Is Now Part of To learn more about ON Semiconductor, please visit our website at

Similar documents
Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

FJP13007 High Voltage Fast-Switching NPN Power Transistor

Is Now Part of To learn more about ON Semiconductor, please visit our website at

General Description. Applications. Power management Load switch Q2 3 5 Q1

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

BAV103 High Voltage, General Purpose Diode

SS13FL, SS14FL. Surface Mount Schottky Barrier Rectifier

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Dual N-Channel, Digital FET

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

BAV ma 70 V High Conductance Ultra-Fast Switching Diode

MM74HC04 Hex Inverter

Is Now Part of To learn more about ON Semiconductor, please visit our website at

PCS2I2309NZ. 3.3 V 1:9 Clock Buffer

S1AFL - S1MFL. Surface General-Purpose Rectifier

J109 / MMBFJ108 N-Channel Switch

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

74VHC14 Hex Schmitt Inverter

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Extended V GSS range ( 25V) for battery applications

MM74HC14 Hex Inverting Schmitt Trigger

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

TIP120 / TIP121 / TIP122 NPN Epitaxial Darlington Transistor

Is Now Part of To learn more about ON Semiconductor, please visit our website at

KSC2383 NPN Epitaxial Silicon Transistor

Features -4 A, -30 V. R DS(ON) G 3. = 25 C unless otherwise note. Symbol Parameter Ratings Units. Drain-Source Voltage -30 V

Features D G. T A =25 o C unless otherwise noted. Symbol Parameter Ratings Units. (Note 1a) 3.8. (Note 1b) 1.6

PUBLICATION ORDERING INFORMATION. Semiconductor Components Industries, LLC

FDN335N N-Channel 2.5V Specified PowerTrench TM MOSFET

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Features 2.5 A, 30 V. R DS(ON) = 25 C unless otherwise note. Symbol Parameter Ratings Units. Drain-Source Voltage 30 V

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of. To learn more about ON Semiconductor, please visit our website at

FDN327N FDN327N. N-Channel 1.8 Vgs Specified PowerTrench MOSFET. Absolute Maximum Ratings

Is Now Part of To learn more about ON Semiconductor, please visit our website at

FGH12040WD 1200 V, 40 A Field Stop Trench IGBT

Features. TA=25 o C unless otherwise noted

Is Now Part of To learn more about ON Semiconductor, please visit our website at

FPF1005-FPF1006 IntelliMAX TM Advanced Load Management Products

FDMA3028N. Dual N-Channel PowerTrench MOSFET. FDMA3028N Dual N-Channel PowerTrench MOSFET. 30 V, 3.8 A, 68 mω Features. General Description

Is Now Part of. To learn more about ON Semiconductor, please visit our website at

Low Capacitance Transient Voltage Suppressors / ESD Protectors CM QG/D. Features

FDD V P-Channel POWERTRENCH MOSFET

Is Now Part of. To learn more about ON Semiconductor, please visit our website at

KA431 / KA431A / KA431L Programmable Shunt Regulator

FGH40N60SFDTU-F V, 40 A Field Stop IGBT

Is Now Part of To learn more about ON Semiconductor, please visit our website at

NVC6S5A444NLZ. Power MOSFET. 60 V, 78 m, 4.5 A, N Channel

QED223 Plastic Infrared Light Emitting Diode

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

NSVF4017SG4. RF Transistor for Low Noise Amplifier. 12 V, 100 ma, f T = 10 GHz typ.

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at

N-Channel Logic Level Enhancement Mode Field Effect Transistor. Features. TA=25 o C unless otherwise noted

NSVF5501SK RF Transistor for Low Noise Amplifier

FDS8949 Dual N-Channel Logic Level PowerTrench MOSFET

P-Channel PowerTrench MOSFET

NTNS3164NZT5G. Small Signal MOSFET. 20 V, 361 ma, Single N Channel, SOT 883 (XDFN3) 1.0 x 0.6 x 0.4 mm Package

RURD660S9A-F085 Ultrafast Power Rectifier, 6A 600V

Is Now Part of To learn more about ON Semiconductor, please visit our website at

RURG8060-F085 80A, 600V Ultrafast Rectifier

Is Now Part of. To learn more about ON Semiconductor, please visit our website at

RURP1560-F085 15A, 600V Ultrafast Rectifier

FDPC4044. Common Drain N-Channel PowerTrench MOSFET. FDPC4044 Common Drain N-Channel PowerTrench MOSFET. 30 V, 27 A, 4.

HMHA281, HMHA2801 Series. 4-Pin Half-Pitch Mini-Flat Phototransistor Optocouplers

NVLJD4007NZTBG. Small Signal MOSFET. 30 V, 245 ma, Dual, N Channel, Gate ESD Protection, 2x2 WDFN Package

Features. Symbol Parameter Ratings Units V DSS Drain-Source Voltage -40 V

AND9518/D DAB L-band Amplifier using the NSVF4020SG4

N-Channel Logic Level PowerTrench MOSFET

NTK3043N. Power MOSFET. 20 V, 285 ma, N Channel with ESD Protection, SOT 723

KSH122 / KSH122I NPN Silicon Darlington Transistor

NC7S14 TinyLogic HS Inverter with Schmitt Trigger Input

Is Now Part of To learn more about ON Semiconductor, please visit our website at

NTNUS3171PZ. Small Signal MOSFET. 20 V, 200 ma, Single P Channel, 1.0 x 0.6 mm SOT 1123 Package

AND8285/D. NCP1521B Adjustable Output Voltage Step Down Converter Simulation Procedure SIMULATION NOTE

Features S 1. TA=25 o C unless otherwise noted

Device Marking Device Package Reel Size Tape Width Quantity FQT1N60C FQT1N60C SOT mm 12mm 4000

NDS351N N-Channel Logic Level Enhancement Mode Field Effect Transistor

NXH80T120L2Q0S2G/S2TG, NXH80T120L2Q0P2G. Q0PACK Module

Transcription:

Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor s product/patent coverage may be accessed at www.onsemi.com/site/pdf/patent-marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals must be validated for each customer application by customer s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

www.fairchildsemi.com AN-5082 Power56 Wave-Soldering Board Assembly Considerations Introduction PQFN packages are commonly mounted on board through reflow process. The board mounting guidelines through reflow process for Fairchild s Power56 package is provided in a separte note AN-9036. In the industry today, wave soldering is also becoming a common large-scale soldering process in mounting components on boards. This application note provides guidelines on mounting the Power56 package through wave soldering. Recommendations on the land pad and stencil designs for adhesive printing are also included. Wave Soldering Process A typical wave soldering process is illustrated below Figure 1. Adhesive is applied on the board and the components are mounted. The assembly is then subjected to high temperature environment to cure the adhesive. The board is then flipped so that the components are at the bottom side of the board as it goes through the wave soldering system. The system consists typically of solder fluxing, preheating zones, solder wave and the cooling zone. As the board enters the conveyorized process, solder flux is either sprayed or foamed into the components. Then goes to the preheating zones, normally by convection, where the flux is activated. The assembly then goes to wave soldering. The assembly is slowly cooled down after. Temperature settings in the wave soldering system are dependent on the recommendation of the solder flux vendor, the type of solder alloy used and the sensitivity of the components used to elevated temperature. PC Board Adhesive Printing / Dispensing Component Placement Adhesive Curing Pre-heating stage (Solder Flux Activation) 2 nd Wave (Laminar 1 st Wave (Turbulent Flow) Flow) Flux Application (Spray or Foaming) Board turn Figure 1. Typical Wave Soldering Process Flow Rev. 1.0 4/13/15

Assembly Consideration 3.91 In order to achieve a good wave soldering process for the Power56 package, the following factors must be taken into consideration: PCB Mask Configuration PCB Surface Finish PCB Land Pad Design Adhesive and Adhesive Layout Solder Flux Wave Soldering 4.87 1.27 1.77 7.61 Recommendations for the above-mentioned factors are detailed below. Board Mask Configuration The pad configuration of the board can either be Solder Mask Defined (SMD) or Non-Solder Mask Defined (NSMD). For wave soldering, any of the PCB mask configurations can be used. SMD pad, however, showed to have an added advantage over NSMD pads; the mask on top of the land can serve as an added spacer between the board pad and component, allowing more room for flux to flow and easy filling the space between the component bottom terminations and board with solder. Board Surface Finish Hot Air Surface Leveling (HASL) and Organic Solderability Preservatives (OSP) are two common board surface finishes used in the industry today. Both types of surface finish were tested and showed to be compatible for wave soldering the Power56 using the recommended land pattern is shown in Figure 2. In various land pattern options evaluated, it is observed that the wetting mechanism using OSP surface finish differs from HASL. Easy solder filling is observed in HASL than in OSP. This may be explained by the coalescence of molten solder and the molten HASL metallization. However, it is not uncommon for HASL to have inconsistent solder coating thickness which affects the leveling in board mounting in this type of package. Conversely, the OSP may be inferior in wetting compared to HASL but it is known to consistently produce thin coatings. In order to achieve proper wetting for OSP metal, a good choice of solder flux is necessary and it should be applied to where the solder needs to flow. The recommended land pad designs had been tested to be compatible for both types of surface finishes using a no-clean flux. Board Land Pad Design Below is the recommended land pad design for wave soldering the Power56. 1.49 1.27 3.81 Figure 2. Land Pattern Design for Power56 Wave Soldering (Dimensions are in millimeters) Conveyor direction during wave soldering Printed adhesives Land pad pattern Power56 Figure 3. Overlaid Power56 on the Board Land Pad and the Printed Adhesive (Dimensions are in millimeters) In wave soldering, the land pad dimensions should be larger than the nominal package footprint dimensions. This is to allow the molten solder from the wave to have a path to flow through the land pad at the bottom of the package. Component orientation with respect to the direction of the equipment conveyor is critical for good soldering results. This is illustrated in Figure 3 above; the lead pads layout is aligned with the movement of the conveyor. This component orientation with respect to conveyor movement.61 Ø.50 Adhesive Rev. 1.0 4/13/15 2

prevents formation of solder bridging, solder skipping or shadowing. Adhesive In wave soldering Power56, the adhesive must be chosen appropriately to ensure that this will hold the component in place through the entire wave soldering process flow. It must be tacky enough and have sufficient volume after print that the component won t move or fall off during transport from component placement to cure. It must have good adhesion strength after cure to prevent it from falling off during the wave soldering process, from flux spray, to preheating and up to wave-soldering. The wet adhesive must also maintain its consistency in continuous printing or dispensing process. Adhesive print for Power56 is shown in Figure 3. Printing the adhesive instead of dispensing is recommended to achieve better planarity and consistent volume. The amount of printed adhesive should be applied sufficiently. Too little adhesive may not be able to hold the component during placement and wave soldering. On the other hand, too much adhesive may spread up to the land pads during placement; this can cause solder non-wetting to the component leads and board pads. Adhesive must be cured according to the curing conditions recommended by the supplier and it must be fully cured before wave soldering. The recommended stencil thickness for adhesive printing is 6mils. Solder Flux Flux selection is important in wave soldering. Solder flux with low solid content is preferred; because of its low viscosity, it can easily wick up solderable pads under the component, flowing under the narrow space in between the component and the board by capillary action, and facilitating solder wetting during wave soldering. This flux can either be applied by spray or foaming. On the other hand, flux with high solid content has its own advantage; it is more flexible to different wave soldering conditions because of its ability to hold the active components of the flux longer which facilitates solder wetting. No clean type solder flux is recommended. With the absence of standoff of the PQFN package and narrow spaces in between the component and the board, it is difficult to remove the trap solder residues in these areas in board cleaning, thus flux materials with low corrosive content is preferred. Wave Soldering A standard wave soldering machine usually consists of the fluxing zone, preheating zone, soldering zone and cleaning zone (cleaning would depend on the type of flux used). Preheat temperatures and the preheating time should be set according to the flux specification. Too high temperature and too long preheat time may break down the flux activation systems which causes shorts/icicles. On the other hand, too low preheat temperature may cause skips or unwanted residues left on the PCB. Dual wave soldering is becoming common in the industry. A typical dual wave soldering profile is shown in Figure 4. The 1 st wave which has turbulent wave crest ensures wetting of all the land pads allowing the molten solder to find its way to all joints on the PCB. The 2 nd wave, which has a laminar flow, drains the excess solder from the board after the 1 st wave thus removing the solder bridges. Solder bath temperature must consider the maximum temperature specified for the package (260 C). Wave soldering profile (preheat ramp rate, speed, peak temperature) would depend on the wave soldering equipment and the materials used. Figure 4. Typical Dual Wave Solder Profile Inspection of Wave Soldered Power56 Inspection of the mounted component should be done with the use of 10-20x magnification scope and transmission or laminograph x-ray. A well-reflowed solder joint shows evidence of wetting and adherence wherein the solder merges to the soldered surface forming a contact angle of 90. The solder joints should normally have a smooth appearance. On certain occasion, a matte, dull or grainy solder joints may appear, this can be due to the solder alloy used, the component termination or board pad surface finish, or the soldering process used. IPC- A-610 provides the inspection methodology and acceptance criteria for this package. For wave soldering process, the assembly is prone to solder bridging, skips, icicles and other solder joint defects. It is proper to set controls in inspecting the solder joints especially that the leads and drain are not exposed for PQFNs. Controls can be done visually and through x-ray inspection. Figure 5 shows the top and pin side view of the Power56 that has already been wave soldered on board. The solder coverage at the drain and flat pin areas of a soldered unit can t be inspected visually since it s not exposed. The appropriate control for this is through x-ray inspection of the solder coverage between the land pad and the solderable surfaces at the bottom of the component. Figure 6 is a typical x-ray image of the wave soldered Power56. X-ray inspection is also reliable to detect solder bridging and solder skips. Rev. 1.0 4/13/15 3

(a) (b) Figure 5. Wave Soldered Power56 (a) View from Top and (b) View from the Side Showing the Gate and Source Leads Figure 6. X-ray Image of a Wave Soldered Power56 Destructive inspection such as cross-sectioning may be performed for sample monitoring during development stage. With this, it can be verified whether there s a significant tilt of the mounted package due to adhesive print or wave soldering process. Solder Joint Power56 PCB Solder Joint Figure 7. Cross-Section of the Wave Soldered Power56 Rev. 1.0 4/13/15 4

References [1] FSC-QAR-0024, Guideline on the Methodology of Board Level Characterization [2] IPC2221, IPC standard, Generic Standard on Printed Board Design [3] Board-Level Evaluation of Power Qual Flat No-Lead (PQFN) Packages, Fairchild Semiconductor Power Seminar 2008-2009 white paper [4] IPC-TM-650, IPC Test Methods Manual, Solderability, Wave Solder Method [5] IPC/EIA J-STD-001, and EIA Joint Standard, Requirements for Soldered Electrical and Electronic Assemblies [6] IPC-A-610, IPC standard, Acceptability of Electronic Assemblies [7] IPC7351, IPC standard, Generic Requirements for Surface Mount Design and Land Pattern Standard [8] IPC9701, IPC standard, Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments [9] IPC/JEDEC J-STD-033, IPC and JEDEC Joint Standard, Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices [10] AN-9036, Fairchild Application Notes, Guidelines for Using Fairchild s Power56 DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Rev. 1.0 4/13/15 5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor s product/patent coverage may be accessed at www.onsemi.com/site/pdf/patent Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals must be validated for each customer application by customer s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303 675 2175 or 800 344 3860 Toll Free USA/Canada Fax: 303 675 2176 or 800 344 3867 Toll Free USA/Canada Email: orderlit@onsemi.com Semiconductor Components Industries, LLC N. American Technical Support: 800 282 9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81 3 5817 1050 www.onsemi.com 1 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com