3 W/m 2 Directivity Angle of half transmission distance ϕ /2 ± 45 deg V O V OH Optical Test Signal (IR diode TSAL62, I F =.4 A, N = 6 pulses, f = f, t = ms) t pi *) V OL t ) t 2) t d po T *) t pi 6/fo is recommended for optimal function Output Signal ) 3/f < t d < 9/f 2) t pi - 4/f < t po < t pi + 6/f Fig. - Output Active Low t 4337 t po - Output Pulse Width (ms) 276.4.35.3 5.5. Output Pulse Width Input Burst Length.5 λ = 95 nm, optical test signal, fig.. - Irradiance (mw/m²) Fig. 2 - Pulse Length and Sensitivity in Dark Ambient www.vishay.com Document Number: 8737 6 Rev..2, 9-Aug-8

IR Receiver Modules for TSOP34.., TSOP343.. V O V OH V OL Optical Test Signal 6 µs 6 µs t = 6 ms Output Signal, (see fig. 4) t on t off t t 94 834 min. - Threshold Irradiance (mw/m²) 3.5 2.5.5.5 2745 4 3 2 Correlation with Ambient Light Sources: W/m² =.4 klx (Std. illum. A, T = 2855 K) W/m² = 8.2 klx (Daylight, T = 59 K) Wavelength of Ambient Illumination: λ = 95 nm.. - Ambient DC Irradiance (W/m²) Fig. 3 - Output Function Fig. 6 - Sensitivity in Bright Ambient T on, T off - Output Pulse Width (ms) 2744.8.7.6.5.4.3. λ = 95 nm, Optical Test Signal, Fig. 3 T on T off. - Irradiance (mw/m²) Fig. 4 - Output Pulse Diagram min. - Threshold Irradiance (mw/m²) 2746 f = Hz.9.8 f = khz.7.6 f = 2 khz.5.4 f = 3 khz.3 f = f. Δ Vs RMS - AC Voltage on DC Supply Voltage (mv) Fig. 7 - Sensitivity vs. Supply Voltage Disturbances min. / - Rel. Responsivity 6925.2..8.6.4. f = f ± 5 % Δ f(3 db) = f /.7.9..3 f/f - Relative Frequency Fig. 5 - Frequency Dependence of Responsivity E - Max. Field Strength (V/m) 2747 5 45 4 35 3 25 2 5 5 5 5 2 25 3 f - EMI Frequency (MHz) Fig. 8 - Sensitivity vs. Electric Field Disturbances Document Number: 8737 www.vishay.com Rev..2, 9-Aug-8 7

TSOP34.., TSOP343.. IR Receiver Modules for Max. Envelope Duty Cycle 276.9.8.7.6.5 TSOP34...4.3 TSOP343... f = 38 khz, = 2 mw/m² 2 4 6 8 2 Burst Length (number of cycles/burst) Fig. 9 - Maximum Envelope Duty Cycle vs. Burst Length 2..9.8.7.6.4.4.6 96 2223p2 d rel - Relative Transmission Distance Fig. 2 - Horizontal Directivity 3 4 5 6 7 8 min. - Threshold Irradiance (mw/m²).8.6.4.2..8.6.4.2-3 - 3 5 7 9 2749 T amb - Ambient Temperature ( C) Fig. - Sensitivity vs. Ambient Temperature min. - Sensitivity (mw/m²).8.6.4.2..8.6.4.2 2 2.5 3 3.5 4 4.5 5 5.5 6 275 V s - Supply Voltage (V) Fig. 3 - Sensitivity vs. Supply Voltage S ( λ ) rel - Relative Spectral Sensitivity 699.2..8.6.4. 75 85 95 5 5 λ - Wavelength (nm) Fig. - Relative Spectral Sensitivity vs. Wavelength www.vishay.com Document Number: 8737 8 Rev..2, 9-Aug-8

IR Receiver Modules for TSOP34.., TSOP343.. SUITABLE DATA FORMAT The TSOP34.., TSOP343.. series are designed to suppress spurious output pulses due to noise or disturbance signals. Data and disturbance signals can be distinguished by the devices according to carrier frequency, burst length and envelope duty cycle. The data signal should be close to the band-pass center frequency (e.g. 38 khz) and fulfill the conditions in the table below. When a data signal is applied to the TSOP34.., TSOP343.. in the presence of a disturbance signal, the sensitivity of the receiver is reduced to insure that no spurious pulses are present at the output. Some examples of disturbance signals which are suppressed are: DC light (e.g. from tungsten bulb or sunlight) Continuous signals at any frequency Modulated noise from fluorescent lamps with electronic ballasts (see figure 4 or figure 5) IR Signal 692 IR Signal from Fluorescent Lamp with Low Modulation 5 5 2 Time (ms) Fig. 4 - IR Signal from Fluorescent Lamp with Low Modulation IR Signal from Fluorescent Lamp with High Modulation IR Signal 692 5 2 Time (ms) Fig. 5 - IR Signal from Fluorescent Lamp with High Modulation TSOP34.. TSOP343.. Minimum burst length 6 cycles/burst 6 cycles/burst After each burst of length a minimum gap time is required of For bursts greater than a minimum gap time in the data stream is needed of 6 to 7 cycles cycles 7 cycles >.2 x burst length Note For data formats with long bursts (more than carrier cycles) please see the data sheet for TSOP348.., TSOP344. 6 to 35 cycles cycles 35 cycles > 6 x burst length Maximum number of continuous short bursts/second 2 2 Compatible to NEC code yes yes Compatible to RC5/RC6 code yes yes Compatible to Sony code yes no Compatible to RCMM code yes yes Compatible to r-step code yes yes Compatible to XMP code yes yes Suppression of interference from fluorescent lamps Common disturbance signals are supressed (example: signal pattern of fig. 4) Even critical disturbance signals are suppressed (examples: signal pattern of fig. 4 and fig. 5) Document Number: 8737 www.vishay.com Rev..2, 9-Aug-8 9

TSOP34.., TSOP343.. IR Receiver Modules for PACKAGE DIMENSIONS in millimeters 63 www.vishay.com Document Number: 8737 2 Rev..2, 9-Aug-8

IR Receiver Modules for TSOP34.., TSOP343.. OZONE DEPLETING SUBSTANCES POLICY STATEMENT It is the policy of Vishay Semiconductor GmbH to. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (987) and its London Amendments (99) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively. 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 99 by the Environmental Protection Agency (EPA) in the USA. 3. Council Decision 88/54/EEC and 9/69/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use products for any unintended or unauthorized application, the buyer shall indemnify against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-7425 Heilbronn, Germany Document Number: 8737 www.vishay.com Rev..2, 9-Aug-8 2

Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, Vishay ), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 9 www.vishay.com Revision: 8-Jul-8