Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Similar documents
GRADE Graphene-based Devices and Circuits for RF Applications Collaborative Project

GaN power electronics

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

Transparent p-type SnO Nanowires with Unprecedented Hole Mobility among Oxide Semiconductors

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Supplementary Information

Supporting Information. Vertical Graphene-Base Hot-Electron Transistor

Ambipolar electronics

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

Supplementary Materials for

Semiconductor Physics and Devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen

Development of Microwave and Terahertz Detectors Utilizing AlN/GaN High Electron Mobility Transistors

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Supplementary Figure 1. Schematics of conventional vdw stacking process. Thin layers of h-bn are used as bottom (a) and top (b) layer, respectively.

Supporting Information

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers

RF Power Degradation of GaN High Electron Mobility Transistors

Unit III FET and its Applications. 2 Marks Questions and Answers

Supporting Information for Gbps terahertz external. modulator based on a composite metamaterial with a. double-channel heterostructure

INTRODUCTION: Basic operating principle of a MOSFET:

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

High-power flip-chip mounted photodiode array

Graphene electro-optic modulator with 30 GHz bandwidth

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Supplementary information for

Supporting Information

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

in hbn encapsulated graphene devices

Supporting Information

FET(Field Effect Transistor)

Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces

Carbon Nanotube Bumps for Thermal and Electric Conduction in Transistor

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

SUNFEST 2009 PATTERNING METHODS OF ORGANIC FIELD-EFFECT TRANSISTORS SUNFEST 2009

Hot Electron Injection Field Effect Transistor

On-Wafer Integration of Nitrides and Si Devices: Bringing the Power of Polarization to Si

InGaAs MOSFETs for CMOS:

MoS 2 nanosheet phototransistors with thicknessmodulated

SUPPLEMENTARY INFORMATION

Nanofluidic Diodes based on Nanotube Heterojunctions

Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications. David Jiménez and Oana Moldovan

4H-SiC Planar MESFET for Microwave Power Device Applications

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS

A Project Report Submitted to the Faculty of the Graduate School of the University of Minnesota By

Department of Electrical Engineering IIT Madras

SUPPLEMENTARY INFORMATION

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS

Characterization of SOI MOSFETs by means of charge-pumping

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Vertical Surround-Gate Field-Effect Transistor

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

(Invited) Wavy Channel TFT Architecture for High Performance Oxide Based Displays

High Power RF MEMS Switch Technology

Solid State Device Fundamentals

Simulation of GaAs MESFET and HEMT Devices for RF Applications

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

Application Note 5011

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Supplementary information for Stretchable photonic crystal cavity with

SUPPLEMENTARY INFORMATION

Three Terminal Devices

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

Low Flicker Noise Current-Folded Mixer

Application Note 5012

Enable Highly-Stable Plasma Operations at High Pressures with the Right RPS Solution

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator

Black Phosphorus Radio-Frequency Transistors

Reconfigurable Complementary Monolayer MoTe2. Field-Effect Transistors for Integrated Circuits. Supporting Information

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION

Design of Gate-All-Around Tunnel FET for RF Performance

Integrated High Speed VCSELs for Bi-Directional Optical Interconnects

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

Etch, Deposition, and Metrology Options for Cost-Effective Thin-Film Bulk Acoustic Resonator (FBAR) Production

Microwave Office Application Note

III-Nitride microwave switches Grigory Simin

Conductance switching in Ag 2 S devices fabricated by sulphurization

MODULE-2: Field Effect Transistors (FET)

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

Gallium nitride (GaN)

Prepared by: Dr. Rishi Prakash, Dept of Electronics and Communication Engineering Page 1 of 5

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

Direct calculation of metal oxide semiconductor field effect transistor high frequency noise parameters

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

A 600 GHz Varactor Doubler using CMOS 65nm process

Photoresist erosion studied in an inductively coupled plasma reactor employing CHF 3

Plasma diagnostic in an inductively coupled plasma using chlorine chemistry

California Eastern Laboratories

Atomristor: Non-Volatile Resistance Switching in Atomic Sheets of

Chapter 8. Field Effect Transistor

UNIT-I CIRCUIT CONFIGURATION FOR LINEAR

ABSTRACT. Carbon nanotubes (CNTs) are promising materials in radio frequency (RF)

3-7 Nano-Gate Transistor World s Fastest InP-HEMT

Transcription:

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Wang, Han et al. Gigahertz Ambipolar Frequency Multiplier Based on CVD Graphene. Proceedings of the IEEE International Electron Devices Meeting (IEDM), 2010. 23.6.1 23.6.4. Copyright 2010 IEEE http://dx.doi.org/10.1109/iedm.2010.5703423 Institute of Electrical and Electronics Engineers (IEEE) Version Final published version Accessed Fri Jun 29 11:16:23 EDT 2018 Citable Link Terms of Use Detailed Terms http://hdl.handle.net/1721.1/72955 Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Gigahertz Ambipolar Frequency Multiplier based on CVD Graphene Han Wang, Allen Hsu, Ki Kang Kim, Jing Kong, and Tomás Palacios Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA 02139, USA. Tel: +1 (617) 460-7364, Fax: +1 (617) 258-7393, Email: hanw@mtl.mit.edu Abstract Ambipolar transport in graphene offers great opportunities for novel device and circuit applications. This paper discusses the RF performance of CVD grown graphene transistors for the first time. Then, a new graphene ambipolar frequency multiplier that can operate at 1.4 GHz with extremely high output spectral purity (> 90%) is demonstrated. These GHz graphene frequency multipliers, made from wafer-scale graphene synthesis and fabrication processes, demonstrate the great potential of graphene-based ambipolar devices for RF and mixed-signal applications. Introduction The unique ambipolar transport properties of graphene, combined with its high mobility (>100,000 cm 2 /Vs in suspended graphene, and >10,000 cm 2 /Vs in graphene on a substrate at room temperature) [1, 2], enable the development of a new form of non-linear electronics for radio frequency (RF) and mixed-signal applications [3, 4, 5]. This paper presents a new graphene ambipolar frequency multiplier that can operate at gigahertz frequencies. The contributions of this paper are three-fold. First, RF performance of graphene field effect transistors (GFET) grown by chemical vapor deposition (CVD) is presented for the first time. Second, this device demonstrates ambipolar frequency multiplication at 1.4 GHz. This improves frequency performance of graphene frequency multipliers by more than 4 orders of magnitude from previous work [3, 4, 6], making it suitable for a much wider range of applications in communication systems. Finally, these devices show a very high spectral purity at the output without any filtering, where more than 90% of the RF power is at the useful frequency. This excellent spectral purity is highly desirable for high frequency mixed-signal circuits. Fig.1 (a) and (b) optical micrograph of CVD-grown graphene. Using Cu substrate, single-layer graphene with uniformity greater than 95% is obtained. (c) AFM image of the graphene obtained with a Veeco Dimension 3100 system showing excellent uniformity. (d) Raman spectrum confirms the presence of single-layer graphene. onto polished Si wafers with a 300 nm thermally-grown SiO 2 on top (Fig. 1). As shown in Fig. 1, Raman spectroscopy confirms that single-layer graphene with uniformity greater than 95% can be grown. Carrier mobilities in the 1800 to 2500 cm 2 /V.s range were measured through Hall effects. The ohmic contacts of the GFETs are formed by depositing a 2.5 nm Ti/ 45 nm Pd/ 15 nm Au metal stack by e-beam evaporation. Device isolation is achieved by O 2 plasma etching. The gate dielectric consists of 5 nm of e-beam evaporated SiO 2 as a seed layer; followed by 15 nm Al 2 O 3 deposited using Atomic Layer Deposition (ALD). The top gate is formed with a 30 nm CVD Growth and Device Fabrication Single-layer graphene films were grown by CVD on copper substrates [7]. Firstly, copper foils are annealed at 1000 C in H 2 (350 mtorr for 30 minutes) to increase the grain size of copper. Then, they are exposed to CH 4 under low-pressure condition (1.6 Torr) to initiate graphene growth. After the growth, polymethyl methacrylate (PMMA) is coated on the graphene film and the copper substrate is etched away in copper etchant and diluted HCl. Films are then transferred Fig.2 Structure of the fabricated devices. Ohmic metal: 2.5 nm Ti/ 45 nm Pd/ 15 nm Au; Gate dielectric: 5 nm SiO 2 (e-beam)+15 nm Al 2 O 3 (ALD); Gate Metal: 30 nm Ni/ 200 nm Au/50 nm Ni; Source to Drain Distance L DS =1.7 μm; Gate Length L G =1.6 μm; Channel Width W=25 μm. 978-1-4244-7419-6/10/$26.00 2010 IEEE 23.6.1 IEDM10-572

Ni/ 200 nm Au/ 50 nm Ni metal stack (Fig. 2). DC and RF characterization of the devices was performed using an Agilent 4155C Parameter Analyzer and an Agilent N5230 Vector Network Analyzer respectively. The devices were measured at room temperature under vacuum (1.4x10-4 Torr) to reduce hysteresis. DC and RF characteristics Fig. 3 shows the DC characteristics of the fabricated GFETs. The minimum conduction point is at 3.7 V. The peak transconductance for hole and electron conduction is -68 ms/mm and 40 ms/mm respectively. Fig. 4 shows the RF characteristics of the GFETs. The extrinsic current-gain cut-off frequency, f T, and the extrinsic maximum oscillation frequency, f max, for hole conduction are f T,Hole =2.6 GHz and f max,hole =3.8 GHz and for electron conduction are f T,Electron =2.1 GHz and f max,electron =3.0 GHz. Both hole and electron transports are important for frequency doubling since, as it is described in the next section, the conduction in these devices happens by alternating half cycles of holes and electrons. The frequency performance will be limited by the lower of the two conduction modes. Fig.4 RF characteristics of the GFETs. f T and f max are higher for hole conduction than for electron conduction, in correspondence to similar discrepancies in the DC transconductances shown in Fig. 3. The device dimensions are shown in Fig. 2. DC bias: V DS = 3 V and V GS =1.5 V for the hole side and 5 V for the electron side. Fig.5 Application and test circuit for frequency doublers. Low loss bias tees are used to decouple DC and RF signals, and to provide isolation between them. A tuner is used at the input to match the impedance. SG: Signal Generator. SA: Spectrum Analyzer. Fig.3 DC characteristics of GFET at V DS =4.5 V. Device dimensions are given in Fig. 2. The hole conduction mode has slightly higher transconductance than the electron conduction mode. Frequency Doubling at Gigahertz Frequencies Fig. 5 shows the test circuit for frequency doubling. Low loss bias tees are used both at the input and the output to combine DC and RF signals, and provide isolation between them. Tuners are used at the input to provide adequate impedance matching. Under the test conditions, the gate of the GFET is biased at its minimum conduction point. As a sinusoidal RF signal is superimposed to the gate DC bias, the GFET will operate in alternating half cycles of electron and hole conduction due to the V-shape transfer characteristics of the GFET. The sinusoidal input signal is, hence, full-wave rectified by the GFET, giving an output signal that has a fundamental frequency twice of the input frequency. Fig. 6 shows the measurement setup. Clear frequency multiplication is observed between the input signal and the output signal, both measured by an Agilent DSA90604A oscilloscope. Fig. 7 plots both the input signal at 700 MHz and the output signal, which has a fundamental frequency of 1.4 GHz. Frequency doubling is clearly demonstrated. This frequency doubler device shows high spectral purity in the output RF signal, where more than 90% of the output RF energy is at the useful frequency (1.4 GHz). Frequency doubling at 1.4 GHz is also confirmed by the output signal spectrum measured by an Agilent N9010A spectrum analyzer. In the output signal, the signal power at f out =1.4 GHz is IEDM10-573 23.6.2

(a) (b) Fig.6 Measurement setup for demonstrating frequency doubling. (a) Signal generator and Agilent DSA90604A oscilloscope showing frequency doubling. (b) Lakeshore Cryogenic Probe Station for RF and frequency doubling measurements in vacuum. Fig.9 Output power at f out is plotted against the input power at f in. The output power at 2f in increases with the input power with a slope of 20 db/dec. Conversion Gain= P out,2fin /P in,fin increases with input power up to 2 dbm. Fig.7 Experimental demonstration of frequency doubling measured by an Agilent DSA90604A oscilloscope. The input is at 700 MHz. The output fundamental frequency is 1.4 GHz. DC bias: V DS = 1 V. The gate is biased at V GS =3.61 V, slightly below the minimum conduction point (3.7 V), to compensate for the small asymmetry in the transfer characteristics and, hence, to improve symmetry of electron and hole conductions at the output. about 10 db higher than the signal power at f out =f in =700 MHz (Fig. 8). This is the first time frequency doubling has been achieved with a single transistor at gigahertz frequencies without any filtering elements. against input power at f in, P in,fin. The output power increases with the input power at a slope of 20 db/dec. This agrees with the fact that the signal at f out is generated by the quadratic component in the transfer characteristics of the GFET and its power increases with a slope of 2 with respect to input power when plotted in logarithmic scale. The conversion gain (red dot), defined as: gain=p out,2fin / P in,fin, increases with input power up to P in,fin =2 dbm where saturation starts to occur. The gain, while still low, has improved by two orders of magnitude from previous work [3]. Conversion Gain Fig. 9 shows the output power at f out, P out,2fin (blue square), Fig.10 Frequency dependence of gain. The -3dB cut-off point is at 1.5 GHz. Bandwidth is not limited by the carrier transit time, but mainly by the RC constant of the device. Fig.8 Power spectrum of the output signal from the graphene frequency doublers. The input is at 700 MHz. Frequency doubling is clearly visible. The signal power at f out =1.4 GHz is about 10 db higher than signal power at f out = f in =700 MHz without filtering. More than 90% of the total RF power in the output signal is at 1.4 GHz. DC bias: V DS = 1 V and V GS =3.61 V. -3dB Cut-off Frequency The frequency dependence of the gain is characterized and shown in Fig. 10. The -3dB cut-off point is 1.5 GHz, at about 70% of f T,Electron =2.1 GHz. Owing to the high carrier mobility and high saturation velocity, the bandwidth is not limited by 23.6.3 IEDM10-574

the carrier transit time, but mainly by the RC time constant of the device. Effects of Asymmetry in Device Characteristics By simulating the input and output signals from GFETs using MATLAB, we study the effects of asymmetry in GFET transfer characteristics on the spectral purity at the output. As shown in Fig. 11(a), devices with transfer characteristics ranging from perfect symmetry to unipolar are simulated. The hole conduction branch of these devices transfer characteristics is assumed to be identical to the device in Fig. 3. The device is assumed to be biased at the minimum conduction point. Fig. 11(b) shows the simulated relative output power at f out =f in and f out. As the device transfer characteristics changes from perfect symmetry to unipolar, the relative power at f out =f in increases from 0 db to 13.5 db while the power at f out decreases from 14 db to 11 db. This result shows that, for a given input power, as the device transfer characteristics becomes more asymmetric, the quadratic term in the transfer characteristics decreases while the linear term increases, leading to a reduction in the output power at f out (and other even order harmonics) and an increase in the output power at f out =f in (and other odd order harmonics). Hence, the output spectral purity for frequency doubling decreases as a result. As shown in Fig. 11(b), perfectly symmetric GFETs can achieve a spectral purity that is well above 90% (vs. 35% for unipolar device similar to conventional FET). This highlights the great advantage of ambipolar frequency multipliers in terms of output spectral purity as compared to the conventional frequency multipliers based on unipolar devices. Conclusion (a) In conclusion, this paper presents a new ambipolar frequency multiplier based on CVD graphene with operation up to 1.4 GHz. These new ambipolar frequency multipliers can achieve extremely high spectral purity in the output signal (> 90%), which is confirmed by both experimental results and numerical simulations. With the graphene used in the devices grown by wafer-scale CVD synthesis and the device fabrication processes compatible with traditional technologies in semiconductor industry, these gigahertz graphene frequency multipliers demonstrate the great potential of graphene-based ambipolar devices for RF and mixed-signal applications, and possible integration with Si electronics in the near future. Acknowledgements (b) Fig. 11 Effects of asymmetry in the transfer characteristics on relative output power at f out =f in and f out. (a) Simulated transfer characteristics: the left half of the transfer curve is identical to that in Fig. 3. The right half is simulated from (A) perfect symmetry, to (F) unipolar (similar to conventional FET). (b) Relative output power at f out =f in (blue squares) and 2f in (red squares) for devices from 0% asymmetry (perfect symmetry) to 100% asymmetry (unipolar device), corresponding to simulated devices A to F in Fig. 11(a). The device is assumed to be biased at the minimum conduction point. The output spectral purity (black dots) decreases as the GFET transfer characteristics becomes more asymmetrical. This work has been partially supported by the ONR GATE MURI program (Dr. Chagaan Baatar) and by the MSD Focus Center. References [1] K. S. Novoselov, et. al., Science, 306, pp. 666-669, 2004. [2] Bolotin, K. et. al., Solid State Communications, 146, pp. 351-355, 2008. [3] H. Wang, et. al., IEEE EDL., vol. ED-30, no. 5, 2009. [4] H. Wang, et. al., IEEE EDL., vol. ED-31, no. 9, 2010. [5] T. Palacios, A. Hsu, H. Wang, IEEE Comm. Magzine, vol. 48, no. 6, 2010. [6] Z. Wang, et al., Appl. Phys. Lett, 96, 173104, 2010. [7] X. Li, et. al., Science, 324, 2009 IEDM10-575 23.6.4