Optimized FIR filter design using Truncated Multiplier Technique

Similar documents
DESIGN OF MULTIPLE CONSTANT MULTIPLICATION ALGORITHM FOR FIR FILTER

Modified Booth Multiplier Based Low-Cost FIR Filter Design Shelja Jose, Shereena Mytheen

Design and Implementation of Truncated Multipliers for Precision Improvement and Its Application to a Filter Structure

Design of Area and Power Efficient FIR Filter Using Truncated Multiplier Technique

Low Power FIR Filter Design Based on Bitonic Sorting of an Hardware Optimized Multiplier S. KAVITHA POORNIMA 1, D.RAHUL.M.S 2

Tirupur, Tamilnadu, India 1 2

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Design and Performance Analysis of a Reconfigurable Fir Filter

Implementation of Truncated Multiplier for FIR Filter based on FPGA

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier

Low Power Fir Filter Design Using Truncated Multiplier

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 5, Sep-Oct 2014

DESIGN OF AREA EFFICIENT TRUNCATED MULTIPLIER FOR DIGITAL SIGNAL PROCESSING APPLICATIONS

Implementation of High Speed Area Efficient Fixed Width Multiplier

Design of an optimized multiplier based on approximation logic

A New High Speed Low Power Performance of 8- Bit Parallel Multiplier-Accumulator Using Modified Radix-2 Booth Encoded Algorithm

An Efficient Reconfigurable Fir Filter based on Twin Precision Multiplier and Low Power Adder

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

AN ERROR LIMITED AREA EFFICIENT TRUNCATED MULTIPLIER FOR IMAGE COMPRESSION

Design of Multiplier Less 32 Tap FIR Filter using VHDL

Design of a Power Optimal Reversible FIR Filter ASIC Speech Signal Processing

A Survey on Power Reduction Techniques in FIR Filter

AN EFFICIENT DESIGN OF ROBA MULTIPLIERS 1 BADDI. MOUNIKA, 2 V. RAMA RAO M.Tech, Assistant professor

Implementation of Parallel Multiplier-Accumulator using Radix- 2 Modified Booth Algorithm and SPST

AREA EFFICIENT DISTRIBUTED ARITHMETIC DISCRETE COSINE TRANSFORM USING MODIFIED WALLACE TREE MULTIPLIER

Reduced Complexity Wallace Tree Mulplier and Enhanced Carry Look-Ahead Adder for Digital FIR Filter

Design and Performance Analysis of 64 bit Multiplier using Carry Save Adder and its DSP Application using Cadence

JDT LOW POWER FIR FILTER ARCHITECTURE USING ACCUMULATOR BASED RADIX-2 MULTIPLIER

HIGH SPEED FIXED-WIDTH MODIFIED BOOTH MULTIPLIERS

A Survey on A High Performance Approximate Adder And Two High Performance Approximate Multipliers

DESIGNING OF MODIFIED BOOTH ENCODER WITH POWER SUPPRESSION TECHNIQUE

Structural VHDL Implementation of Wallace Multiplier

A Novel High Performance 64-bit MAC Unit with Modified Wallace Tree Multiplier

Resource Efficient Reconfigurable Processor for DSP Applications

Digital Integrated CircuitDesign

Design of Digital FIR Filter using Modified MAC Unit

VLSI Implementation of Digital Down Converter (DDC)

International Journal of Advanced Research in Computer Science and Software Engineering

Design and Implementation Radix-8 High Performance Multiplier Using High Speed Compressors

Low Power FIR Filter Structure Design Using Reversible Logic Gates for Speech Signal Processing

Design and Implementation of Digit Serial Fir Filter

IN SEVERAL wireless hand-held systems, the finite-impulse

Mahendra Engineering College, Namakkal, Tamilnadu, India.

Design of a Power Optimal Reversible FIR Filter for Speech Signal Processing

DESIGN OF LOW POWER / HIGH SPEED MULTIPLIER USING SPURIOUS POWER SUPPRESSION TECHNIQUE (SPST)

An Design of Radix-4 Modified Booth Encoded Multiplier and Optimised Carry Select Adder Design for Efficient Area and Delay

A MODIFIED ARCHITECTURE OF MULTIPLIER AND ACCUMULATOR USING SPURIOUS POWER SUPPRESSION TECHNIQUE

ISSN Vol.07,Issue.08, July-2015, Pages:

DESIGN OF FIR FILTER ARCHITECTURE USING VARIOUS EFFICIENT MULTIPLIERS Indumathi M #1, Vijaya Bala V #2

Efficient FIR Filter Design Using Modified Carry Select Adder & Wallace Tree Multiplier

CHAPTER 4 ANALYSIS OF LOW POWER, AREA EFFICIENT AND HIGH SPEED MULTIPLIER TOPOLOGIES

EE 470 Signals and Systems

FPGA Implementation of High Speed FIR Filters and less power consumption structure

SIGNED PIPELINED MULTIPLIER USING HIGH SPEED COMPRESSORS

A Fixed-Width Modified Baugh-Wooley Multiplier Using Verilog

Implementation and Performance Analysis of different Multipliers

Review of Booth Algorithm for Design of Multiplier

A New network multiplier using modified high order encoder and optimized hybrid adder in CMOS technology

An Optimized Design for Parallel MAC based on Radix-4 MBA

An area optimized FIR Digital filter using DA Algorithm based on FPGA

VLSI Implementation of Reconfigurable Low Power Fir Filter Architecture

Design and Implementation of Scalable Micro Programmed Fir Filter Using Wallace Tree and Birecoder

Performance Analysis of FIR Filter Design Using Reconfigurable Mac Unit

Modified Booth Encoding Multiplier for both Signed and Unsigned Radix Based Multi-Modulus Multiplier

A Reconfigurable FIR Filter Architecture to Trade Off Filter Performance for Dynamic Power Consumption

An Optimized Wallace Tree Multiplier using Parallel Prefix Han-Carlson Adder for DSP Processors

SQRT CSLA with Less Delay and Reduced Area Using FPGA

Design of high speed multiplier using Modified Booth Algorithm with hybrid carry look-ahead adder

High performance Radix-16 Booth Partial Product Generator for 64-bit Binary Multipliers

VLSI IMPLEMENTATION OF MODIFIED DISTRIBUTED ARITHMETIC BASED LOW POWER AND HIGH PERFORMANCE DIGITAL FIR FILTER Dr. S.Satheeskumaran 1 K.

Hardware Efficient Reconfigurable FIR Filter

Design of Roba Mutiplier Using Booth Signed Multiplier and Brent Kung Adder

Globally Asynchronous Locally Synchronous (GALS) Microprogrammed Parallel FIR Filter

ISSN Vol.03,Issue.02, February-2014, Pages:

Quantized Coefficient F.I.R. Filter for the Design of Filter Bank

FOR HIGH SPEED LOW POWER APPLICATIONS USING RADIX-4 MODIFIED BOOTH ENCODER

High Speed Speculative Multiplier Using 3 Step Speculative Carry Save Reduction Tree

Design of a High Speed FIR Filter on FPGA by Using DA-OBC Algorithm

Innovative Approach Architecture Designed For Realizing Fixed Point Least Mean Square Adaptive Filter with Less Adaptation Delay

AUTOMATIC IMPLEMENTATION OF FIR FILTERS ON FIELD PROGRAMMABLE GATE ARRAYS

OPTIMIZATION OF LOW POWER USING FIR FILTER

Reconfigurable High Performance Baugh-Wooley Multiplier for DSP Applications

Design and Implementation of 64-bit MAC Unit for DSP Applications using verilog HDL

ENHANCING SPEED AND REDUCING POWER OF SHIFT AND ADD MULTIPLIER

International Journal of Computer Engineering and Applications, Volume XI, Issue XI, Nov. 17, ISSN

Design and FPGA Implementation of High-speed Parallel FIR Filters

An Efficient VLSI Architecture of a Reconfigurable Pulse- Shaping FIR Interpolation Filter for Multi standard DUC

Multiple Constant Multiplication for Digit-Serial Implementation of Low Power FIR Filters

Implementation and Comparison of Low Pass FIR Filter on FPGA Using Different Techniques

Implementation of FPGA based Design for Digital Signal Processing

DESIGN & IMPLEMENTATION OF FIXED WIDTH MODIFIED BOOTH MULTIPLIER

ISSN Vol.03,Issue.11, December-2015, Pages:

Design and Implementation of High Speed Carry Select Adder

ASIC Design and Implementation of SPST in FIR Filter

Design and Characterization of 16 Bit Multiplier Accumulator Based on Radix-2 Modified Booth Algorithm

Customized Booth Multiplier for MM Applications

Performance Analysis of Multipliers in VLSI Design

Area Efficient and Low Power Reconfiurable Fir Filter

A Review on Different Multiplier Techniques

Transcription:

International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Optimized FIR filter design using Truncated Multiplier Technique V. Bindhya 1, R. Guru Deepthi 2, S. Tamilselvi 3, Dr. C. N. Marimuthu 4 1 M.E Applied Electronics, Department of ECE, Nandha Engineering College, Erode. 2 M.E Vlsi design, Department of ECE, Nandha Engineering College, Erode. 3 M.E Vlsi design, Department of ECE, Nandha Engineering College, Erode. 4 DEAN, Department of ECE, Nandha Engineering College, Erode I. Introduction Digital signal processing (DSP) is one of the core technologies in multimedia and communication systems. Most of Digital signal processing (DSP) needs faster multiplication and addition operations to be performed. Multiplication is frequently required in digital signal processing for filter realization. Many research works deals with the low power design of high speed multipliers. Since the multipliers have a significant impact on the performance of the entire system, many high-performance algorithms and architectures have been proposed to accelerate multiplication [3]. Filtering is an operation usually performed to extract the needed information from a digital signal. A signal/data stored in memory contains both wanted and unwanted information (noise). On the basis of impulse response, there are two fundamental types of digital filters: Infinite Impulse Response (IIR) filters, and Finite Impulse Response (FIR) filters. Finite Impulse Response digital filter has strictly exact linear phase, relatively easy to design, highly stable, computationally intensive, less sensitive to finite word-length effects, arbitrary, amplitude-frequency characteristic and real-time stable signal processing requirements etc.fir filter is described by differential equation. The output signal is a convolution of an input signal and the impulse response of the filter. N-1 y(n) = Σ (h(k) x(n-k) ) (1) where ABSTRACT: In this paper we have proposed an efficient way of FIR filter design using truncated multiplier technique. The Multiplication operation is performed using Multiple Constant Multiplication Accumulation Truncation (MCMAT) technique. The proposed multiplier design is based on the Wallace tree compressor (WTC). As a result it offers significant improvements in area, delay and power when compared with normal Carry Propagation Addition (CPA). Usually the product of two numbers appears as output in the form of LSB and MSB. The LSB part is truncated and compressed using MCMAT technique. The proposed design produces truncation error which is not more than 1 ulp (unit of least position). While implementing the proposed method experimentally, there is no need of any error compensation circuits and the final output is precised. Hence the area can be saved and the power is also reduced. Keywords: Digital signal processing (DSP), Finite Impulse Response (FIR) filter, Multiple constant Multiplication Accumulation Truncation (MCMAT), Truncated multipliers, WTC. k = 0 x(n) is the input signal. h(n) is the impulse response of FIR filter. Normally, multiplication involves two basic operations as partial production generation and their partial product summation. The main bottle-neck of the area is in the multiplication of two numbers as it generates a product with twice the original bit width.. The critical path for the multiplier is on the number of partial products. The partial products generated are added using Wallace Tree Compressor (WTC).The basic idea of this work is to use WTC instead of CPA to achieve lower area and power consumption. The main advantage of this WTC logic reduces the number of full adders and half adders during the tree reduction. The design achieves less area and power which leads to have truncation error of not more than 1 ulp (unit of least position). So there is no need of error compensation circuits hence the final output will be précised. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 30

This paper is organized as follows. In Section II, discusses the MCMAT technique. In Section III, the proposed scheme is implemented in FIR filter realization. In Section IV, the proposed scheme is compared to the previously proposed ones. Finally, Section V, concludes this paper. II. MCMAT Technique Multiple constant Multiplication Accumulation Truncation (MCMAT) technique is more efficient to collect all the Partial Product(PPs) into a single Partial Product Bit(PPB) matrix with Carry Propagation Addition (CPA). It is needed to truncate the partial product bits to the required precision to reduce area cost. In this technique, a single row of PPBs is made undeletable (for the subsequent rounding), and the PPB elimination consists of only deletion and rounding [2].Instead of accumulating individual multiplication for each product, it is more efficient to collect all the PPs into a single PPB matrix to reduce the height of the matrix to two, followed by final carry propagation adder is shown in Fig.1. 2.1 Operations in MCMAT technique The MCMAT truncated multiplier consists of several operations, including deletion, truncation, rounding, and final addition. In the first step, we perform the deletion that removes all the unnecessary PP bits that do not need to be generated is shown in Fig.1. a single row of PPBs is made undeletable (for the subsequent rounding), and the PPB elimination consists of only deletion and rounding. After the deletion of PP bits, we perform the per-column reduction and generate two rows of PP bits. After reduction, we perform the truncation that further removes the first row of n 1 bits from column 1 to column n 1.This step of truncation introduces truncation error. After deletion, reduction, and truncation, the PP bits are added using a CPA to generate the final product of P bits. The bits in column 2 to column n 1can be safely removed before CPA because these bits are the only bits left in the columns after the deletion and truncation processes, and thus, they do not affect the carry bit to column n + 1 during the rounding process [2]. Before the final CPA, we add a bias constant of 1/2 ulp in order to achieve the round to nearest rounding with the rounding error. The bit at column n after the final CPA is also removed during the rounding process. Thus, the total error for the design of the MCMAT multiplier is bounded by the following equation -ulp < E = (E D +E T +E R ) ulp (2) Fig.1.Truncated multiplier design using MCMAT technique IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 31

III. Proposed Work In Fir Filter Realization Truncated multiplier can be effectively implemented in FIR filter structure. Conventional FIR filter performs ordinary multiplication of coefficient and input without considering the partial product bit length. Thus the structure can be made effective by replacing the existing multiplier with the proposed MCMAT truncated multiplier technique using Wallace Tree Compressor [4] for visible area reduction. Digital FIR filter implementation using MCMAT technique that removes unnecessary PPBs so that truncation error is not more than 1ulp, so the final result is precised. Fig.2. Digital FIR filter implementation using MCMAT technique In Fig.2,the white circles in the L-shape block represent the undeletable PPBs. The deletion of the PPBs is represented by gray circles. After PP compression, the rounding of the resultant bits is denoted by crossed circles. The last row of the PPB matrix represents all the offset and bias constants required including the sign bit modifications. The proposed work of digital FIR filter design is implemented with MCMAT technique using Wallace tree compressor(5:2), where the results of the FIR filter structure shows the better area and power reduction compared to the conventional FIR filter. Specification of frequency response Finding filter order and coefficients Coefficient Quantization Digital FIR filter implementation with MCMAT technique using Wallace tree compressor (5:2) Fig.3. Digital FIR implementation with MCMAT technique using WTC This modified FIR filter design and implementation can be divided into the following stages: Finding filter order and coefficients, coefficient quantization, digital FIR filter implementation with MCMAT technique using Wallace tree compressor is shown in Fig.3. In the first stage, the filter order and the corresponding coefficients are determined to satisfy the specification of the frequency response. Then, the coefficients are quantized to finite bit accuracy of 8 bits. The first two stages are implemented using MATLAB. Finally, optimization approaches such as MCMAT technique using WTC are used to minimize the area of hardware implementation. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 32

IV. Results and Discussions Multiplication plays a major role in FIR filter realization. The major aim of MCMAT technique is to provide high speed along with reduction in area. Area utilization and power utilization by the proposed method is less. We implemented FIR filter with the low pass filter specification as given in Table I [7].M is the original filter order while EWL is the effective word length, f pass and f stop are the passband and stopband edge frequencies normalized to one, and A pass and A stop denote the corresponding peak to peak ripples. TABLE I Specification of the FIR filter under consideration Filter M EWL f pass f stop A pass (db) A(LP) 5 8 0.20 0.27 0.10 46 A stop (db) The MCMAT technique is simulated using MODELSIM and the output is shown in Fig.4. Here the inputs are given as a= 11111111 b=11111111 cf=11111111 d=11111111 e=11111111 f=11111111 g=11111111 h=11111111 k=11111111 l=11111111. For this input, outputs are produced as 11110110. For the given specifications, digital FIR filter implementation with MCMAT technique using WTC is simulated using MODELSIM and the output is shown in Fig.5.Here xn is the input,d1,d2,d3,d4 are the filter coefficients and y_n is the output. Fig.4. Simulation result of MCMAT technique Fig.5. Simulation result of digital FIR implementation with MCMAT technique using WTC The synthesis of the design is done using Xilinx ISE simulator and the implementation is done using Verilog HDL code. The synthesized report shows that the design in terms of area and speed is optimized. The comparison of area and power for the different architectures are given in the table below. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 33

Parameters Optimized FIR filter design using Truncated Multiplier Technique TABLE II Synthesis results of Filter A with 5 tap LP Digital FIR filter design with MCMAT technique using CPA Digital FIR filter design with MCMAT technique using WTC Area (gate counts) 2,203 2,136 Power (mw) 55.57 47.62 No. of latches 229 149 No. of Slice registers 213 169 From the synthesized result as given in Table II, it is found that the proposed truncated multiplier technique using WTC consumes low area and low power compared to existing truncated multiplier technique using MCMAT technique for FIR filter realization. After FIR filter coefficient multiplication operations, the output signals have larger bit width due to bit width expansion. In many practical situations, only partial bits of the full-precision outputs are needed. For this purpose, area efficient FIR filter is designed with MCMAT technique using WTC. The proposed design can effectively reduces the number of adders and the truncation error which is not more than 1 ulp. Hence the final output will be précised. V. Conclusion The proposed paper implements an area efficient low power FIR filter implementation. The area can be effectively reduced by the use of MCMAT technique for the filter coefficient multiplication with a slight reduction in speed. Thus the multiplication is carried out using WTC in place of Carry Propagation Addition(CPA). The MCMAT technique with WTC consists of lesser number of logic gates and as a result, it reduces the area of the design. The power is also reduced to the effectiveness of the design. REFERENCES [1] Charles. Roth Jr. Digital Systems Design using VHDL,Thomson Brooks/Cole, 7th reprint, 2005. [2] H.-J. Ko and S.-F. Hsiao, Design and application of faithfully rounded and truncated multipliers with combined deletion, reduction, truncation, and rounding, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 5,pp. 304 308, May 2011. [3] Soojin Kim and Kyeongsoon Cho, Design of High-speed Modified Booth Multipliers Operating at GHz Ranges, World Academy of Science, Engineering and Technology 37, 2010. [4] Naveen Kr. Gahlan, Prabhat Shukla, Jasbir Kaur, Implementation of Wallace Tree Multiplier Using Compressor, International journal on Computer Technology & Applications, vol. 3,pp. 1194-1199.Nov-Dec.2012. [5] Y. J. Yu and Y. C. Lim, Design of linear phase FIR filters in subexpression space using mixed integer linear programming, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 10, pp. 2330 2338, Oct. 2007. [6] H. Samueli, An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficient, IEEE Trans. Circuits Syst., vol. 36, no. 7, pp. 1044 1047, Jul. 1989. [7] Y. C. Lin and S. Parker, Discrete coefficient FIR digital filter design based upon an LMS criteria, IEEE Trans. Circuits Syst., vol. 30, no. 10,pp. 723 739, Oct. 1983. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 34