Performance advancement of High-K dielectric MOSFET

Similar documents
Performance Evaluation of MISISFET- TCAD Simulation

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction

EECS130 Integrated Circuit Devices

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

INTRODUCTION TO MOS TECHNOLOGY

Future MOSFET Devices using high-k (TiO 2 ) dielectric

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

FUNDAMENTALS OF MODERN VLSI DEVICES

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness

2014, IJARCSSE All Rights Reserved Page 1352

Optimization of Direct Tunneling Gate Leakage Current in Ultrathin Gate Oxide FET with High-K Dielectrics

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTRODUCTION: Basic operating principle of a MOSFET:

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

Semiconductor Physics and Devices

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

LEAKAGE POWER REDUCTION TECHNIQUES FOR LOW POWER VLSI DESIGN: A REVIEW PAPER

Lecture 4. MOS transistor theory

Solid State Device Fundamentals

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE

EECS130 Integrated Circuit Devices

Solid State Devices- Part- II. Module- IV

MOSFET & IC Basics - GATE Problems (Part - I)

Effect of High-k Gate on the functioning of MOSFET at nano meter sizes

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation

MOS TRANSISTOR THEORY

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET

Two Dimensional Analytical Threshold Voltages Modeling for Short-Channel MOSFET

Atoms and Valence Electrons

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences.

A BRIEF STUDY ON CHALLENGES OF MOSFET AND EVOLUTION OF FINFETS

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool

Design of Gate-All-Around Tunnel FET for RF Performance

Effect of Channel Doping Concentration on the Impact ionization of n- Channel Fully Depleted SOI MOSFET

NAME: Last First Signature

problem grade total

Intel s High-k/Metal Gate Announcement. November 4th, 2003

Comparative Study of Silicon and Germanium Doping-less Tunnel Field Effect Transistors

4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions

FinFET Devices and Technologies

DG-FINFET LOGIC DESIGN USING 32NM TECHNOLOGY

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

Tunneling Field Effect Transistors for Low Power ULSI

Intel s Breakthrough in High-K Gate Dielectric Drives Moore s Law Well into the Future

EE4800 CMOS Digital IC Design & Analysis. Lecture 1 Introduction Zhuo Feng

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

Low Power Realization of Subthreshold Digital Logic Circuits using Body Bias Technique

Department of Electrical Engineering IIT Madras

Design of Optimized Digital Logic Circuits Using FinFET

Sub-Threshold Region Behavior of Long Channel MOSFET

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Topic 2. Basic MOS theory & SPICE simulation

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Analytical Model for Surface Potential and Inversion Charge of Dual Material Double Gate Son MOSFET

Characterization of SOI MOSFETs by means of charge-pumping

CHAPTER 2 LITERATURE REVIEW

Design & Simulation of Multi Gate Piezoelectric FET Devices for Sensing Applications

Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits

Introduction to VLSI ASIC Design and Technology

Dual Metal Gate and Conventional MOSFET at Sub nm for Analog Application

EE301 Electronics I , Fall

Notes. (Subject Code: 7EC5)

EEC 118 Spring 2010 Lab #1: NMOS and PMOS Transistor Parameters

Alternative Channel Materials for MOSFET Scaling Below 10nm

Semiconductor TCAD Tools

Introducing Pulsing into Reliability Tests for Advanced CMOS Technologies

(Refer Slide Time: 02:05)

Session 10: Solid State Physics MOSFET

Organic Electronics. Information: Information: 0331a/ 0442/

FET(Field Effect Transistor)

Newer process technology (since 1999) includes :

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

Design of 45 nm Fully Depleted Double Gate SOI MOSFET

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Optimization of Threshold Voltage for 65nm PMOS Transistor using Silvaco TCAD Tools

SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET)

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

Leakage Current in Low Standby Power and High Performance Devices: Trends and Challenges

Designing and Simulation of Full Adder Cell using Self Reverse Biasing Technique

Semiconductor Process Reliability SVTW 2012 Esko Mikkola, Ph.D. & Andrew Levy

Silicon on Insulator (SOI) Spring 2018 EE 532 Tao Chen

Numerical Simulation of a Nanoscale DG N-MOSFET Using SILVACO Software

420 Intro to VLSI Design

n-channel LDMOS WITH STI FOR BREAKDOWN VOLTAGE ENHANCEMENT AND IMPROVED R ON

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

4.1 Device Structure and Physical Operation

Analysis on Effective parameters influencing Channel Length Modulation Index in MOS

Transcription:

Performance advancement of High-K dielectric MOSFET Neha Thapa 1 Lalit Maurya 2 Er. Rajesh Mehra 3 M.E. Student M.E. Student Associate Prof. ECE NITTTR, Chandigarh NITTTR, Chandigarh NITTTR, Chandigarh er.thapaneha91@gmail.com lalitmaurya47@gmail.com rajeshmehra@yahoo.com Abstract--High dielectric gate oxide is a strong alternative for replacing the conventional oxynitride dielectrics in scaled MOSFETs for both high performance and low power applications. The objective of this paper is to analyse the performance of MOSFET with high dielectric gate oxide. In this paper we have shown a comparative study and analysis of n channel MOSFET designed with HFO 2 in the place of silicon oxide. Here we have been discussed the effect of HfO 2 gate oxide on drain current, threshold voltage and substrate bias effect for MOSFET. Design, Simulation and analysis have been done with the help of cogenda Visual TCAD. Keywords High-k dielectric, N-MOSFET, HfO 2, Visual TCAD INTRODUCTION SiO 2 has been used as an efficient gate dielectricsince the advent of MOS devices over 40 years ago. unlike competing materials, silicon has dominated the industry because it has an easily processable oxide (i.e., it can be grown and etched). Various thicknesses of SiO 2 may be required, depending on the particular process. Thin oxides are required for transistor gates and thicker oxides might be required for higher voltage devices. The oxide structure is called the gate stack. This term comes up because current processes not often use a pure SiO 2 gate oxide, but prefer to produce a stack that consists of a few atomic layers, each 3 4 Å thick, of SiO 2 for reliability, overlaid with a few layers of an oxynitrided oxide (one with nitrogen added). The presence of the nitrogen increases the dielectric constant, which decreases the effective oxide thickness (EOT); this means that for a given oxide thickness, it performs like a thinner oxide. Silicon dioxide has traditionally been used as the gate insulator. The gate oxide serves as insulator between the gate and channel, which should be made as thin as possible to increase the conductivity of the channel and performance of the transistor when transistor is on and to reduce subthreshold leakage when the transistor is off.[1] For increased speed at constant power density the requirement has led to shrinking of MOSFET dimensions and according to scaling rules, the oxide thickness is also reduced similarly. With scaling reaching sub-100nm technology nodes,as scaling of SiO 2 below 3 nm causes serious problem regarding tunneling current and oxide breakdown so the introduction of novel materials became certain. Although optimization using nitride/oxynitride gate stacks were under pursue to lower the leakage current but still a need for better high-k 98

materials to solve the issues such as negative bias temperature instability and mobility lowering [2,3]. The continually shrinking gate-oxide thickness results in direct tunnelling[4] and excessive leakage currents in Si-based MOS devices. HfO 2 is one of the material of high- k dielectric family can resolved this problem.hafnium Dioxide has relatively large energy band gap and a good thermal stability as compared to Si [5-7].HfO 2 or Hafnia is the inorganic colourless solid and stable compounds of hafnium and also an intermediate which provides Hf metal. It has relatively large energy band-gap and a good thermal stability as compared to Si. It is an electrical insulator with a band-gap of 5.8eV [8-10]. HfO 2 is inert and respond with strong acids and strong bases and dissolves slowly in HF acid to give fluorohafnate anions. The use of HfO 2 results in many advantages over SiO 2 [11]. In many digital circuit applicationsthe source potential of an nmos transistor can be larger than the substrate potential, which results in a positive source-to-substrate voltage V SB >0.When a voltage V SB is applied between the source and body, it increases the amount of charge required to invert the channel, hence, it increases the threshold voltage. The threshold voltage can be expressed as..(1) The surface potential and body effect coefficient expressed as [12] For SiO2, ε ox = 3.9ε o and for HfO2, ε ox = 25ε o. DESIGN AND SIMULATION : The general processes to design 180nm MOSFET involving simulation of fabrication process, structure and mesh and electrical testing. the first step for designing the MOSFET is to draw the device drawing using Visual TCAD, further meshing is done. Meshing size is tabulated below for different region : Figure 1 : Mesh size for different Region..(2)..(3) The doping profiles used in the the designed MOSFET is listed as bellow : where V t0 is the threshold voltage when the source is at the body potential, ϕ s is the surface potential at threshold and γis the body effect coefficient, typically in the range 0.4 to 1 V 1/2 which depends on the doping level in channel N A. 99

Figure 2 : Doping Profiles The designed structure of MOSFET and the material used in structure are shown in figure 5 and 6 RESULT AND ANALYSIS: The effect oxide thickness variation in designed MOSFET with acceptable level on the drain current with the variation in gate voltage and drain voltage is shown in figure 6 and 7 Table 1: current with fix gate voltage Figure 3 : Design Structure of n type MOSFET voltage 5.00E-03 4.50E-03 4.00E-03 3.50E-03 3.00E-03 2.50E-03 2.00E-03 1.50E-03 1.00E-03 5.00E-04 0.00E+00-5.00E-04 current for SiO2 Current for HFO2 0-1.92E-16-1.12E-16 0.2 0.0003137 0.00094338 0.4 0.00054992 0.00181288 0.6 0.00068657 0.00258343 0.8 0.00073882 0.00322934 1 0.00075449 0.00372686 1.2 0.00076305 0.00406017 1.4 0.00076988 0.00423508 1.6 0.00077586 0.00429992 1.8 0.00078129 0.00432411 2 0.00078627 0.00433851 0 0.4 0.8 1.2 1.6 2 current for SiO2 Current for HFO2 Figure 4 : Structure which show material used Figure 5: characteristics curve 100

Table 2: Current with fix drain voltage Gate Voltage Current for HfO2 Current for SiO2 0 1.15E-06 7.28E-12 0.2 8.39E-05 2.19E-09 0.4 0.0003434 6.18E-07 0.6 0.00070981 2.19E-05 0.8 0.0011393 8.49E-05 1 0.00160781 0.00017288 1.2 0.0020941 0.0002753 1.4 0.00256675 0.00038702 1.6 0.00299931 0.00050522 1.8 0.00338502 0.00062813 2 0.00372686 0.00075449 characteristics of MOSFET in which gate voltage varies from 0 to 2 volt with voltage sweep 0.2 volt. From the drain characteristics figure 6 we analyze that drain current increases with decrease in thickness of gate oxide and vice versa.we find that the mobility of carriers in HfO2 is more as compared to SiO 2. current is directly proportional to the mobility and oxide thickness per unit. These values are larger in HfO 2 as compared to large SiO 2. Hence the simulation result give large amount of current achieved by using HfO 2 for the same applied voltage and aspect ratio. Further, from the transfer characteristics figure 7 we analyse that threshold voltage decrease with decrease in oxide thickness. As we know that the value of gate to source voltage required to cause surface inversion is called the threshold voltage. Lower value of threshold voltage is advantageous in high speed applications. 4.00E-03 3.50E-03 3.00E-03 2.50E-03 2.00E-03 1.50E-03 1.00E-03 5.00E-04 0.00E+00 0 0.4 0.8 1.2 1.6 2 Curent for HfO2 Current for SiO2 Figure 6: characteristics curve Table 1 represent simulated spreadsheet for drain characteristics of MOSFET in which drain voltage varies from 0 to 2 volt with voltage sweep 0.2 volt. Table 2 represent simulated spreadsheet for transfer Table 3: current with substrate bias effect for SiO2 type MOS FET Gate Voltage Dratn Vsb = 0v Current at Vsb = 0.5v Current at Vsb = 1v 0 9.96E-12 2.54E-15 2.55E-15 0.2 3.12E-09 2.55E-15 2.54E-15 0.4 8.66E-07 1.00E-14 2.52E-15 0.6 2.59E-05 3.06E-12 2.54E-15 0.8 9.40E-05 1.31E-09 2.57E-15 1 0.00018644 4.96E-07 7.01E-15 1.2 0.00029275 2.23E-05 2.30E-12 1.4 0.00040807 8.94E-05 1.16E-09 1.6 0.00052974 0.00018178 4.94E-07 1.8 0.00065616 0.00028828 2.29E-05 2 0.00078627 0.00040376 9.09E-05 Table 4: current with substrate bias effect for HfO2 type MOS FET 101

Gate Voltage Vsb = 1v Vsb = 0.5v Vsb = 0v 0 2.65E-15 9.09E-15 1.29E-06 0.2 2.70E-15 9.76E-12 8.93E-05 0.4 2.73E-15 1.51E-08 0.00035784 0.6 1.13E-13 1.25E-05 0.00073304 0.8 1.80E-10 0.00017746 0.00117143 1 2.88E-07 0.00049576 0.00165142 1.2 5.49E-05 0.00089931 0.00216024 1.4 0.00029311 0.0013556 0.00268982 1.6 0.00065055 0.00184711 0.00323439 1.8 0.00107615 0.00236316 0.00378918 2 0.00154358 0.0028958 0.00435006 Figure 8: Transfer characteristics curve show substrate bias effect in HfO 2 type MOSFET The drain current curve with respect to the gate voltage show the substrate bias effect. This effect occurs when a voltage Vsb exists between the source and bulk terminal of a MOSFET. Figure 7 show that substrate bias voltage increases the threshold voltage of the device. Since we require low value, the simulated result shown in table 4 and figure 8 give that Hafnium (HfO 2 ) is preferred for reducing the substrate bias effect. CONCLUSION : Figure 7: Transfer characteristics curve show substrate bias effect in SiO 2 type MOSFET The effect high-k dielectric Hafnium on the characteristic curve of drain-source current verse gate voltage/ drain voltage in designed MOSFETs has been studied. By use of HfO 2 in place of SiO 2 without altering other parameters the drain current value is noted. From the above simulation we can conclude that replacing the silicon dioxide gate dielectric with a high-κ material allows increased gate capacitance without the associated 102

leakage effects.it is concluded that HfO 2 give large amount of drain current and it is preferred for reducing the substrate bias effect. Further we say that high-k metal gate technology to be a strong alternative for future nano scale MOS devices. International Journal of Innovations & Advancement in Computer Science REFERENCES : [1] Neil H. E. Weste, David Money Harris, "CMOS VLSI Design ", fourth edition, Addison-Wesley, 2011. [2] Sugiyama,Y., Pidin, S., Morisaki, Y. (2003). Approaches to using Al2O3 and HfO2 as gate dielectrics for CMOSFETs. Fujitsu Sci. Tech. J. 39, 94-105. [3] Guha, S., Narayanan, V. (2009). High-κ/Metal Gate Science and Technology. Annu. Rev. Mater. Res., 39, 181 202. [4] Razavy, Mohsen (2003). Quantum Theory of Tunneling. World Scientific. ISBN 981-238-019-1. [5]. H-H. Hsu, Y. Chang, J. Lee, IEEE Electr. Device L. 28, 964 (2007). [6]. R.G. Southwick, J. Reed, C. Buu, R. Butler, G. Bersuker, B.K. Knowlton, IEEE T. Device Mat. Re. 10, 201 (2010). [7] J. C. Lee, Single-layer thin HfO2 gate dielectric with n+ polysilicon, Proc. of IEEE Symposium on VLSI Technology, NJ, June 2000, pp. 44-45. [8] H. S. Baik and S. J. Pennycook, Interface structure and nonstoichiometry in HfO2 dielectrics, IEEE Applied Physics Letter, vol. 85, 2009, pp. 672-674. [9] A. P. Huang, Z. C. Yang, and Paul K. Chu, Hafnium based Highk gate dielectrics, Proc. of Advances in Solid State Circuits Technologies, April 2010, pp. 333-350. [10] A Product catalogue, READE Advances Materials, England, 2005. [11] M. Fadel and O. Azim, A study of some optical properties of hafnium dioxide thin films and their applications, J. of Applied Physics Materials Science and Processing, vol. 66, no. 3, pp. 335-343, 1997. [12] Sung-Mo Kang, Yusuf Leblebici," CMOS Digital Integrated Circuits", Third Edition, McGraw-Hill. 103