Characterization and Modeling of Silicon Carbide Power Devices and Paralleling Operation

Similar documents
Investigation on the Parallel Operation of Discrete SiC BJTs and JFETs

Temperature-Dependent Characterization of SiC Power Electronic Devices

Design and Characterization of a Three-Phase Multichip SiC JFET Module

High-Temperature and High-Frequency Performance Evaluation of 4H-SiC Unipolar Power Devices

ENHANCING POWER ELECTRONIC DEVICES WITH WIDE BANDGAP SEMICONDUCTORS

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications

A 55 kw Three-Phase Automotive Traction Inverter with SiC Schottky Diodes

A SiC JFET Driver for a 5 kw, 150 khz Three-Phase Sinusoidal-Input, Sinusoidal-Output PWM Converter

Effect of driver to gate coupling circuits on EMI produced by SiC MOSFETS

Comparison of SiC and Si Power Semiconductor Devices to Be Used in 2.5 kw DC/DC Converter

Efficiency improvement with silicon carbide based power modules

Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes

Study of Static and Dynamic Characteristics of Silicon and Silicon Carbide Devices

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis

THE SPICE DYNAMIC BEHAVIOURAL ELECTROTHERMAL MODEL OF SILICON CARBIDE POWER MOSFET

Performance Comparison of SiC Schottky Diodes and Silicon Ultra Fast Recovery Diodes

SiC JFET Cascode Loss Dependency on the MOSFET Output Capacitance and Performance Comparison with Trench IGBTs

Performance Evaluation of Full SiC Switching Cell in an Interleaved Boost Converter for PV Applications

Application Note AN-10A: Driving SiC Junction Transistors (SJT) with Off-the-Shelf Silicon IGBT Gate Drivers: Single-Level Drive Concept

Dr.R.Seyezhai/ International Journal of Engineering Research and Applications (IJERA)

Reduction of Stray Inductance in Power Electronic Modules Using Basic Switching Cells

Computational Model of Silicon Carbide JFET Power Device

Investigation of Parasitic Turn-ON in Silicon IGBT and Silicon Carbide MOSFET Devices: A Technology Evaluation. Acknowledgements. Keywords.

Impulse Transformer Based Secondary-Side Self- Powered Gate-Driver for Wide-Range PWM Operation of SiC Power MOSFETs

Switching and conducting performance of SiC-JFET and ESBT against MOSFET and IGBT

Some Key Researches on SiC Device Technologies and their Predicted Advantages

S.Tiwari, O.-M. Midtgård and T. M. Undeland Norwegian University of Science and Technology 7491 Trondheim, Norway

Multilevel Cascade H-bridge Inverter DC Voltage Estimation Through Output Voltage Sensing

Hybrid Behavioral-Analytical Loss Model for a High Frequency and Low Load DC-DC Buck Converter

P-cell and N-cell based IGBT Module: Layout Design, Parasitic Extraction, and Experimental Verification

Wide Band-Gap Power Device

An SOI-based High-Voltage, High-Temperature Gate-Driver for SiC FET

SYSTEM IMPACT OF SILICON CARBIDE POWER DEVICES

A Current-Dependent Switching Strategy for Si/ SiC Hybrid Switch-Based Power Converters

A 55-kW Three-Phase Inverter With Si IGBTs and SiC Schottky Diodes

SJEP120R125. Silicon Carbide. Normally-OFF Trench Silicon Carbide Power JFET. Product Summary

AC-DC-AC-DC Converter Using Silicon Carbide Schottky Diode

Wide Band-Gap (SiC and GaN) Devices Characteristics and Applications. Richard McMahon University of Cambridge

Unleash SiC MOSFETs Extract the Best Performance

DC-DC CONVERTER USING SILICON CARBIDE SCHOTTKY DIODE

SiC-JFET in half-bridge configuration parasitic turn-on at

Experimental study of snubber circuit design for SiC power MOSFET devices

Three Terminal Devices

Comparison of commutation transients of inverters with silicon carbide JFETs with and without body diodes.

An Experimental Comparison of GaN E- HEMTs versus SiC MOSFETs over Different Operating Temperatures

Application Note AN-10B: Driving SiC Junction Transistors (SJT): Two-Level Gate Drive Concept

Driving of a GaN Enhancement Mode HEMT Transistor with Zener Diode Protection for High Efficiency and Low EMI

Characterization and Modeling of SiC based Positive Output Super Lift Luo Converter

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs

Power MOSFET Zheng Yang (ERF 3017,

Improving Performance of High Speed GaN Transistors Operating in Parallel for High Current Applications

Development of SiC BJT based PWM Inverter for renewable energy resources

Characterization and Loss Modeling of Silicon Carbide Based Power Electronic Converters

Study on Fabrication and Fast Switching of High Voltage SiC JFET

SGP100N09T. Symbol Parameter SGP100N09T Unit. 70* -Continuous (TA = 100 )

4. Power Electronics Research and Technology Development

All-SiC Modules Equipped with SiC Trench Gate MOSFETs

SiC Transistor Basics: FAQs

The Next Generation of Power Conversion Systems Enabled by SiC Power Devices

High voltage and large current dynamic test of SiC diodes and hybrid module

DEVELOPMENT OF A GATE DRIVE WITH OVERCURRENT PROTECTION CIRCUIT USING IR2110 FOR FAST SWITCHING HALF- BRIDGE CONVERTER

Design of SiC MOSFET based High Efficiency Inverter for Solar PV Applications

IN THE high power isolated dc/dc applications, full bridge

Published in: Proceedings of the th European Conference on Power Electronics and Applications (EPE'15-ECCE Europe)

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER

UnitedSiC JFET in Active Mode Applications

18 kw Three Phase Inverter System Using Hermetically Sealed SiC Phase-Leg Power Modules

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

SIMULATION OF HIGH-EFFICIENCY INTERLEAVED STEP-UP DC-DC BOOST-FLYBACK CONVERTER TO USE IN PHOTOVOLTAIC SYSTEM

Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) for Hybrid Electric and Fuel Cell Vehicles

Research Article Silicon Carbide Emitter Turn-Off Thyristor

Evaluating Conduction Loss of a Parallel IGBT-MOSFET Combination

Robustness of SiC MOSFETs in short-circuit mode

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

TA0349 Technical article

AN1387 APPLICATION NOTE APPLICATION OF A NEW MONOLITHIC SMART IGBT IN DC MOTOR CONTROL FOR HOME APPLIANCES

Modelling and Simulation with Spice of Power VDMOSFET Transistor

Evaluation and Applications of 600V/650V Enhancement-Mode GaN Devices

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

Resonance Analysis Focusing on Stray Inductance and Capacitance of Laminated Bus Bars

Monolith Semiconductor Inc. ARL SiC MOSFET Workshop 14 August 2015

Cascode Configuration Eases Challenges of Applying SiC JFETs

ELEC-E8421 Components of Power Electronics

SIC MOSFETS FOR FUTURE RESONANT CONVERTER APPLICATIONS

D AB Z DETAIL "B" DETAIL "A"

High-Voltage Switch Using Series-Connected IGBTs With Simple Auxiliary Circuit

Unit III FET and its Applications. 2 Marks Questions and Answers

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

Transistor Characteristics

THE DESCRIPTION OF TURN-OFF PROCESS AND EVALUATION OF SWITCHING POWER LOSSES IN THE ULTRA FAST POWER MOSFET*

Si, SiC and GaN Power Devices: An Unbiased View on Key Performance Indicators

Optical Power-Electronic Technology

Fundamentals of Power Semiconductor Devices

INTRODUCTION: Basic operating principle of a MOSFET:

Ultra-Low Loss 600V 1200V GaN Power Transistors for

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

NOVEL 4H-SIC BIPOLAR JUNCTION TRANSISTOR (BJT) WITH IMPROVED CURRENT GAIN

A SiC JFET-Based Three-Phase AC PWM Buck Rectifier

Safari, Saeed (2015) Impact of silicon carbide device technologies on matrix converter design and performance. PhD thesis, University of Nottingham.

T-series and U-series IGBT Modules (600 V)

Transcription:

Characterization and Modeling of Silicon Carbide Power Devices and Paralleling Operation Yutian Cui 1 Madhu S. Chinthavali Fan Xu 1 Leon M. Tolbert 1, ycui7@utk.edu chinthavalim@ornl.gov fxu@utk.edu tolbert@utk.edu 1 The University of Tennessee, Knoxville Knoxville, TN 3799- USA Oak Ridge National Laboratory Oak Ridge, TN 3731-7 USA Abstract- This paper presents recent research on several silicon carbide (SiC) power devices. The devices have been tested for both static and dynamic characteristics, which show the advantages over their Si counterparts. The temperature dependency of these characteristics has also been presented in this paper. Then, simulation work of paralleling operation of SiC power MOSFETs based on a verified device model in Pspice is presented to show the impact of parasitics in the circuit on the switching performance. I. INTRODUCTION Even though the technologies with silicon (Si)-based power devices are mature, inherent material restrictions limit their performance in high voltage, high power, high switching frequency and high temperature applications. Bipolar power devices, such as insulated-gate bipolar transistors (IGBTs), can handle high power, but the switching speed is limited by the devices structure [1]. Unipolar power devices, like metal-oxide semiconductor field effect transistors (MOSFETs), can be switched at high frequency, but suffer from relatively high on-state resistance. Furthermore, Si power devices generally can only withstand operational temperature of 1 C and can require a substantial cooling system. Because of these limitations in Si power devices, wide bandgap (WBG) power devices like silicon carbide (SiC) and gallium nitride (GaN) are becoming more attractive. SiC power devices are more developed and have the potential to replace Si in the near future within certain application areas. SiC has many superior properties compared to Si, like higher critical electrical field, relatively high electron mobility, and higher thermal conductivity. Higher critical electrical field allows thinner device and higher doping density for the same blocking voltage. Correspondingly, the on-state resistance can be reduced. Higher thermal conductivity can increase thermal dissipation capability and reduce the requirement of the cooling system. SiC has the potential to be operated at much higher temperature (> 3 C) compared to Si devices []. These properties make SiC power devices a worthy substitution for their Si counterparts for high voltage, high temperature, and high frequency applications [3-]. In this paper, different types of SiC power devices are tested and analyzed, and their advantages have been shown in the testing results. Furthermore, the issues of paralleling devices are discussed in simulation as well. II. UNIPOLAR POWER DEVICES A. SiC JFET SiC junction field effect transistor (JFET) is a commercially available SiC active power device with both normally-on and normally-off structures. The application of SiC JFETs in power converters has been under research and development [7-9]. A 1 V/ A normally-off SiC JFET has been tested for characterization. Fig. 1 is the forward characteristics of the SiC JFET at 3 V gate voltage from C to 17 C. The onstate resistance of the SiC JFET was calculated at 3 V gate voltage when the device is fully ON and shown in Fig.. This JFET has a positive temperature coefficient, which is helpful for paralleling operation. Transfer characteristics were tested and shown in Fig. 3, which clearly indicates this is a normally-off JFET as the threshold voltage is positive. Transcondunctance is calculated from the transfer curves and the value decreases with increasing temperature as shown in Fig.. 1 1 C 17 C Vgs=3V.... 1 1. 1. Vds (V) Fig. 1. Forward charcteristic of 1 V / A SiC JFET. Fig. shows the switching waveforms of the SiC JFET tested in the double pulse tester (DPT) with SiC JBS diode as the free wheeling diode at V and A. The gate circuit used here was a 1 Ω resistor for steady state in parallel with a series connection of a Ω resistor and a nf capacitor for transient. The gate voltage varied from 1 V to -1 V to inprove the switching speed [1]. The transient time is less than ns based on current, which shows the fast switching capability of the SiC JFET.

Resistance (Ohm)...7.7... Total Energy Loss (uj) 1 1 1 1 C 7 C 1C 1 C.. 1 1 1 1 1 Temperature(C) Fig.. On-state resistance of 1 V / A SiC JFET. 3 1 C 17 C Vds=V. 1 1.. 3 Vgs(V) Fig. 3. Transfer characteristics of 1 V / A SiC JFET. Transconductance(S) 3 3 1 1 1 1 1 Temperature (C) Fig.. Transconductance of 1 V / A SiC JFET. / Voltage (V) 1 1 1 1 Voltage/ Current - 1. 1..... 3 3. x 1 - Fig.. Switching waveform of 1 V / A SiC JFET. The switching losses of the SiC JFET have also been obtained from experiments at V and V DC voltage with different conducting current and are shown in Figs. and 7. The switching losses change little with temperature, while increasing with conducting current and voltage. 3 7 9 1 Fig.. Switching losses of 1 V / A SiC JFET at V. Total Energy Loss (uj) 3 1 1 C 7 C 1 C 1 C 3 7 9 1 Fig. 7. Switching losses of 1 V / A SiC JFET at V. B. SiC MOSFET SiC MOSFET is an attractive unipolar power device, capable of high switching frequency, high temperature, and high efficiency operation [11, 1]. A 1 V / 3 A SiC MOSFET has been tested here. Fig. shows the forward characteristics of the SiC MOSFET over temperature. On-state resistance is calculated around 1 A of conducting current and shown in Fig. 9. Unlike the SiC JFET, the on-state resistance of the SiC MOSFET dropped at temperatures near C. The resistance of a power MOSFET mainly comes from three parts: channel resistance, R CH, JFET region resistance, R JFET, and drift layer resistance R DRIFT [13]. R CH has a negative temperature coefficient, while the other two components have positive temperature coefficient. At temperatures less than C, the change of R CH is dominant, which makes the whole resistance decrease with increasing temperature. At higher temperature, R JFET and R DRIFT changes more than R CH, which lead to the positive temperature coefficient [13,1]. Fig. 1 shows the transfer characteristics over temperature. It can be seen that the threshold voltage decreases with temperature increasing. 3 1 1 C C 7C 1C 1C 1C 17C C Vgs= V. 1 1.. 3 3. Voltage (V) Fig.. Forward characteristics of 1 V / 3 A SiC MOSFET.

.13 7.1.1 R (Ohm).11.11.1 Energy losses (uj) 3 C to 17 C.1 Vgs= V 1.9 1 1 T (C) Fig. 9. On-state resistance of 1 V / A SiC MOSFET. 1 1 1 1 1 Fig. 1. Switching losses of 1 V / 3 A SiC MOSFET at V. 1 11 1 9 3 1 C to C Energy losses (uj) 7 C to 17 C 3 1 1 1 Voltage (V) Fig. 1. Transfer characteristics of 1 V / 3 A SiC MOSFET. Fig. 11 is the switching waveform of the SiC MOSFET at V and 1 A. A similar parallel structure between gate driver and the MOSFET s gate was used here like that used for the JFET earlier. A 1 Ω resistor paralleled with a series connection of a 3 Ω resistor and a 3 nf capacitor was implemented for the switching test [1]. The testing circuit for this SiC MOSFET was not targeted for high switching speed and some parasitics were added to the circuit for modeling purpose intentionally [1], yet the transient times of the MOSFET were around ns based on current as shown in Fig. 11. When specially designing circuits for high frequency operation, the transient time can be even shorter, and SiC MOSFETs can be used for high frequency operation without using soft switching techniques [1, 17]. 1 1 1 1 1 Fig.13. Switching losses of 1 V / 3 A SiC MOSFET at V. III. BIPOLAR POWER DEVICES A. SiC BJT SiC bipolar junction transistor (BJT) is a current-driven, normally-off power device, which could be an alternative to a Si IGBT [1]. A SiC BJT rated at 1 V and A has been tested and characterized. The forward characteristics of the SiC BJT were obtained at different temperatures from C to 17 C when the base current is 3 ma as shown in Fig. 1. It can be seen that the SiC BJT has a positive temperature coefficient. 7 3 Voltage/ C / Voltage (V) 1 1 Current Ic(A) 3 1 17 C Base Current =3mA - 1. 1. 1. 1..... x 1 - Fig. 11. Switching waveform of 1 V / 3 A SiC MOSFET. The losses of the SiC MOSFET were also measured and shown in Figs. 1 and 13. It was tested under V and V DC voltage at multiple temperatures. As expected, the losses are quite consistent at different temperatures, and obviously increased with current and voltage..1..3....7..9 1 Vce (V) Fig. 1. Forward characteristics of 1 V / A SiC BJT. Another important parameter of BJTs is current gain. Fig. 1 shows the current gain of the BJT over a wide temperature range. The gain was calculated when the BJTs were in the forward active region [1]. Fig. 1 illustrates that the gain decreases as the temperature increases while increasing with collector current.

Gain 7 3 3 C 17 C Vce=V 1 1 Ic (A) Fig. 1. Gain of 1 V / A SiC BJT. B. SiC SJT SiC super junction transistor (SJT) is a current-controlled normally-off device rated at 1 V/ 1 A [1]. The devices tested were experimental samples. Fig. 1 shows the forward characteristics of the SJT at different temperatures with a 3 ma base current recommended by datasheet. The gain of the SJT was calculated correspondingly for different base currents and shown in Fig. 17, which decreases with temperature and collector current. 1 C 7C 1C 17C frequency, which may cause the parasitics to be even more critical. Gate signal and current sharing are important issues for paralleling operation [1]. Most SiC power devices have a positive temperature coefficient, which helps current sharing during paralleling operation. Several papers discuss paralleling operation of SiC power devices, most of which are for power modules [19-]. Some papers mention the paralleling of discrete SiC power devices [1, 3, ]. The results presented in these papers showed relatively good current match, however, some mismatch of transient current did exist. In this paper, some mechanism of mismatching is simulated and discussed. A. Experimental Results of Paralleling Operation Double pulse testing of two paralleled devices was performed with the SiC JFET, BJT and MOSFET discussed earlier. Figs. 1 to were the experimental switching waveforms for these devices. The gate circuit for BJTs and JFETs was a 1 Ω resistor in parallel with a 3 Ω (for BJTs) or a 7 Ω resistor (for JFETs) in series connection with a 1 nf capacitor. For the paralleled MOSFETs, an external Ω resistor was used. Seen from these figures, the current sharing during turn off process is relatively even; however, the transient currents are slightly mismatched, yet they become even after achieving steady state during turn on [1]. Some reasons for the mismatch are discussed in [1]. Simulation work for reasons causing mismatch is presented in the following section. Ib=3 ma 1 3 Voltage (V) Fig. 1. Forward characteristics of 1 V / 1 A SiC SJT. Gain 7 7 3 C 7C 1C 17C 3 1 1 Collector Fig. 17. Gain of 1 V / 1 A SiC SJT. Turn off Turn on Turn off Current(A) -. 1 1.. time(s) 3 3.. x 1-7 1..1.1...3.3... time (s) x 1 - Fig. 1. Turn-on and turn-off waveforms of two paralleled BJTs at V and 1 A. IV. PARALLELING OPERATION ISSUES In order for power converters to be operated at high current and high power, paralleling of power devices is necessary. Paralleling devices can ensure each device is operated in its linear region, which can reduce the conduction losses. It is a complex procedure when paralleling devices as all the parasitics in the circuit and junction capacitances within the devices will be involved. SiC power devices are expected to operate at high switching Turn on Current(A) -.. 7 7. time(s) x 1-7 1 1. 1. 1.7 1.7 1. 1. time(s) x 1 - Fig.19. Turn-on and turn-off waveforms of two paralleled JFETs at V and 1 A.

V ds (1 V/div) 1 Zero external drain inductance 1 nh external drain inductance V gs (1 V/div) I ds of two paralleled MOSFETs ( A/div) (a) Turn off transient. - 3 3.1 3. 3.3 3. 3. x 1 - V gs (1 V/div) I ds of two paralleled MOSFETs ( A/div) Fig. 1. Current sharing with 1 nh difference of external L d. Zero external gate resistor 1 mohm external gate resistor V ds (1 V/div) (b) Turn on transient. Fig.. Switching waveforms of two paralleled MOSFETs at V and A. B. Current Sharing Issues Parasitics in the power device and testing circuit can cause current mismatching during transients and will be discussed in this paper through simulation in Pspice. The device model used here is a 1 V, 3 A SiC MOSFET, which has been validated [1]. To simplify the simulation, the gate driver was not included in the simulation, and an ideal voltage source with ns transient time was implemented to supply gate signal. Fig. 1 is the current comparison of two paralleled MOSFETs. Except for a 1 nh inductance difference between drain of one MOFET and the free-wheeling diode, all the other elements were the same. Under ideal conditions, each MOSFET should carry half of the load current. The influence of the external 1 nh inductance is clearly shown in Fig. 1. The overshoot value dropped dramatically and the transient time became longer with larger drain inductance during turn on transient. Fig. shows the influence of the gate resistance. An additional 1 mω resistor was inserted between gate signal and the gate of one MOSFET. The turn off current sharing is almost even, however, the turn on current was mismatched in overshoot current value, current turn on delay time, and current rising time - 3.1 3. 3.3 3. 3. 3. x 1 - Fig.. Current sharing with 1 mω difference of external R g. V. CONCLUSION The characterization of several SiC active switches was presented in this paper. The static characteristics, such as the forward and transfer characteristics, the on-state resistance, threshold voltage for unipolar device, and current gain for bipolar devices, were tested over temperature to show the performance of SiC power devices. The switching characteristics were also tested with a double pulse tester, and switching transients and switching losses were presented here. The tested static and switching characteristics illustrated the advantages of SiC power devices, such as less dependency on temperature, higher transient speed, and lower switching losses compared to their Si counterparts at higher temperature. At last, the paralleling operation of SiC power BJT, JFET and MOSFET was discussed and experiment results were presented. Then, simulations were performed that showed current mismatch during switching transients, which shows more effort is required to obtain a matched performance for paralleled devices. REFERENCES [1] S. Bernet, Recent developments of high power converters for industry and traction applications, IEEE Transactions on Power Electronics, vol. 1, no., pp. 11-1117, Nov. [] Z. Xu, M. Li, F. Wang, and Z. Liang, Investigation of Si IGBT operation at C for traction application, IEEE Energy Conversion Congress and Exposition (ECCE), Sept. 11, pp. 397-. [3] Y. Sugawara, Recent progress in SiC power device developments and application studies, IEEE 1th International Symposium on Power Semiconductor Devices and ICs, 1-17 April 3, pp. 1-1. [] P. Friedrichs, SiC power devices - recent and upcoming developments, IEEE International Symposium on Industrial Electronics, 9-13 July, pp. 993-997. [] A. Elasser, T. P. Chow, Silicon carbide benefits and advantages for power electronics circuits and systems, Proceedings of the IEEE, Jun, pp. 99-9. [] P. Friedrichs, SiC power devices for industrial applications, IEEE International Power Electronics Conference (IPEC), 1- June 1, pp. 31-3. [7] T. Friedli, S. D. Round, D. Hassler, J. W. Kolar, Design and performance of a -khz all-sic JFET current DC-Link back-to-back

converter, IEEE Transactions on Industry Applications, vol., no., pp. 1-17, Sept.-Oct. 9. [] F. Xu, D. Jiang, J. Wang, F. Wang, L. M. Tolbert, T. J. Han, J. Nagashima, J. K. Sung, High temperature packaging of kw threephase SiC power module, IEEE International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), May 3 -June 3 11, pp. 7-33. [9] F. Xu, D. Jiang, J. Wang, F. Wang, L. M. Tolbert, T. J. Han, J. S. Kim, Characterization of a high temperature multichip SiC JFETbased module, IEEE Energy Conversion Congress and Exposition (ECCE), 17- Sept. 11, pp. -1. [1] M. Chinthavali, P. Ning, Y. Cui, L. M. Tolbert, Investigation on the parallel operation of discrete SiC BJTs and JFETs, IEEE Applied Power Electronics Conference and Exposition (APEC), -11 March 11, pp.17-13. [11] J. Wang, X. Zhou, J. Li, T. Zhao, A. Q. Huang, R. Callanan, F. Husna, A. Agarwal, 1-kV SiC MOSFET-based boost converter, IEEE Transactions on Industry Applications, vol., no., pp. -3, Nov.-Dec. 9. [1] H. Sheng, Z. Chen, F. Wang, A. Millner, Investigation of 1. kv SiC MOSFET for high frequency high power applications, IEEE Applied Power Electronics Conference and Exposition (APEC), 1- Feb. 1, pp.17-177. [13] V. Barkhordarian, Power MOSFET Basics, Application Note AN- 1, International Rectifier. [1] Z. Chen, Characterization and modeling of high-switching-speed behavior of SiC active devices, M.S. thesis, Dept. Electrical Eng., Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 9. [1] Y. Cui, M. Chinthavali, L. M. Tolbert, Temperature dependent Pspice model of SiC power MOSFET, IEEE Applied Power Electronics Conference and Exposition (APEC), Feb. 1, pp. 19-17. [1] A. Kadavelugu, S. Baek, S. Dutta, S.Bhattacharya, M. Das, A. Agarwal, J. Scofield, High-frequency design considerations of dual active bridge 1 V SiC MOSFET DC-DC converter, IEEE Applied Power Electronics Conference and Exposition (APEC), March 11, pp. 31-3. [17] M. Sasagawa, T. Nakamura, H. Inoue, T. Funaki, A study on the high frequency operation of DC-DC converter with SiC DMOSFET, IEEE International Power Electronics Conference (IPEC), 1- June 1, pp. 19-199. [1] http://www.genesicsemi.com/index.php/sic-products/sjt [19] Y. Sugawara, D. Takayama, K. Asano, S. Ryu, A. Miyauchi, S. Ogata, T. Hayashi, H-SiC high power SIJFET module, Proc. IEEE 1th International Symposium on Power Semiconductor Devices and ICs, April 1-17, 3, pp. 17 13. [] T. E. Salem, D. P. Urciuoli, R. Green, G. K. Ovrebo, Hightemperature high-power operation of a 1 A SiC DMOSFET module, IEEE Applied Power Electronics Conference and Exposition (APEC), Feb. 1-19, 9, pp. 3 7. [1] H. Zhang, M. Chinthavali, L. M. Tolbert, J. H. Han, F. Barlow, 1 kw three phase inverter system using hermetically sealed SiC phaseleg power modules, IEEE Applied Power Electronics Conference (APEC), Feb. 1-, 1, pp. 11-111. [] B. Ozpineci, M. Chinthavali, A. Kashyap, L. M. Tolbert, A. Mantooth, A kw three-phase inverter with Si IGBTs and SiC Schottky diodes, IEEE Transactions on Industry Applications, vol., no. 1, pp. 7-, Jan.-Feb. 9. [3] S. L. Kaplan Summary of inductive SiC BJT switching, ARL report, ARL-TR-37, November. [] T. W. Franke, F. W. Fuchs, Comparison of switching and conducting performance of SiC-JFET and SiC-BJT with a state of the art IGBT, European Conf. on Power Electronics and Applications, 9, pp. 1-1.