Semiconductor Detector Systems

Similar documents
ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

Moderne Teilchendetektoren - Theorie und Praxis 2. Dr. Bernhard Ketzer Technische Universität München SS 2013

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit

Introductory Electronics for Scientists and Engineers

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

FUNDAMENTALS OF MODERN VLSI DEVICES

Fundamentals of Power Semiconductor Devices

Chapter 1 Semiconductors and the p-n Junction Diode 1

Microelectronic Circuits

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

Semiconductor Devices

Photons and solid state detection

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

AN 1651 Analysis and design Of Analog Integrated Circuits. Two Mark Questions & Answers. Prepared By M.P.Flower queen Lecturer,EEE Dept.

Abstract. Preface. Acknowledgments

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Semiconductor Physics and Devices

UNIT 3: FIELD EFFECT TRANSISTORS

Design of Analog CMOS Integrated Circuits

ECE 3040 Dr. Alan Doolittle.

INTRODUCTION TO MOS TECHNOLOGY

CMOS Detectors Ingeniously Simple!

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Front-End and Readout Electronics for Silicon Trackers at the ILC

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

Electronic Instrumentation for Radiation Detection Systems

Readout Electronics. P. Fischer, Heidelberg University. Silicon Detectors - Readout Electronics P. Fischer, ziti, Uni Heidelberg, page 1

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

In the name of God, the most merciful Electromagnetic Radiation Measurement

A Prototype Amplifier-Discriminator Chip for the GLAST Silicon-Strip Tracker

Lecture 4 -- Tuesday, Sept. 19: Non-uniform injection and/or doping. Diffusion. Continuity/conservation. The five basic equations.

Chapter 8. Field Effect Transistor

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

Semiconductor Devices Lecture 5, pn-junction Diode

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Simulation of High Resistivity (CMOS) Pixels

XIII International PhD Workshop OWD 2011, October Multichannel Electronic Readout for Optical Radiation Sensors

Application of CMOS sensors in radiation detection

NAME: Last First Signature

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland)

Tradeoffs and Optimization in Analog CMOS Design

Gamma Spectrometer Initial Project Proposal

PHYSICS OF SEMICONDUCTOR DEVICES

ELECTRONICS WITH DISCRETE COMPONENTS

Development of an analog read-out channel for time projection chambers

Fundamentals of CMOS Image Sensors

Unit III FET and its Applications. 2 Marks Questions and Answers

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EE70 - Intro. Electronics

Lecture 3: Diodes. Amplitude Modulation. Diode Detection.

Optimization of amplifiers for Monolithic Active Pixel Sensors

UNIT - 5 OPTICAL RECEIVER

Lecture 10: Accelerometers (Part I)

Field Effect Transistors (npn)

Power MOSFET Zheng Yang (ERF 3017,

An introduction to Depletion-mode MOSFETs By Linden Harrison

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

Analytical Chemistry II

14.2 Photodiodes 411

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS

Integrating Analogue to Digital Converter (ADC)

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

UNIT-4. Microwave Engineering

Detector Electronics

INTRODUCTION: Basic operating principle of a MOSFET:

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

I E I C since I B is very small

Preface... xv Acknowledgments... xix. Chapter 1 An Overview of Vacuum Tube Audio Applications... 1

ELECTRONIC DEVICES AND CIRCUITS


Radio Frequency Electronics

EE301 Electronics I , Fall

Calorimetry in particle physics experiments

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

55:041 Electronic Circuits

Introduction. History of silicon radiation detectors

Electronic Devices and Circuits

Low Noise, Matched Dual PNP Transistor MAT03


Substrate Coupling in RF Analog/Mixed Signal IC Design: A Review

Interface Electronic Circuits

Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of

Solid State Devices- Part- II. Module- IV

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

Chapter 6. FM Circuits

EE301 Electronics I , Fall

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

EMC review for Belle II (Grounding & shielding plans) PXD DEPFET system

UNIT 3 Transistors JFET

List of Figures and Photos

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

PHYS 3050 Electronics I

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

Single Sided and Double Sided Silicon MicroStrip Detector R&D

Department of Electrical Engineering IIT Madras

CDTE and CdZnTe detector arrays have been recently

PSD Characteristics. Position Sensing Detectors

Transcription:

Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS

ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3 1.3 Pulse shaper 3 1.4 Digitizer 5 1.5 Electro mechanical integration 6 1.6 Sensor structures I 8 1.6.1 Basic sensor 8 1.6.2 Position sensing 9 1.6.3 Pixel devices 11 1.7 Sensor physics 12 1.7.1 Signal charge 12 1.7.2 Sensor volume 13 1.7.3 Charge collection 16 1.7.4 Energy resolution 19 1.7.5 Position resolution 19 1.8 Sensor structures II monolithic pixel devices 24 1.8.1 Charge coupled devices 24 1.8.2 Silicon drift chambers 25 1.8.3 Monolithic active pixel sensors 26 1.9 Electronics 29 1.10 Detection limits and resolution 29 1.10.1 Electronic noise 31 1.10.2 Amplitude measurements 33 1.10.3 Timing measurements 35 1.11 Subsystems 36 1.11.1 Circuit integration and bussing 36 1.11.2 Detector modules, services, and supports 38 1.11.3 Data acquisition 40 1.12 Further reading 40 References 40 2 Signal formation and acquisition 43 2.1 The signal 43 2.2 Detector sensitivity 48 2.2.1 Low energy quanta (E ti E9 ) 48 2.2.2 High energy quanta (E E9 ) 51 2.2.3 Fluctuations in signal charge the Fano factor 52 2.3 Signal formation 55 2.3.1 Formation of a high-field region 55

CONTENTS 2.3.2 Doping 56 2.3.3 The pn-junction 59 2.3.4 The reverse-biased diode 61 2.3.5 Strip and pixel detectors 66 2.4 Charge collection 67 2.5 Time dependence of the signal current 71 2.5.1 Induced charge Ramo's theorem 73 2.5.2 Parallel plate geometry with uniform field 75 2.5.3 Double-sided strip detector 78 2.6 Charge collection in the presence of trapping 82 2.7 Semiconductor detector materials 83 2.8 Photodiodes 86 2.9 Signal acquisition 91 2.9.1 Voltage-sensitive amplifier 91 2.9.2 Current-sensitive amplifier 91 2.9.3 Voltage and current mode with capacitive sources 92 2.9.4 Feedback amplifiers the "charge-sensitive amplifier" 93 2.9.5 Realistic charge-sensitive amplifiers 95 2.9.6 Input impedance of a charge-sensitive amplifier 100 References 102 3 Electronic noise 105 3.1 Electronic noise and resolution 105 3.2 Electronic noise 107 3.3 Some general properties of noise 107 3.3.1 Thermal (Johnson) noise 109 3.3.2 Shot noise 109 3.3.3 Low frequency ("1/f") noise 109 3.4 Derivation of spectral densities 110 3.4.1 Spectral density of thermal noise 110 3.4.2 Spectral density of shot noise 111 3.4.3 Spectral density of low-frequency noise 113 3.5 "Noiseless" resistances 114 3.5.1 Dynamic resistances 114 3.5.2 Active resistances 114 3.5.3 Radiation resistance of an antenna 114 3.6 Correlated noise 115 3.7 Signal equivalent noise measures 116 3.7.1 Noise equivalent power 116 3.7.2 Equivalent noise charge 116 3.8 Noise in Amplifiers 117 3.8.1 Amplifier noise model 117 3.8.2 Noise bandwidth vs. signal bandwidth 120 3.9 Amplifier noise matching 121

CONTENTS xi 3.9.1 Resistive sources 121 3.9.2 Noise matching with a transformer 122 3.10 Capacitive sources 123 3.10.1 Noise vs. capacitance in a charge-sensitive amplifier 123 3.10.2 S/N vs. input time constant 125 3.11 Complex sensors 127 3.11.1 Cross-coupled noise 129 3.11.2 Backside readout 131 3.12 Quantum noise limits in amplifiers 132 References 133 4 Signal processing 134 4.1 Simple pulse shapers 134 4.1.1 Effect of relative time constants 135 4.2 Evaluation of equivalent noise charge 138 4.2.1 Experiment 139 4.2.2 Numerical simulation (e.g. SPICE) 141 4.2.3 Analytical simulation 141 4.3 Noise analysis of a detector and front-end amplifier 142 4.3.1 Detector bias current 143 4.3.2 Parallel resistance 144 4.3.3 Series resistance 145 4.3.4 Amplifier input noise 145 4.3.5 Cumulative input noise voltage 145 4.3.6 Equivalent noise charge 146 4.4 Examples 148 4.4.1 Photodiode readout 148 4.4.2 High-rate x-ray spectroscopy 151 4.5 Noise analysis in the time domain 153 4.5.1 Principles of noise analysis in the time domain 154 4.5.2 The weighting function 156 4.5.3 Time-variant shapers 158 4.5.4 Noise analysis of a correlated-double sample pulse shaper 160 4.6 Detector noise summary 166 4.7 Threshold discriminator systems 169 4.7.1 Noise rate 171 4.7.2 Noise occupancy 173 4.7.3 Measurement of noise in a threshold discriminator system 174 4.8 Some other aspects of pulse shaping 175 4.8.1 Baseline restoration 175 4.8.2 Tail (pole zero) cancellation 177 4.8.3 Bipolar vs. unipolar shaping 178 4.9 Timing measurements 179 4.9.1 Pulse shaping in timing systems 180

xii CONTENTS 4.9.2 Choice of rise time in a timing system 4.9.3 Time walk 4.9.4 Lowest practical threshold in leading edge triggering 4.9.5 Zero-crossing timing 4.9.6 Constant fraction timing 4.9.7 Fast timing some results References 181 182 183 184 185 187 189 5 Elements of digital electronics and signal processing 191 5.1 Digital circuit elements 191 5.1.1 Logic elements 191 5.1.2 Propagation delays and power dissipation 194 5.1.3 Logic arrays 195 5.2 Digitization of pulse height and time 196 5.2.1 ADC parameters 197 5.2.2 Analog-to-digital conversion techniques 203 5.3 Time-to-digital converters (TDCs) 209 5.3.1 Counter 209 5.3.2 Analog ramp 209 5.3.3 Digitizers with clock interpolation 209 5.4 Digital signal processing 210 References 216 6 Transistors and amplifiers 217 6.1 Bipolar transistors 217 6.1.1 Bipolar transistors in amplifiers 222 6.2 Field effect transistors 229 6.2.1 Junction field effect transistors 230 6.2.2 Metal-oxide-semiconductor field effect transistors 236 6.2.3 MOSFET types 241 6.2.4 MOS Transistors in Amplifiers 242 6.3 Noise in transistors 243 6.3.1 Noise in field effect transistors 243 6.3.2 Low-frequency excess noise ("1/f noise") 248 6.3.3 Noise in bipolar transistors 248 6.3.4 Comparison between bipolar and field effect transistors 251 6.3.5 Noise optimization capacitive matching revisited 252 6.4 Composite amplifiers 256 6.5 Overall noise of a detector module 265 6.6 Optimization for low power 266 6.6.1 Optimum operating current 267 6.6.2 Technology improvements 271 6.7 Power dissipation of an active pixel array vs. strip readout 274 References 275

CONTENTS xiii 7 Radiation effects 7.1 Radiation damage mechanisms 7.1.1 Displacement damage 7.1.2 Ionization damage 7.2 Radiation damage in diodes 7.2.1 Contributions to Ne f f 7.2.2 Trapping 7.2.3 Ionization effects 7.3 Radiation damage in transistors and integrated circuits 7.3.1 Bipolar transistors 7.3.2 Junction field effect transistors (JFETs) 7.3.3 Metal-oxide-silicon field effect transistors (MOSFETs) 7.3.4 Radiation effects in integrated circuit structures 7.4 Dosimetry 7.5 Mitigation techniques 7.5.1 Detectors 7.5.2 Electronics 7.5.3 Summary References 8 Detector systems 8.1 Conflicts and compromises 8.2 Design considerations 8.2.1 Detector geometry 8.2.2 Efficiency 8.2.3 Event rate 8.2.4 Readout 8.2.5 Support structures, cooling, and cabling 8.2.6 Cost 8.3 Segmentation 8.4 Tracking and vertex detectors at e+e colliders 8.4.1 Layout and detector geometry 8.4.2 Electronics 8.4.3 "Common mode noise" 8.4.4 Noise limits in long strip detectors 8.4.5 CCD detectors at e+ colliders 8.5 Vertex and tracking detectors at hadron colliders 8.5.1 CDF and DO 8.6 Silicon trackers at the Large Hadron Collider 8.6.1 Coping with high rates 8.6.2 Radiation damage 8.6.3 Layout 8.6.4 Readout electronics 8.6.5 Detector modules 277 278 279 282 283 286 289 292 292 292 295 296 302 303 304 304 306 309 309 315 315 316 316 316 316 317 317 317 318 319 319 323 326 327 330 337 337 342 343 344 345 348 353

xiv 9 8.7 8.8 8.9 8.10 8.11 Summary References Why 9.1 9.2 9.3 9.4 9.5 9.6 9.7 CONTENTS 8.6.6 Pixel detectors 8.6.7 ATLAS pixel detector Monolithic active pixel devices 8.7.1 CMOS imagers 8.7.2 DEPFET pixel detectors Astronomical imaging Emerging applications 8.9.1 Space applications 8.9.2 X-ray imaging and spectroscopy Design, assembly and test 8.10.1 Design 8.10.2 Assembiv 8.10.3 Testing things don't work Reflections on transmission lines Common pickup mechanisms 9.2.1 Noisy detector bias supplies 9.2.2 Light pickup 9.2.3 Microphonics 9.2.4 RF pickup Pickup reduction techniques 9.3.1 Shielding 9.3.2 "Field line pinning" 9.3.3 "Self-shielding" structures 9.3.4 Inductive coupling 9.3.5 "Self-shielding" cables 9.3.6 Shielding summar3- Shared current paths grounding and the power of myth 9.4.1 Shared current paths ("ground loops") 9.4.2 Remedial techniques 9.4.3 Potential distribution on ground planes 9.4.4 Connections in multi-stage circuits Breaking parasitic current paths 9.5.1 Isolate sensitive loops 9.5.2 Differential signal transmission 9.5.3 Blocking Common Mode Currents 9.5.4 Isolating parasitic ground connections by series resistors 9.5.5 Directing the current flow away from sensitive nodes 9.5.6 The folded cascode Capacitors System considerations 357 357 363 363 364 366 367 367 369 372 372 374 375 377 378 386 386 389 389 389 390 391 392 392 394 395 396 397 397 398 398 400 403 405 405 406 406 408 409 410 412 414 415

CONTENTS xv 9.7.1 Choice of shaper 415 9.7.2 Local referencing 416 A Semiconductor device technology 418 A.1 Bulk material 418 A.2 Introduction of dopants 419 A.3 Deposition 420 A.4 Patterning 421 A.5 Surface passivation 422 A.6 Detector fabrication 422 A.7 Detector process floß- 423 A.8 Strip detector structures 426 A.9 CMOS devices 428 References 429 B Phasors and complex algebra in electrical circuits 432 C Equivalent circuits 434 D Feedback amplifiers 438 D.1 Gain of a feedback amplifier 438 D.2 Linearity 439 D.3 Bandwidth 439 D.4 Series and shunt feedback 440 D.5 Input and output impedance 440 D.5.1 Series feedback 441 D.5.2 Shunt feedback 441 D.5.3 Output impedance 442 D.6 Loop gain 443 D.7 Stability 444 References 446 E The diode equation 447 E.1 Carrier concentrations in pure semiconductors 447 E.2 Carrier concentrations in doped crystals 450 E.3 pn-junctions 451 E.4 The forward-biased pn-junction 453 References 458 F Electrical effects of impurities and defects 459 F.1 Emission and capture processes 459 F.1.1 Electron capture 460 F.1.2 Electron emission 460 F.1.3 Hole capture and emission 460 F.1.4 Emission probabilities 461 F.2 Recombination 462 F.2.1 Band-to-band recombination 462

xvi CONTENTS F.2.2 Recombination via intermediate states 463 F.3 Carrier generation 465 F.3.1 Generation in the depletion region 465 F.3.2 Generation in the neutral region 466 F.4 The origin of recombination and generation centers 467 F.5 The diode equation revisited 468 F.5.1 Reverse Current 468 F.5.2 Forward current 470 F.5.3 Comments 470 References 471 G Bipolar transistor equations 472 References 477 Index 478