Leakage Power Reduction for Logic Circuits Using Variable Body Biasing Technique

Similar documents
Total reduction of leakage power through combined effect of Sleep stack and variable body biasing technique

Design of low power SRAM Cell with combined effect of sleep stack and variable body bias technique

Minimizing the Sub Threshold Leakage for High Performance CMOS Circuits Using Stacked Sleep Technique

ZIGZAG KEEPER: A NEW APPROACH FOR LOW POWER CMOS CIRCUIT

Ultra Low Power VLSI Design: A Review

Sleepy Keeper Approach for Power Performance Tuning in VLSI Design

Design and Analysis of Sram Cell for Reducing Leakage in Submicron Technologies Using Cadence Tool

A Novel Dual Stack Sleep Technique for Reactivation Noise suppression in MTCMOS circuits

Comparative Study of Different Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits

CHAPTER 3 PERFORMANCE OF A TWO INPUT NAND GATE USING SUBTHRESHOLD LEAKAGE CONTROL TECHNIQUES

Leakage Power Reduction by Using Sleep Methods

COMPARISON AMONG DIFFERENT CMOS INVERTER WITH STACK KEEPER APPROACH IN VLSI DESIGN

Study and Analysis of CMOS Carry Look Ahead Adder with Leakage Power Reduction Approaches

PERFORMANCE ANALYSIS ON VARIOUS LOW POWER CMOS DIGITAL DESIGN TECHNIQUES

Comparison of Leakage Power Reduction Techniques in 65nm Technologies

Leakage Power Reduction in CMOS VLSI Circuits

Low Power High Performance 10T Full Adder for Low Voltage CMOS Technology Using Dual Threshold Voltage

Design of High Performance Arithmetic and Logic Circuits in DSM Technology

A HIGH SPEED & LOW POWER 16T 1-BIT FULL ADDER CIRCUIT DESIGN BY USING MTCMOS TECHNIQUE IN 45nm TECHNOLOGY

Low Power Realization of Subthreshold Digital Logic Circuits using Body Bias Technique

ESTIMATION OF LEAKAGE POWER IN CMOS DIGITAL CIRCUIT STACKS

LEAKAGE POWER REDUCTION IN CMOS CIRCUITS USING LEAKAGE CONTROL TRANSISTOR TECHNIQUE IN NANOSCALE TECHNOLOGY

Low Power Design Techniques for Reduction of Leakage Power in CMOS VLSI Circuits using Modified Sleepy Keeper

Minimization of 34T Full Subtractor Parameters Using MTCMOS Technique

ISSN:

Design and Optimization of Half Subtractor Circuits for Low-Voltage Low-Power Applications

Performance Analysis of Novel Domino XNOR Gate in Sub 45nm CMOS Technology

A Literature Review on Leakage and Power Reduction Techniques in CMOS VLSI Design

A NEW APPROACH FOR DELAY AND LEAKAGE POWER REDUCTION IN CMOS VLSI CIRCUITS

DESIGNING OF SRAM USING LECTOR TECHNIQUE TO REDUCE LEAKAGE POWER

MULTITHRESHOLD CMOS SLEEP STACK AND LOGIC STACK TECHNIQUE FOR DIGITAL CIRCUIT DESIGN

Design and Implementation of Digital CMOS VLSI Circuits Using Dual Sub-Threshold Supply Voltages

Implementation of dual stack technique for reducing leakage and dynamic power

Comparative Study of Different Modes for Reducing Leakage and Dynamic Power through Layout Implementation

CHAPTER 1 INTRODUCTION

Design and Implementation of Enhanced Leakage Power Reduction Technique in CMOS VLSI Circuits

Leakage Power Reduction Through Hybrid Multi-Threshold CMOS Stack Technique In Power Gating Switch

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction

High Performance and Low power VLSI CMOS Circuit Designs using ONOFIC Approach

Design of Ultra-Low Power PMOS and NMOS for Nano Scale VLSI Circuits

LOW POWER DIGITAL DESIGN USING ASYNCHRONOUS FINE GRAIN LOGIC

Noise Tolerance Dynamic CMOS Logic Design with Current Mirror Circuit

Variable Body Biasing Technique to Reduce Leakage Current in 4x4 DRAM in VLSI

Reduction Of Leakage Current And Power In CMOS Circuits Using Stack Technique

Energy Efficiency of Power-Gating in Low-Power Clocked Storage Elements

Characterization of 6T CMOS SRAM in 65nm and 120nm Technology using Low power Techniques

Optimization of power in different circuits using MTCMOS Technique

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India

STATIC POWER OPTIMIZATION USING DUAL SUB-THRESHOLD SUPPLY VOLTAGES IN DIGITAL CMOS VLSI CIRCUITS

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

LEAKAGE POWER REDUCTION TECHNIQUES FOR LOW POWER VLSI DESIGN: A REVIEW PAPER

Study of Outpouring Power Diminution Technique in CMOS Circuits

Power-Gating Structure with Virtual Power-Rail Monitoring Mechanism

Low Power, Area Efficient FinFET Circuit Design

Comparison of Power Dissipation in inverter using SVL Techniques

Innovations In Techniques And Design Strategies For Leakage And Overall Power Reduction In Cmos Vlsi Circuits: A Review

CHAPTER 3 NEW SLEEPY- PASS GATE

A Case Study of Nanoscale FPGA Programmable Switches with Low Power

Leakage Current Analysis

1. Introduction. Volume 6 Issue 6, June Licensed Under Creative Commons Attribution CC BY. Sumit Kumar Srivastava 1, Amit Kumar 2

P. Sree latha, M. Arun kumar

Analysis & Implementation of Low Power MTCMOS 10T Full Adder Circuit in Nano Scale

Low Power Design of Successive Approximation Registers

Analysis of Low Power-High Speed Sense Amplifier in Submicron Technology

Jan Rabaey, «Low Powere Design Essentials," Springer tml

Design and Analysis of Low-Power 11- Transistor Full Adder

ISSN: [Kumar* et al., 6(5): May, 2017] Impact Factor: 4.116

Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET

NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME

Power Efficiency of Half Adder Design using MTCMOS Technique in 35 Nanometre Regime

IMPLEMENTATION OF POWER GATING TECHNIQUE IN CMOS FULL ADDER CELL TO REDUCE LEAKAGE POWER AND GROUND BOUNCE NOISE FOR MOBILE APPLICATION

A Novel Approach for High Speed and Low Power 4-Bit Multiplier

Leakage Power Reduction in CMOS VLSI

Keywords : MTCMOS, CPFF, energy recycling, gated power, gated ground, sleep switch, sub threshold leakage. GJRE-F Classification : FOR Code:

Reduction of Leakage Power in Full Adder Circuit Using Power Gating Analysis

Design and realisation of Low leakage 1-bit CMOS based Full Adder Cells for Mobile Applications

EECS 427 Lecture 13: Leakage Power Reduction Readings: 6.4.2, CBF Ch.3. EECS 427 F09 Lecture Reminders

Low Power Design of Schmitt Trigger Based SRAM Cell Using NBTI Technique

POWER EFFICIENT CARRY PROPAGATE ADDER

Leakage Power Reduction Using Power Gated Sleep Method

LOW LEAKAGE CNTFET FULL ADDERS

MICROPROCESSORS LEAKAGE POWER REDUCTION USING DUAL SUPPLY VOLTAGE SCALING

1. Short answer questions. (30) a. What impact does increasing the length of a transistor have on power and delay? Why? (6)

Design of Multiplier using Low Power CMOS Technology

Leakage Diminution of Adder through Novel Ultra Power Gating Technique

PROCESS and environment parameter variations in scaled

Design of 2-bit Full Adder Circuit using Double Gate MOSFET

DESIGN OF SSASPL BASED SHIFT REGISTERS WITH ADVANCED LEAKAGE POWER REDUCTION APPROACHES. S. K. Sharmila 5, G. Kalpana 6

Design Of Level Shifter By Using Multi Supply Voltage

Design of Low power and Area Efficient 8-bit ALU using GDI Full Adder and Multiplexer

An Effective Way Of Reducing The Leakage Power By Sleep Methods In Deep Submicron Circuits. Kodali Venkata Bhanu Prakash 1, Ms. M.Pavitra 2.

Low Power Design for Systems on a Chip. Tutorial Outline

Low Power and Area Efficient Design of VLSI Circuits

Ultra-low voltage high-speed Schmitt trigger circuit in SOI MOSFET technology

A Low Power High Speed Adders using MTCMOS Technique

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE

DESIGN AND ANALYSIS OF NAND GATE USING BODY BIASING TECHNIQUE

Designing of Low-Power VLSI Circuits using Non-Clocked Logic Style

Low Power 8-Bit ALU Design Using Full Adder and Multiplexer

Transcription:

Leakage Power Reduction for Logic Circuits Using Variable Body Biasing Technique Anjana R 1 and Ajay K Somkuwar 2 Assistant Professor, Department of Electronics and Communication, Dr. K.N. Modi University, Rajasthan, India 1 Professor, Department of Electronics and Communication, MANIT, Bhopal, India 2 ABSTRACT: The leakage power dissipation has become one of the most dominant factors in total power consumption and yet a challenge for the VLSI designers as it doubles every two years according to Moore s law According to ITRS, leakage power consumption may dominate total power consumption [1]. By scaling down the threshold voltage, remarkable reduction in leakage in leakage power can be obtained. We propose a new leakage reduction technique, named variable body biased keeper, which can be applied to general logic circuits as well as memory. Our SS approach retains the logic state while saving the leakage power. Like conventional approach, our approach can employ dual Vth technologies reducing leakage power with the area and delay overhead. Keywords: Sub threshold leakage; K; Zigzag; Sleep transistors; Stacking I. INTRODUCTION Low power consumption has become important factor in recent electronics industry due to rapid growth of battery operated devices like laptop, PDAs, cellular phones and other communication devices. For high performance and high packaging density, supply voltage and threshold voltage is constantly scaled down. But this leads to increase the sub threshold voltage, which in turn increases the power consumption. Static consumption is major contributor of total power consumption which is due to leakage current flowing when the device in the standby mode. Sub threshold leakage current is most predominant of all leakage current and becomes challenging for VLSI design engineers. It is drain to source current flowing when the transistor is operating in weak inversion region. The sub threshold leakage current is given by I sub = Ie 1/nVƟ(V gs-v th -γvsb+ηv ds) (1-e -V dst/v Ɵ ) Where V Ɵ is the thermal voltage, γ is the body bias coefficient, η is drain-induced barrier lowering coefficient. Based on mode of operation leakage power reduction is classified as standby mode and active mode. In standby mode, the circuit is in idle state and is cut off from the power rails. During active mode, leakage power is reduced by ing up the transistors. II. PREVIOUS WORK Here we review prior work that is related to our research. In this section we classify the circuits based on state retention and state destructive logics. This section describes previously proposed low power reduction for generic logic circuits. We classify them based on (i) Save state and (ii) Destructive state. SLEEP TRANSISTOR: Here sleep transistors are used between the power rails to cut off the power supply when the device is in the idle mode. So this technique is commonly power gated technique. A technique called multi threshold voltage CMOS transistor proposed by Motoh et al.[2] uses high Vth sleep transistors and low Vth transistors in pull up and pull down device to Copyright to IJAREEIE www.ijareeie.com 5141

maintain high switching speed. Sleep transistors are turned off when the device is in idle state, which dramatically reduces the leakage power in standby mode. During active mode the device works normally. FORCED STACK: Transistor ing is the technique where the leakage power is suppressed greatly. Narendra et al changed the effective channel length of the ed transistor and found that there is considerable reduction of sub threshold leakage power [3]. Here (W/L) ratio of the transistor is broken into two halves, so the transistor turns off/on simultaneously. Sub threshold current is thus reduced with area and delay overhead, thus saving the state of device. SLEEPY STACK: Sleepy is combination of Sleep and forced transistor technique. Forced transistor breaks the transistor into two halves whereby leakage power is reduced. Sleep transistor technique retains the logic state and saves the power when its sleep mode [4][5]. It uses two additional sleep transistors parallel to the existing sleep transistor, whereby the area and delay gets increased. During idle mode, sleep transistor are turned off and the power is substantially reduced. During active mode, sleep transistors are on and delay is reduced as there is active resistance path SLEEP APPROACH: This approach reduces the area overhead caused by the additional sleep transistor used in the sleep approach. By placing alternate sleep transistors [6], this area overhead can be reduced. In sleep mode, input of logic is and each logic input reverses its state and the output is 1. Thus, the zigzag approach uses few sleep transistors than the sleep logic. SLEEPY KEEPER: In this approach, PMOS transistor is placed parallel to the pull up sleep transistor and NMOS is placed parallel to pull down sleep transistor [7]. When in sleep mode, the NMOS is the only source of VDD to pull up network as the sleep transistor is turned off. When in active mode, PMOS is the only source of ground to pull down network as the sleep transistors is turned on. Due to the presence of sleep transistor, the resistance of the ON path increases thus decreasing the propagation delay. This approach retains the logic state of the circuit. III. STRUCTURE We introduce our proposed methodology variable body biased keeper. Then we explain this technique applied for the generic logic circuits. The proposed structures are combination of forced and sleep with variable body bias technique. The sleep transistor technique retains the logic state of circuit while forced maintains the minimum delay penalty. Thus this reduces the leakage power while saving the logic state. There are two modes of operation, active mode and sleep mode. The SS has a structure merging forced sleepy with variable body biasing technique. The sleepy divides the existing transistors into two halves while maintaining the input capacitances. Then the sleep transistors are added in parallel to ed pull up and pull down transistors. During active mode, s= and s =1 are asserted, thus all sleep transistors are turned on thus reducing circuit delay. The performance is improved as the body to source of the PMOS is ON, which lowers the Vth of PMOS transistor again. Due to body effect, Vth decreases thus increases the performance. As the sleep transistors are always on there is faster switching time than the forced. During sleep mode, s=1 and s = are asserted, so both of the sleep transistor are turned off, thus maintaining the logic state of the circuit. As a result of body effect, Vth increases, which decrease the performance. IV. EXPERIMENTAL METHODOLOGY The proposed structures are combination of forced and sleep with variable body bias technique. The sleep transistor technique retains the logic state of circuit while forced maintains the minimum delay penalty. Thus this reduces the leakage power while saving the logic state. There are two modes of operation, active mode and sleep mode. The SS has a structure merging forced sleepy with variable body biasing technique. The sleepy divides the existing transistors into two halves while maintaining the input capacitances. Then the sleep transistors are added in parallel to ed pull up and pull down transistors. During active mode, s= and s =1 are asserted, thus all sleep transistors are turned on thus reducing Copyright to IJAREEIE www.ijareeie.com 5142

circuit delay. The performance is improved as the body to source of the PMOS is ON, which lowers the Vth of PMOS transistor again. Due to body effect, Vth decreases thus increases the performance. As the sleep transistors are always on there is faster switching time than the forced. During sleep mode, s=1 and s = are asserted, so both of the sleep transistor are turned off, thus maintaining the logic state of the circuit. As a result of body effect, Vth increases, which decrease the performance. V. EXPERIMENTAL RESULTS We measure static power dissipation, dynamic power dissipation, propagation delay and area for the four approaches namely, sleep, sleepy, forced and base case with the proposed method. The simulation is performed using schematic entry and its corresponding test patterns are generated and its functionality is verified. After verification, the schematic file is converted into Verilog file, which gets converted into physical layout. Using the physical layout the area and delay is found. All the approaches are compiled with single Vt method. The inverter uses W/L = 6 for PMOS in the pull up network and W/L = 3 for NMOS in the pull down network. All the simulations are carried down at the room temperature of 27 C, VDD= 1.2v, supply voltage of 2.5V. The device model used for the simulation is BSIM model. TEST CIRCUITS: Chain of inverters, Full adder and SRAM cell is chosen as benchmark circuits. A chain of inverter is chosen as a basic circuit as every transistor level implementation has the characteristics of an inverter. Full adder is chosen as basic building block and is constructed from logic gates and two inverters. SRAM is a basic memory and is constructed with inverters and pass transistors. CHAIN OF FOUR INVERTERS: Three inverters of equal size are connected as shown in the diagram. Our approach is compared with the base case, forced, sleep and zigzag in terms of power dissipation, area and delay. Dual Vt is also applied along with single Vt approach. Static Power 2.5E-7 Power in Watt 2.E-7 1.5E-7 1.E-7 5.E-8.E+ Base case Sleep Forced Sleepy Fig.1 Static power dissipation (W) Copyright to IJAREEIE www.ijareeie.com 5143

Dynamic Power 1.E-4 Power in Watt 8.E-5 6.E-5 4.E-5 2.E-5.E+ Base case Sleep Forced Sleepy Fig.2 Dynamic power dissipation (W) Delay 4.E-1 In Pico Sec 3.E-1 2.E-1 1.E-1.E+ Base Case Sleep Forced Sleepy Fig.3 Delay (Ps) Area 8 In micro meter 6 4 2 Fig.4 Area (µm 2 ) Copyright to IJAREEIE www.ijareeie.com 5144

Full Adder: A full adder is created from logic blocks that generate sum and carry along with two inverters. The complex blocks are sized with NMOS W/L = 3/1, PMOS W/L = 9/1. Power 2 In Watts 15 1 5 12nm Fig.6 Power Consumption (µw) Area 8 In micro meter 6 4 2 12nm Fig. 7 Area (µm 2 ) Copyright to IJAREEIE www.ijareeie.com 5145

Delay In Pico sec 3 25 2 15 1 5 12nm Fig.8 Delay VI. CONCLUSION In this paper we have presented a new leakage power reduction scheme Variable sleepy biased keeper. It provides large power saving among all the alternative schemes. There is 51% power savings compared to base case. But there is area overhead with increase of 58%. For future work, we will explore how process variation affects leakage power using Variable sleepy biased keeper. REFERENCES [1] International Technology Roadmap for Semiconductors (ITRS-5).http://www.itrs.net/Links/25ITRS/Design25.pdf. [2] Mutoh, S., Douseki, T., Matsuya, Y., Aoki, T., Shigematsu, S., and Yamada, J., 1-V Power Supply High-speed Digital Circuit Technology with Multi threshold-voltage CMOS, IEEE Journal of Solid-State Circuits, vol. 3, no. 8, pp. 847 854, August 1995. [3] Narendra, S., S. Borkar, V. D., Antoniadis, D., and Chandrakasan, A., Scaling of Stack Effect and its Application for Leakage Reduction, Proceedings of the International Symposium on Low Power Electronics and Design, pp. 195 2, August 21. [4] J.C. Park, V. J. Mooney III and P. Pfeiffenberger, Sleepy Stack Reduction of Leakage Power, Proceeding of the International Workshop on Power and Timing Modelling, Optimization and Simulation, pp. 148-158, September 24. [5] J. Park, Sleepy Stack: a New Approach to Low Power VLSI and Memory, Ph.D. Dissertation, School of Electrical and Computer Engineering, Georgia Institute of Technology, 25. [6] K.-S. Min, H. Kawaguchi and T. Sakurai, Zigzag Super Cut-off CMOS (ZSCCMOS) Block Activation with Self-Adaptive Voltage Level Controller: An Alternative to Clock-gating Scheme in Leakage Dominant Era, IEEE International Solid-State Circuits Conference, pp. 4-41, February 23. [7] S. Kim and V. Mooney, The Sleepy Approach: Methodology, Layout and Power Results for a 4 bit Adder, Technical Report GITCERCS- 6-3, Georgia Institute of Technology, March 26, http://www.cercs.gatech.edu/tech-reports/tr26/git-cercs-6-3.pdf. [8] B.S. Deepaksubramanyan and Adrian Nu nez, Analysis of Subthreshold Leakage Reduction in CMOS Digital Circuits, Proceedings of the 13th nasa VLSI symposium, post falls, idaho, usa, june 5-6, 27. [9] Volkan Kursun, Eby G. Friedman, Domino Logic With Variable Threshold Voltage, IEEE transactions on very large scale integration (VLSI) systems, vol. 11, no. 6, December 23 [1] Volkan Kursun, Eby G. Friedman, Forward body biased keeper for enhanced noise immunity in domino logic circuits,ieee transactions on very large scale integration (VLSI) systems, 24 [11] Kao, Dual threshold voltage domino logic Proceedings of ACM/SIGDA great lake symposium on VLSI, April 22 Copyright to IJAREEIE www.ijareeie.com 5146