Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures

Similar documents
ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm

EECS130 Integrated Circuit Devices

FinFET-based Design for Robust Nanoscale SRAM

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Announcements. Sign up for Piazza if you haven t already

Jack Keil Wolf Lecture. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. MOSFET N-Type, P-Type.

EECS130 Integrated Circuit Devices

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

Lecture #29. Moore s Law

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

Session 3: Solid State Devices. Silicon on Insulator

Topic 3. CMOS Fabrication Process

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

ADVANCED MATERIALS AND PROCESSES FOR NANOMETER-SCALE FINFETS

Layout of a Inverter. Topic 3. CMOS Fabrication Process. The CMOS Process - photolithography (2) The CMOS Process - photolithography (1) v o.

2009 Spring CS211 Digital Systems & Lab 1 CHAPTER 3: TECHNOLOGY (PART 2)

Improved Inverter: Current-Source Pull-Up. MOS Inverter with Current-Source Pull-Up. What else could be connected between the drain and V DD?

Innovation to Advance Moore s Law Requires Core Technology Revolution

Chapter 3 Basics Semiconductor Devices and Processing

A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

2.8 - CMOS TECHNOLOGY

Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP)

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

+1 (479)

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Chapter 7 Introduction to 3D Integration Technology using TSV

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors.

Deep Submicron Interconnect. 0.18um vs. 013um Interconnect

! Review: MOS IV Curves and Switch Model. ! MOS Device Layout. ! Inverter Layout. ! Gate Layout and Stick Diagrams. ! Design Rules. !

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

(a) (d) (e) (b) (c) (f) 3D-NAND Flash and Its Manufacturing Process

DATASHEET CADENCE QRC EXTRACTION

Introduction to VLSI ASIC Design and Technology

Intel Technology Journal

Comparison of 32nm High-k Metal Gate Predictive Technology Model CMOS and MOSFET-Like CNFET compact Model Based Domino logic Circuits

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Chapter 15 Summary and Future Trends

Intel's 65 nm Logic Technology Demonstrated on 0.57 µm 2 SRAM Cells

Photolithography I ( Part 1 )

EE E6930 Advanced Digital Integrated Circuits. Spring, 2002 Lecture 12. SOI Devices and Circuits

This Week s Subject. DRAM & Flexible RRAM. p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

PHYSICAL STRUCTURE OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

problem grade total

Intel s High-k/Metal Gate Announcement. November 4th, 2003

FinFET Devices and Technologies

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Variation. Variation. Process Corners.

Physical Design of Digital Integrated Circuits (EN0291 S40) Sherief Reda Division of Engineering, Brown University Fall 2006

Microelectronics, BSc course

Final Exam Topics. IC Technology Advancement. Microelectronics Technology in the 21 st Century. Intel s 90 nm CMOS Technology. 14 nm CMOS Transistors

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

NAME: Last First Signature

Drain. Drain. [Intel: bulk-si MOSFETs]

Ultra Low Voltage Operation with Bootstrap Scheme for Single Power Supply SOI-SRAM

CS/ECE 5710/6710. Composite Layout

y y (12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States (43) Pub. Date: Sep. 10, C 410C 422b 4200

Trends and Challenges in VLSI Technology Scaling Towards 100nm

Challenges and Innovations in Nano CMOS Transistor Scaling

The Path Toward Efficient Nano-Mechanical Circuits and Systems

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline

Power FINFET, a Novel Superjunction Power MOSFET

Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen

32nm Technology and Beyond

Xilinx XC5VLX50 FPGA UMC 65 nm Process

FinFET vs. FD-SOI Key Advantages & Disadvantages

VLSI Design. Introduction

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

Modeling and CAD Challenges for DFY. Patrick G. Drennan Freescale Semiconductor Tempe, AZ, USA

MOSFET & IC Basics - GATE Problems (Part - I)

Sustaining the Si Revolution: From 3D Transistors to 3D Integration

Enabling Breakthroughs In Technology

Wiring Parasitics. Contact Resistance Measurement and Rules

3-2-1 Contact: An Experimental Approach to the Analysis of Contacts in 45 nm and Below. Rasit Onur Topaloglu, Ph.D.

Sony IMX Megapixel, 1.4 µm Pixel 1/3.2 Optical Format CMOS Image Sensor

Basic Fabrication Steps

Performance and Reliability of the sub-100nm FDSOI with High-K K and Metal Gate

Advanced PDK and Technologies accessible through ASCENT

Micron MT66R7072A10AB5ZZW 1 Gbit Phase Change Memory 45 nm BiCMOS PCM Process

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Sub-50 nm P-Channel FinFET

Microsoft X02046 IBM PowerPC Processor from the XBOX 360 Structural Analysis

First Results of 0.15μm CMOS SOI Pixel Detector

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Nanosecond Thermal Processing for Self-Aligned Silicon-on-Insulator Technology

New Process Technologies Will silicon CMOS carry us to the end of the Roadmap?

EE 434 ASIC and Digital Systems. Prof. Dae Hyun Kim School of Electrical Engineering and Computer Science Washington State University.

Analog Performance of Scaled Bulk and SOI MOSFETs

Lecture 0: Introduction

Transcription:

Improving CMOS Speed and Switching Energy with Vacuum-Gap Structures Chenming Hu and Je Min Park Univ. of California, Berkeley -1-

Outline Introduction Background and Motivation MOSFETs with Vacuum-Spacer Vacuum-Corridor Interconnects -2-

Reducing Capacitance is Important for Speed Delay CV I Q I 1000 100 T OX (Å) T ox (C ) 10 classic scaling V DD (V) V dd (V) 1 V TH (V) V t (V) 0.1 0.01 0.1 1 Gate Length, Lgate (um) B. Meyerson, IBM, Semico Conf., January 2004-3-

Reducing Capacitance is Good for Swiching Energy and Noise 1000 Energy CV 2 Crosstalk Noise C m Power (W/cm 2 ) 100 10 C m 1 0.01 0.1 1 Gate Length (μm) B. Meyerson, IBM, Semico Conf., January 2004 Metal Lines -4-

Outline Introduction MOSFETs with Vacuum-Spacer Structure, benefits, process Self-Aligned Contact (SAC) MOSFET Vacuum-Corridor Interconnects Future Works -5-

1996 Air-Gap Structure There is only 6% inverter speed improvement The fringing capacitance is much smaller than other gate capacitances Relatively small portion of air-gap (15nm) Air-gap P M. Togo, VLSI 1996-6-

Gate Capacitances Gate-channel capacitance Gate overlap capacitance Junction/Diffusion capacitance Fringing capacitance Gate-to-Contact capacitance Gate Contact Source Drain -7-

Vertical Scale Down is Difficult Gate shape Gate Length Ideal Scaling Gate Height Real Scale Down -8-

C GC becomes the Dominant Capacitance in Transistor C GOX : Gate Oxide Capacitance C GC : Gate-to-Contact Capacitance C GOX» C GC C GOX < C GC Contact Gate Scale Down -9-

I DS -V GS Characteristics are Same A vacuum spacer transistor is compared with an oxide spacer transistor at 20nm gate length Oxide Spacer Contact 1.0E-02 1.0E-03 V DS =1.0V 1.0E-04 Gate Vacuum Spacer IDS(A/um) 1.0E-05 1.0E-06 1.0E-07 1.0E-08 Conventional Oxide Spacer Air Spacer 1.0E-09 0 0.2 0.4 0.6 0.8 1 V GS (V) -10-

Gate Capacitances and switching Charges are Reduced 40 35 V DS = 1V CGATE(fF/um 2 ) 30 25 20 15 10 5 Oxide Spacer Air Spacer Oxide Spacer Vacuum Spacer Q GATE 26 19.2 fc/um 2 0 0 0.2 0.4 0.6 0.8 1 V GS (V) Energy CV 2 = QV -11-

3D Mixed-Mode Device Simulation Extract Propagation Delay Inverter Switching Energy : V DD I DD dt V IN V DD V OUT I DD Miller Capacitances C L -12-

Vacuum Spacer CMOS is faster than Oxide Spacer CMOS 1.25 1 Oxide Spacer Vacuum Spacer Voltage (V) 0.75 0.5 0.25 4.7ps 6.1ps 0-0.25 0 1E-11 2E-11 3E-11 4E-11 5E-1 Time (s) -13-

Gate Spacer Comparison Air spacer is compared with nitride spacer and oxide spacer Contact Nitride Spacer Oxide Spacer Vacuum Spacer I ON ma/um I OFF na/um 1.16 1.06 1.06 4.16 5.55 5.64 Nitride Spacer Inverter Delay, ps 6.9 (1.12) 6.15 (1) 4.7 (0.76) Inverter switching energy, fj 29.5 (1.22) 24.2 (1) 18.1 (0.75) -14-

The Benefits of Vacuum Spacer in Future Linear Contact are Greater Future contact may be linear, not circular Nitride Spacer Oxide Spacer Air Spacer Circular Contact Inverter Delay, ps Circular Linear 6.9 (1) 5.96 (1) 6.15 (0.89) 4.64 (0.78) 4.7 (0.68) 3.28 (0.55) Linear Contact Inverter switching energy, fj Circular Linear 29.5 (1) 37.2 (1) 24.2 (0.82) 29.8 (0.80) 18.1 (0.61) 20.1 (0.54) -15-

Process Flow ILD1 Mask Oxide Sacrificial Spacer (a) After S/D formation (b) ILD deposition (c) Chemical Mechanical Polishing (d) Sacrificial spacer removal ILD2 Air Spacer Sacrificial spacer Oxide Gate Source/Drain Substrate (e) ILD2 deposition -16- Jemin Park et. al., Air Spacer MOSFET Technology for 20nm Node and Beyond, IEEE ICSICT, Oct. 2008, p53-56

Fabrication in Progress Thickness (A) 1100 1000 900 800 700 600 500 400 SOI Thinning Before SOI Thinning After SOI Thinning #1 #2 #3 #4 #5 #6 #7 avg Wafer number Oxidation condition (Tystar2): 900, O 2 4000sccm, oxidation 600min, post anneal 20min T C B L R TL TR BL BR AVG Tafter Cafter Bafter Lafter Rafter Tlafter Trafter Blafter Brafter AVGafter Alignment Mark Active Patterning -17-

Another Style of Contact Design, Self-Aligned Contact Conventional Contact Gate Contact Perfect Alignment Self-Aligned Contact Gate Contact Misaligned WSi2 Poly-Si Contact Silicon Nitride -18-

SRAM size can be reduced with SAC Intel 45nm SRAM Cell Contact Imaginary Design using SAC Contact Gate Active Intel Tech. Journal, Vol. 12, 2008 Design Rule : F Cell Width : 10F Cell Height : 5F Cell Area : 50F 2 Design Rule : F Cell Width : 10F Cell Height : 3.5F Cell Area : 35F 2-19-

Proposed Process Procedure of SAC with Vacuum Spacer (a) Gate stack deposition (b) Gate etch and sidewall oxidation (c) S/D and spacer formation (d) ILD deposition and CMP Air Spacer Contact Nitride Oxide (e) SAC etch and (f) CMP and remove contact plug deposition nitride material (g) ILD2 deposition Jemin Park et. al., Air-Spacer Self-Aligned Contact MOSFET for Future Dense Memories, IEEE SISPAD, Japan, Sep. 2008, p53-56 Gate Source/Drain Substrate -20-

Gate Last Process with SAC and Vacuum Spacer (a) After CMP Process (b) Remove sacrificial gate and form gate stack (c) Top sacrificial spacer formation (d) ILD deposition and SAC formation Air Spacer Substrate GOX Source/Drain Gate Sacrificial Spacer Contact Sacrificial Gate ILD (e) Remove sacrificial spacers (f) ILD2 Deposition Jemin Park et. al., Gate Last MOSFET with Air Spacer and Self-Aligned Contacts for Dense Memories, IEEE VLSI-TSA, Taiwan, Apr. 2009, p105-106 -21-

The Case for Vacuum Spacer SAC SAC MOSFET with vacuum spacer is denser, faster, lower energy than a conventional MOSFET, 20nm. Air Oxide Spacer Nitride SAC Air SAC I ON ma/um 1.06 1.13 1.08 Oxide Nitride I OFF na/um 5.55 2.56 6.14 Inverter Delay, ps 6.15 (1) 11.85 (1.93) 5.05 (0.82) Inverter switching energy, fj 24.2 (1) 44.8 (1.85) 18.8 (0.78) Relative Area 1 0.7 0.7-22-

Vaccum spacer scaling effect Benefits increase with scaling 14 SAC with Nitride Spacer 35 70 65 Delay Time (ps) 12 10 8 6 SAC with Air Spacer 20 32 45 65 Gate Length (nm) 30 25 20 15 Improvement (%) Switching Energy (fj) 55 40 25 10 20 32 45 65 Gate Length (nm) 55 45 35 25 Improvement (%) -23-

Outline Introduction MOSFETs with Vacuum-Spacer Vacuum-Corridor Interconnects The Proposed Process of Air-Corridor The Characteristics of Air-Corridor Future Works -24-

Previous Air-Gap Structures An air gap is located only between metals -25-

Proposed Vacuum-Corridor structures C TOTAL Delay, C M Crosstalk Noise C M C O C O C M Dielectric Beam Etch Stop layer Metal Overlap Capacitance : C O Mutual Capacitance : C M Total Capacitance : C TOTAL -26-

Process Flow I Stopper Sacrificial Material IMD Metal (a) Via Etch (b) Line Etch (c) Metal depo & CMP (d) Etch Stopper & IMD (e) Dielectric beam Spacer Formation Jemin Park et. al., VMIC, Fremont CA, Oct. 2008, p229-234 (f) Sacrificial material depo & CMP -27-

Process Procedure II Stopper Sacrificial Material IMD Metal (g) Metal 2 Process (h) Metal 3 process (i) Removal all Sacrificial Material Jemin Park et. al., VMIC, Fremont CA, Oct. 2008, p229-234 -28-

ITRS Key Parameters of Each Generation Metal Width 59nm 40nm 28nm 20nm Metal Space 59nm 40nm 28nm 20nm Metal A/R 1.8 1.8 1.9 2.0 Metal Thick 1062Å 720Å 532Å 400Å Required Bulk Dielectric Constant 2.9 2.7 2.5 2.3 Stopper Layer Thick 10nm 10nm 5nm 5nm IMD Thick (Metal + Via Height) Beam Dielectric Constant for Air-Corridor 2124Å 1440Å 1064Å 800Å 2.9 2.9 2.9 2.9 2007 ITRS spec Assumption for simulation -29-

Capacitances vs. Vacuum Percentage Metal Line Dielectric Beam 20% of vacuum percentage Capacitance (af/um) 1000 800 600 400 200 0 C TOTAL,con C Mutual,con Total Capacitance Mutual Capacitance 20 30 40 50 60 70 80 Air percentage (%) Thicker Beam Dielectric 80% of vacuum percentage -30-

Insensitive to via height Total Capacitance (af/um) 1400 1200 1000 800 600 400 200 0 Conventional Structure Air-Corridor Structure 360 576 792 1008 1224 1440 Via Height (A) Mutual Capacitance (af/um) 500 400 300 200 100 0 Conventional Structure Air-Corridor Structure 360 576 792 1008 1224 1440 Via Height (A) -31-

Vacuum-Corridor has less RC delay and higher CMP margin Relative Delay vs. Metal Height 5 60 Relative RC delay 4 3 2 1 0 Conventional Structure Air-Corridor Structure 360 576 792 1008 1224 1440 Metal Height (A) 57 54 51 48 Improvement (%) -32-

The Effective k of Vacuum-Corridor Interconnects Beam Dielectric Constant 2.25 2.9 3.3 3.6 1.9 2.0 2.1 2.3 2.2 2.4 2.5 No Solution 2.6 1.8 No Solution 1.7 1.6 1.4 1.5 1.3 3.9 20 30 40 50 60 70 80 Air Percentage (%) -33-

Papers and Patents PAPERS: 1. An Vacuum-Sheath Interconnect Structure for Dense Memory Je Min Park and Chenming Hu Electronics Letters, accepted and will be published on December, 2009 2. Air-Spacer MOSFET with Self-Aligned Contact for Future Dense Memories Je Min Park and Chenming Hu Electron Device Letters, accepted and will be published on December, 2009 3. Gate Last MOSFET with Air Spacer and Self-Aligned Contacts for Dense Memories Je Min Park and Chenming Hu VLSI-TSA, pp105-106, Taiwan, Apr. 2009 4. Air-Spacer MOSFET Technology for 20nm Node and Beyond Je Min Park and Chenming Hu ICSICT, pp53-56, China, Oct. 2008 5. Air-Spacer Self-Aligned Contact MOSFET for Future Dense Memories Je Min Park and Chenming Hu SISPAD, pp313-316, Japan, Sep. 2008 6. An-Air-Corridor Interconnect Structure Je Min Park and Chenming Hu VMIC, pp229-234, Fremont, CA., Oct. 2008 PATENTS: (UC Patents Pending) 1. Transistor Speed And Power Improvements Je Min Park and Chenming Hu UC Case 2008-107-0 2. "Air Corridor Interconnect Structure" Je Min Park and Chenming Hu UC Case 2009-044-0-34-