IRFR540ZPbF IRFU540ZPbF

Similar documents
IRFR4105ZPbF IRFU4105ZPbF

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRLR3915PbF IRLU3915PbF

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

IRLR3110ZPbF IRLU3110ZPbF

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

IRFR1018EPbF IRFU1018EPbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRF3808S IRF3808L HEXFET Power MOSFET

IRFR24N15DPbF IRFU24N15DPbF

TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

SMPS MOSFET. V DSS R DS(on) max I D

IRFR3806PbF IRFU3806PbF

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

V DSS R DS(on) max I D

IRLS3034PbF IRLSL3034PbF

IRFR3709ZPbF IRFU3709ZPbF

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRFS4127PbF IRFSL4127PbF

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

IRLR3717 IRLU3717 HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

V DSS R DS(on) max (mw)

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

IRFS3004-7PPbF HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 27

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

IRFR24N15D IRFU24N15D

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

IRLR8721PbF IRLU8721PbF

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

IRLR8726PbF IRLU8726PbF

V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

V DSS R DS(on) max I D

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

V DSS R DS(on) max I D

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

l Advanced Process Technology TO-220AB IRF640NPbF

AUTOMOTIVE GRADE. Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 300

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

HEXFET Power MOSFET V DSS = 40V. R DS(on) = Ω I D = 130A

IRF530NSPbF IRF530NLPbF

SMPS MOSFET. V DSS R DS(on) max I D

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

W/ C V GS Gate-to-Source Voltage ±20 dv/dt Peak Diode Recovery f 4.6. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b, E AR

IRL3803VSPbF IRL3803VLPbF HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J. mj I AR

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max (mω) I D

IRFB260NPbF HEXFET Power MOSFET

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

Transcription:

PD - 964B Features l Advanced Process Technology l Ultra Low On-Resistance l 75 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax l Lead-Free l Halogen-Free Description This HEXFET Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 75 C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. Absolute Maximum Ratings Parameter I D @ T C = 25 C Continuous Drain Current, V GS @ V (Silicon Limited) HEXFET Power MOSFET V DSS = V R DS(on) = 28.5mΩ I D = 35A HEXFET is a registered trademark of International Rectifier. www.irf.com G D S IRFR54ZPbF IRFU54ZPbF D-Pak IRFR54ZPbF I-Pak IRFU54ZPbF Units I D @ T C = C Continuous Drain Current, V GS @ V (Silicon Limited) 25 A I DM Pulsed Drain Current c 4 P D @T C = 25 C Power Dissipation 9 W Linear Derating Factor.6 W/ C V GS Gate-to-Source Voltage ± 2 V E AS (Thermally limited) Single Pulse Avalanche Energyd 39 mj E AS (Tested ) Single Pulse Avalanche Energy Tested Value h 75 I AR Avalanche Currentc See Fig.2a, 2b, 5, 6 A E AR Repetitive Avalanche Energy g mj T J Operating Junction and -55 to 75 T STG Storage Temperature Range C Reflow Soldering Temperature, for seconds 3 lbfyin (.Nym) Mounting Torque, 6-32 or M3 screw Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case j.64 R θja Junction-to-Ambient (PCB mount) ij 4 C/W R θja Junction-to-Ambient j Max. 35 9/3/

IRFR/U54ZPbF Electrical Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions V (BR)DSS Drain-to-Source Breakdown Voltage V V GS = V, I D = 25µA V (BR)DSS / T J Breakdown Voltage Temp. Coefficient.92 V/ C Reference to 25 C, I D = ma R DS(on) Static Drain-to-Source On-Resistance 22.5 28.5 mω V GS = V, I D = 2A e V GS(th) Gate Threshold Voltage 2. 4. V V DS = V GS, I D = 5µA gfs Forward Transconductance 28 S V DS = 25V, I D = 2A I DSS Drain-to-Source Leakage Current 2 µa V DS = V, V GS = V 25 V DS = V, V GS = V, T J = 25 C I GSS Gate-to-Source Forward Leakage 2 na V GS = 2V Gate-to-Source Reverse Leakage -2 V GS = -2V Q g Total Gate Charge 39 59 I D = 2A Q gs Gate-to-Source Charge nc V DS = 5V Q gd Gate-to-Drain ("Miller") Charge 2 V GS = V e t d(on) Turn-On Delay Time 4 V DD = 5V t r Rise Time 42 I D = 2A t d(off) Turn-Off Delay Time 43 ns R G = 3 Ω t f Fall Time 34 V GS = V e L D Internal Drain Inductance 4.5 Between lead, D nh 6mm (.25in.) L S Internal Source Inductance 7.5 from package G and center of die contact S C iss Input Capacitance 69 V GS = V C oss Output Capacitance 8 V DS = 25V C rss Reverse Transfer Capacitance pf ƒ =.MHz C oss Output Capacitance 72 V GS = V, V DS =.V, ƒ =.MHz C oss Output Capacitance V GS = V, V DS = 8V, ƒ =.MHz C oss eff. Effective Output Capacitance 9 V GS = V, V DS = V to 8V f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 35 MOSFET symbol (Body Diode) A showing the I SM Pulsed Source Current 4 integral reverse (Body Diode)Ãc p-n junction diode. V SD Diode Forward Voltage.3 V T J = 25 C, I S = 2A, V GS = V e t rr Reverse Recovery Time 32 48 ns T J = 25 C, I F = 2A, V DD = 5V Q rr Reverse Recovery Charge 4 6 nc di/dt = A/µs e t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LSLD) 2 www.irf.com

I D, Drain-to-Source Current (Α) G fs, Forward Transconductance (S) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) IRFR/U54ZPbF VGS TOP 5V V 8.V 7.V 6.V 5.5V 5.V BOTTOM 4.5V 6µs PULSE WIDTH Tj = 25 C VGS TOP 5V V 8.V 7.V 6.V 5.5V 5.V BOTTOM 4.5V 4.5V 4.5V. V DS, Drain-to-Source Voltage (V) 6µs PULSE WIDTH Tj = 75 C. V DS, Drain-to-Source Voltage (V) Fig. Typical Output Characteristics Fig 2. Typical Output Characteristics 7 6 T J = 25 C 5 T J = 75 C 4 3 T J = 75 C T J = 25 C 2. V DS = 25V 6µs PULSE WIDTH 2 3 4 5 6 7 8 V DS = V 38µs PULSE WIDTH 2 3 4 5 V GS, Gate-to-Source Voltage (V) I D,Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance vs. Drain Current www.irf.com 3

I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) C, Capacitance(pF) V GS, Gate-to-Source Voltage (V) IRFR/U54ZPbF 3 25 2 V GS = V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd C iss 2 6 2 I D = 2A V DS = 8V VDS= 5V VDS= 2V 5 8 4 5 C oss C rss V DS, Drain-to-Source Voltage (V) 2 3 4 5 6 Q G Total Gate Charge (nc) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage. OPERATION IN THIS AREA LIMITED BY R DS (on). T J = 75 C µsec msec. T J = 25 C. V GS = V..2.4.6.8..2.4 V SD, Source-to-Drain Voltage (V). Tc = 25 C Tj = 75 C Single Pulse msec DC V DS, Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I D, Drain Current (A) R DS(on), Drain-to-Source On Resistance (Normalized) IRFR/U54ZPbF 4 2.5 I D = 2A V GS = V 3 2. 2.5. 25 5 75 25 5 75 T C, CaseTemperature ( C).5-6 -4-2 2 4 6 8 2 4 6 8 T J, Junction Temperature ( C) Fig 9. Maximum Drain Current vs. Case Temperature Fig. Normalized On-Resistance vs. Temperature Thermal Response ( Z thjc )... D =.5.2..5.2. SINGLE PULSE ( THERMAL RESPONSE ) R R 2 R 3 R R 2 R 3 τ J τ J τ τ τ 2 τ 3 τ 2 τ 3 Ci= τi/ri Ci i/ri E-6 E-5.... t, Rectangular Pulse Duration (sec) τ C τ Ri ( C/W) τi (sec) 2.626.52.66.297.754.832 Notes:. Duty Factor D = t/t2 2. Peak Tj = P dm x Zthjc Tc Fig. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

V GS(th) Gate threshold Voltage (V) E AS, Single Pulse Avalanche Energy (mj) IRFR/U54ZPbF V DS L 5V DRIVER 6 2 I D TOP 6.5A 9.4A BOTTOM 2A R G 2V V GS tp D.U.T IAS.Ω - V DD A 8 Fig 2a. Unclamped Inductive Test Circuit tp V (BR)DSS 4 25 5 75 25 5 75 Starting T J, Junction Temperature ( C) I AS Fig 2b. Unclamped Inductive Waveforms Q G Fig 2c. Maximum Avalanche Energy vs. Drain Current V V G Q GS Q GD 4.5 4. I D =.ma ID = 25µA I D = 5µA 3.5 Charge Fig 3a. Basic Gate Charge Waveform 3. 2.5 2. K DUT L VCC.5. -75-5 -25 25 5 75 25 5 75 T J, Temperature ( C ) Fig 3b. Gate Charge Test Circuit Fig 4. Threshold Voltage vs. Temperature 6 www.irf.com

Avalanche Current (A) E AR, Avalanche Energy (mj) IRFR/U54ZPbF Duty Cycle = Single Pulse..5. Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25 C due to avalanche losses..e-6.e-5.e-4.e-3.e-2.e- tav (sec) Fig 5. Typical Avalanche Current vs.pulsewidth 4 3 2 TOP Single Pulse BOTTOM % Duty Cycle I D = 2A 25 5 75 25 5 75 Starting T J, Junction Temperature ( C) Notes on Repetitive Avalanche Curves, Figures 5, 6: (For further info, see AN-5 at www.irf.com). Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 2a, 2b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 5, 6). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see figure ) P D (ave) = /2 (.3 BV I av ) = DT/ Z thjc Fig 6. Maximum Avalanche Energy I av = 2DT/ [.3 BV Z th ] vs. Temperature E AS (AR) = P D (ave) t av www.irf.com 7

IRFR/U54ZPbF - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 7. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs V DS R D R G V GS D.U.T. - V DD V Pulse Width µs Duty Factor. % Fig 8a. Switching Time Test Circuit V DS 9% % V GS t d(on) t r t d(off) t f Fig 8b. Switching Time Waveforms 8 www.irf.com

IRFR/U54ZPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR2 WITH ASSEMBLY LOT CODE 234 AS SEMBLED ON WW 6, 2 IN THE ASSEMBLY LINE "A" Note: "P" in assembly line position indicates "Lead-Free" "P" in assembly line position indicates "Lead-F ree" qualification to the cons umer-level INTERNATIONAL RECTIFIER LOGO AS S E MBLY LOT CODE IRFR2 6A 2 34 PART NUMBER DATE CODE YEAR = 2 WEEK 6 LINE A OR INTERNATIONAL RECTIFIER LOGO AS S EMBL Y LOT CODE IRFR2 2 34 PART NUMBER DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) P = DESIGNATES LEAD-FREE PRODUCT QUALIFIED TO THE CONSUMER LEVEL (OPTIONAL) YEAR = 2 WEEK 6 A = ASSEMBLY SITE CODE Notes:. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

IRFR/U54ZPbF I-Pak (TO-25AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-25AA) Part Marking Information EXAMPLE: THIS IS AN IRFU2 WITH ASSEMBLY LOT CODE 5678 ASSEMBLED ON WW 9, 2 IN THE ASSEMBLY LINE "A" Note: "P" in assembly line position indicates Lead-Free" INTERNATIONAL RECTIFIER LOGO AS S EMBL Y LOT CODE IRFU2 9A 56 78 PART NUMBER DATE CODE YEAR = 2 WEEK 9 LINE A OR INT ERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE IRFU2 56 78 PART NUMBER DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR = 2 WEEK 9 A = ASSEMBLY SITE CODE Notes:. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com

IRFR/U54ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 6.3 (.64 ) 5.7 (.69 ) 6.3 (.64 ) 5.7 (.69 ) 2. (.476 ).9 (.469 ) FEED DIRECTION 8. (.38 ) 7.9 (.32 ) FEED DIRECTION NOTES :. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-48 & EIA-54. 3 INCH NOTES :. OUTLINE CONFORMS TO EIA-48. 6 mm Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. ). Limited by T Jmax, starting T J = 25 C, L =.7mH R G = 25Ω, I AS = 2A, V GS =V. Part not recommended for use above this value. ƒ Pulse width.ms; duty cycle 2%. C oss eff. is a fixed capacitance that gives the same charging time as C oss while V DS is rising from to 8% V DSS. Limited by T Jmax, see Fig.2a, 2b, 5, 6 for typical repetitive avalanche performance. This value determined from sample failure population. % tested to this value in production. When mounted on " square PCB (FR-4 or G- Material). ˆ R θ is measured at T J approximately 9 C Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 9245, USA Tel: (3) 252-75 TAC Fax: (3) 252-793 Visit us at www.irf.com for sales contact information.9/2 www.irf.com