Advancements in Noise Measurement

Similar documents
On-Wafer Noise Parameter Measurements using Cold-Noise Source and Automatic Receiver Calibration

New Ultra-Fast Noise Parameter System... Opening A New Realm of Possibilities in Noise Characterization

A New Noise Parameter Measurement Method Results in More than 100x Speed Improvement and Enhanced Measurement Accuracy

Common Types of Noise

. /, , #,! 45 (6 554) &&7

Noise Parameter Basics. Dr. Zacharia Ouardirhi Dipl. Ing. Matthias Beer MBA

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN )

By Cesar A. Morales-Silva, University of South Florida, and Lawrence Dunleavy, Rick Connick, Modelithics, Inc.

X-Parameters with Active and Hybrid Active Load Pull

A 6-port Network Technique for Extraction of 2-Port DUT Noise Correlation Matrix: A Theoretical Verification through Modeling and Simulation

MEASUREMENT OF LARGE SIGNAL DEVICE INPUT IMPEDANCE DURING LOAD PULL

Accuracy Improvements in Microwave Noise Parameter Measurements

Network Analysis Basics

Configuration of PNA-X, NVNA and X parameters

Agilent Technologies Gli analizzatori di reti della serie-x

Load Pull with X-Parameters A New Paradigm for Modeling and Design

Fast and Accurate Simultaneous Characterization of Signal Generator Source Match and Absolute Power Using X-Parameters.

Spurious and Stability Analysis under Large-Signal Conditions using your Vector Network Analyser

Technical Note. HVM Receiver Noise Figure Measurements

Millimeter Signal Measurements: Techniques, Solutions and Best Practices

EXPERIMENT EM3 INTRODUCTION TO THE NETWORK ANALYZER

Whitham D. Reeve Anchorage, Alaska USA See last page for document information

Noise Figure Definitions and Measurements What is this all about?...

Keysight Technologies Noise Figure Selection Guide Minimizing the Uncertainties

Low noise amplifier, principles

Circuit Characterization with the Agilent 8714 VNA

Lecture 14 - Low Noise Amplifier Design

Platform Migration 8510 to PNA. Graham Payne Application Engineer Agilent Technologies

Case Study Amp2: Wideband Amplifier Design. Case Study: Amp2 Wideband Amplifier Design Using the Negative Image Model.

Power Amplifier Design Utilizing the NVNA and X-parameters

SAS-2 Transmitter/Receiver S- Parameter Measurement (07-012r0) Barry Olawsky Hewlett Packard (1/11/2007)

Department of Electrical and Computer Engineering ECE332. Lab 3: High Frequency Measurements

FieldFox Handheld Education Series Part 3: Calibration Techniques for Precise Field Measurements

Keysight Technologies PNA Microwave Network Analyzers

Data Sheet. MGA-685T6 Current-Adjustable, Low Noise Amplifier. Description. Features. Specifications at 500 MHz; 3V 10 ma (Typ.

Advanced Test Equipment Rentals ATEC (2832)

Agilent AN Applying Error Correction to Network Analyzer Measurements

Faculty Of Electronic And Computer Engineering Universiti Teknikal Malaysia Melaka. Melaka, Malaysia

Experiment 03 - Automated Scalar Reectometry Using BenchVue

Noise Figure Basics. John Eckert k2ox. Page

PNA Family Microwave Network Analyzers (N522x/3x/4xB) CONFIGURATION GUIDE

MWA REVB LNA Measurements

R&D White Paper WHP 066. Specifying UHF active antennas and calculating system performance. Research & Development BRITISH BROADCASTING CORPORATION

Agilent Fundamentals of RF and Microwave Noise Figure Measurements

Agilent Technologies Noise Figure Selection Guide

Keysight 2-Port and 4-Port PNA-X Network Analyzer

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

A Complete Noise- and Scattering-Parameters Test-Set Marco Garelli, Member, IEEE, Andrea Ferrero, Senior Member, IEEE, and Serena Bonino

Hot S 22 and Hot K-factor Measurements

Agilent 2-Port and 4-Port PNA-X Network Analyzer

5 ESSENTIAL HINTS TO IMPROVE Millimeter-wave Network Analysis

On Wafer Load Pull and Noise Measurements using Computer Controlled Microwave Tuners

LXI -Certified 3.5mm Automated Tuners

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator

Large-Signal Network Analysis Technology for HF analogue and fast switching components

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources

Migrating 4195A to E5061B LF-RF Network Analyzer. April 2010 Agilent Technologies

400 MHz to 4000 MHz Low Noise Amplifier ADL5523

SWR/Return Loss Measurements Using System IIA

Data Sheet. MGA Current-Adjustable, Low Noise Amplifier. Description. Features. Specifications at 500 MHz; 3V, 10 ma (Typ.

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max

LXI -Certified 7mm Automated Tuners

Lowering the uncertainty in fast noise measurement procedures

Barry Olawsky Hewlett Packard (1/16/2007)

LXI High-Gamma Automated Tuners (HGT ) And LXI High-Power Automated Tuners

Keysight Technologies Making Accurate Intermodulation Distortion Measurements with the PNA-X Network Analyzer, 10 MHz to 26.5 GHz

Network, Spectrum, and Impedance Evaluation of Electronic Circuits and Components

Frequency and Time Domain Representation of Sinusoidal Signals

BIAS DEPENDANT NOISE WAVE MODELLING PROCEDURE OF MICROWAVE FETS

Experiment 12 - Measuring X-Parameters Using Nonlinear Vector Netowrk Analyzer

IVCAD VNA Base Load Pull with Active/Hybrid Tuning. Getting Started v3.5

Many devices, particularly

Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet

Application Note 5525

Agilent PNA Microwave Network Analyzers

Keysight Technologies Nonlinear Vector Network Analyzer (NVNA) Breakthrough technology for nonlinear vector network analysis from 10 MHz to 67 GHz

Load Pull with X-Parameters

Keysight Technologies Accurate Mixer Measurements Using the ENA RF Networks Analyzers Frequency-Offset Mode. Application Note

Introducing ENA Series E5061B-1x5/2x5/1x7/2x7 RF NA Options 100 khz to 1.5 / 3 GHz

Comparison of Noise Temperature Measurements with Vector Network Analyzer (PNA-X) and Noise Figure Meter (NFA)

HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER

ME1000 RF Circuit Design. Lab 4. Filter Characterization using Vector Network Analyzer (VNA)

Coaxial TRL Calibration Kits for Network Analyzers up to 40 GHz

Γ L = Γ S =

A Comparison of Harmonic Tuning Methods for Load Pull Systems

Calibration and De-Embedding Techniques in the Frequency Domain

Cascading Tuners For High-VSWR And Harmonic Load Pull

LXI -Certified Multi-Harmonic Automated Tuners

Dr.-Ing. Ulrich L. Rohde

400 MHz 4000 MHz Low Noise Amplifier ADL5521

ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note

Direct calculation of metal oxide semiconductor field effect transistor high frequency noise parameters

SYSTEMATIC CALIBRATION OF TWO-PORT NET- WORK ANALYZER FOR MEASUREMENT AND ENGI- NEERING OF WAVEFORMS AT RADIO FREQUENCY

Agilent PNA-X Series Microwave Network Analyzers

Scattered thoughts on Scattering Parameters By Joseph L. Cahak Copyright 2013 Sunshine Design Engineering Services

Challenges and Solutions for Removing Fixture Effects in Multi-port Measurements

The Method of Measuring Large-Signal S-Parameters of High Power Transistor With Normal Condition

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

LXI -Certified 2.4mm & 1.85mm Automated Tuners

Transcription:

Advancements in Noise Measurement by Ken Wong, Senior Member IEEE R&D Principal Engineer Component Test Division Agilent Technologies, Inc. Page 1

EuMw Objectives 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise Figure Measurements Y-Factor Cold source Noise Parameters Noise Wave Correcting for Source Impedance Mismatch Correcting for Receiver Mismatch and Noise VNA Noise Figure Measurements Setup (S) Setting Input (Fwd) and Output (Rev) Powers Choosing Noise Bandwidth Setting Noise Averaging Factor Choosing the Receiver Gain Setting Page

EuMw Objectives 007 Aerospace Agilent (cont) Workshop and Defense Symposium 007 Calibration Noise Source Calibration (S) S-parameter Calibration (S) Noise Tuner Calibration (S) Verification Mismatch Line Amp Characteristics Combined S11 Combined Gain Combined Noise Figure Page 3

EuMw The Early 007 Aerospace Days Agilent Workshop and Defense Symposium 007 Page 4

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Agilent s Noise Figure Legacy 340A 1958 8970 1980 8560/90 with NF 1995 8510 1999 SA with NF 00 NFA 000 Page 5

EuMw Definition 007 Aerospace Agilent Workshop and Defense Symposium 007 DEVICE S in N in G a S out N out S = G * S ; N = G * N + N T= T0 ( / ) F (noise factor) = = = 1+ ( / ) * out a in out a in add S N in Nout Nadd S N G N G N out a in a in T= T 0 G a Available Gain, NF (Noise Figure) 10*log 10 (F) db D. Vondran, Noise Figure Measurement: Corrections Related to Match and Gain, Microwave J., pp -38, Mar. 1999 Collantes, J. M., R. D. Pollard, et al. (00). "Effects of DUT mismatch on the noise figure characterization: a comparative analysis of two Y-factor techniques." Instrumentation and Measurement, IEEE Transactions on 51(6): 1150-1156. Page 6

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Definition in Terms of Noise Temperature DEVICE T 0 T e, G a N out 0 N = k* T B; N = G * k* T * B in 0 add a e T 90 K ; B bandwidth k T e -3 Boltzmann's constant = 1.380 6505 10 joule/kelvin effective input noise temperature of device Nout Te F = = 1+ G * N T a in 0 Page 7

EuMw Effective 007 Aerospace Temperature Agilent Workshop and Versus Defense Noise Symposium Figure007 1000.00 100.00 Te (K) 10.00 1.00 0.0 0.5 1.0 1.5.0.5 3.0 3.5 4.0 4.5 5.0 NF (db) Page 8

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Definition In Terms Of Noise Parameters is Ys Noisy two-port is Ys e n i n Noiseless two-port R F = F + Y Y = F + 4R n n opt s min s opt min Gs Z0 1+Γopt 1 Γ Γ Γ ( ) s IRE Subcommittee 7.9 On Noise: Representation Of Noise In Linear Two-ports, Proc. IRE, Vol. 48, Pp. 69-74, Jan. 1960 Page 9

EuMw Noise 007 parameters Aerospace Agilent Definition Workshop and Defense (cont) Symposium 007 R 4 Γ Γ n Rn opt s min s opt min Gs Z0 1+Γopt 1 Γ F = F + Y Y = F + F min minimum noise factor R n noise resistance ( ) s Y opt optimum input admittance Y s = source admittance G s = real part of Y s Γ opt optimum input noise match Z 0 = reference impedance Γ s = source match Page 10

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise Source ENR Excess Noise Ratio 346C 10 MHz 6.5 GHz Noise source ENR 10 log T T h c 10 T0 T h = Hot Noise Temperature T c = Cold Noise Temperature T 0 = 90 K T c = T 0 when noise sources are calibrated by reference labs. Page 11

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Y factor Method DEVICE T hot T cold T e, G a Pout P out,hot =kbg a (T hot +T e ) P out,cold =kbg a (T cold +T e ) F Y P T YT = T = P N T T Y * T = = 1+ = 1+ G * N T Y 1 * T a out, hot hot cold e out, cold Y 1 out e hot cold in ( ) 0 0 Assumes ALL Reflections are the same. Fundamentals of RF and Microwave Noise Figure Measurements, Hewlett-Packard Application Note 57-1, Palo Alto, CA July 1983 Page 1

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Actual Y factor Measurement Calibration RECEIVER Receiver Calibration T hot T cold Γ s(hot) Γ s(cold) Γ i(rec) T e(r) G a(r) Nout(R) P out F ( R) Γ s N T T Y* T out ( R) e( R) hot cold = = 1+ = 1+ ( ) G * N T Y 1 * T a( R) in 0 0 Assumes Γ s(hot) = Γ s(cold) Page 13

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Actual Y factor Measurement DEVICE RECEIVER T hot T cold T e(d) G a(d) T e(r) Nout(D) Γ s(hot) Γ Γ i(device) s(cold) Γ o(device) Γ i(rec) G a(r) N out(all) P out Note that F F ( all) Γ s = 1+ ( device) Γ ( all ) F s = F o( device ) T Y* T F hot ( Y ) F ( R) Γ ( R) ( R) Γ s 1* T Γ G cold 0 o( device) a( D) 1 Page 14

EuMw Some 007 Y factor Aerospace Agilent Measurement Workshop and Defense Assumptions Symposium 007 Γ =Γ s( hot) s( cold ) F G o( device ) a( device) = = ( R) Γ ( R) N F N Γ s hot( all) cold ( all) N N hot( R) cold ( R) True only if S 11 and S are <<1 Notes: G a (available gain) is a function of S 11, S and Γ s Γ s source reflection of the incident signal Page 15

EuMw Four Examples 007 Aerospace Agilent Of Workshop Y-Factor and Defense Measurements Symposium 007 What you want for good NF accuracy! Noise source On-wafer environment Noise source 1 3 4 On-wafer multi-instrument (ATE) environment Noise source Automated multi-instrument (ATE) environment Noise source Page 16

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Cold Noise Source Technique G a P N = + P n FDut 1 kt 0 BG a Need to know gain very accurately Ga is a function of of S 11, S and Γ s Page 17

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Cold Noise Figure Cal and Measurement Calibrate kgb = k Gain Bandwidth Phot Pcold kgb = T T P N hot cold T = T cal T ~ 10,000K F r T T 1 hot 0 = T P 0 nhot P ncold 1 Measure T = T meas DUT Γ s Γ o(device) Γ i(rec) Γ i(device) 1 P N P n FDut = Fr 1 G + a kgb Page 18

EuMw Noise 007 Parameters Aerospace Agilent Workshop and Defense Symposium 007 is Ys e n i n Noiseless two-port F = F min + 4R Z o n 1+ Γ Γ opt opt Γ s ( ) 1 Γ s Noise figure varies as a function of source impedance Four noise parameters: F min, R n, Γ opt (mag), Γ opt (phase) Page 19

EuMw Noise 007 parameters Aerospace Agilent Definition Workshop and Defense Symposium 007 R F = F + Y Y = F + 4R n n opt s min s opt min Gs Z0 1+Γopt 1 Γ Γ Γ ( ) s F min minimum noise factor R n noise resistance Y opt optimum input admittance Y s = source admittance G s = real part of Y s Γ opt optimum input noise match Z 0 = reference impedance Γ s = source match Page 0

EuMw Noise 007 parameters Aerospace Agilent Workshop Definition and Defense Symposium 007 Noise Temperature ( ) RT Y Y 4TR Γ Γ T = T + = T + n n 0 s opt 0 n opt s min min Gs Z0 1+Γopt 1 Γ T min minimum noise Temperature R n noise resistance T 0 90 K ( ) s Y opt optimum input admittance Y s = source admittance G s = real part of Y s Γ opt optimum input noise match Z 0 = reference impedance Γ s = source match Page 1

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise Parameters F min at Γ opt Plots of noise figure circles versus impedance (at one frequency) F min is lowest noise figure and occurs at Γ opt F changes with Γ F changes with device bias Increasing noise figure Increasing noise figure Page

EuMw Measuring 007 Aerospace Agilent Noise parameters Workshop and Defense Symposium 007 VNA TUNER Noise source DUT NFM A. C. Davidson, B. W. Leake, et al. (1989). "Accuracy improvements in microwave noise parameter measurements." Microwave Theory and Techniques, IEEE Transactions on 37(1): 1973-1978. Page 3

EuMw Noise 007 wave Aerospace Agilent representation Workshop and Defense S-parameters Symposium 007 b n a 1 b 1 a b [S] b n1 b1 s11 s1 a1 bn1 = + b s1 s a bn C s * b n1 bn 1bn cs11 cs1 = = * 1 bnbn1 b cs cs n P. Penfield, Jr "Wave Representation of Amplifier Noise." IRE Transactions On Circuit Theory: Mach (196) pp. 84-86 K. Hartmann, Noise Characterization of Linear Circuits, IEEE Transactions on Circuits and Systems, Vol. cas-3, No. 10, Oct. 1976, pp. 581-590 R.P. Meys, A Wave Approach to the Noise Properties of Linar Microwave Devices, IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-6, No. 1, Jan. 1978, pp 34-37 S. W. Wedg,and D. B. Rutledge (199). "Wave techniques for noise modeling and measurement." Microwave Theory and Techniques, IEEE Transactions on 40(11): 004-01. Page 4

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Measurement using (S) noise correlation matrix Noise output power from two-port is P = kbg T + T P out av e out ( ) 0 ( 1 ) kbs Γ +Γ 1 + 1 s Ts s X = * 1 ΓsS11 1 Γ 11 + Re ( 1 Γ 11) Γ ss X 1 ss sx * bn cs bb n1 n cs1 1 = n1 = 11, = =, 1 = = * * S1 S S 1 1 S1 X b cs X X J. Randa, W. Wiatr, Conte Carlo Estimation of Noise Parameter Uncertainties, IEE Proc. Sci. Meas. Technology, Vol. 149, No. 6, Nov. 00, pp. 333-337 Page 5

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise correlation matrix (C S ) in terms of noise parameters C s ( ) ( )( ) 4 1 s 11 opt 4Rn opt 1 s R Γ Γ 11Γ n opt Fmin 1 s11 1 s 1 ( Fmin 1) s + 11 Z0 1 opt Z0 1 +Γ +Γopt = 4Rn opt ( 1 s11 opt ) 4R Γ Γ n Γopt s 1 ( Fmin 1) s 11 s 1 Fmin 1 Z0 1+Γ opt Z0 1+Γ opt Page 6

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 New Noise Measurement System Noise Receiver Inside Noise Tuner DUT Noise Source ADAPTER Page 7

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 ECal as Noise Tuner PNA-X varies source match around 50 ohms using an ECal module ECal can provide 7 impedance states (Z 1, F 1 ), (Z, F ), Page 8

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise Figure in PNA contributions Speed and accuracy Single Connection S-parameters and Noise Figure Fast Step Frequency Sweep Complete Mismatch Correction Use of ECal or Compatible Impedance Tuner Embedding and De-embedding of Probes in On- Wafer Noise Measurements Can Accommodate Coax Noise Source for On-Wafer Noise Measurements Page 9

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Calibration of the receiver P out ( 1 ) kbs Γ +Γ 1 + 1 s Ts s X = ( ) * 1 i ΓsS11 1 Γ 11 + Re 1 Γ ss X 11 Γ 1 ss sx 5 unknowns, linear equation Note: The PNA-X uses a different form of the above equation. Page 30

EuMw Calibration 007 Aerospace Agilent of receiver Workshop and Defense Symposium 007 - solution of equations Require Minimum Of 5 Equations To Solve Can Be Over-determined At Least One Measurement Must Be Made With Different Source Temperature Use Noise Source (Known ENR, Measure Γ Cold, Γ Hot ) ECal Module Provides 7 Terminations Page 31

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise Figure Mode Instrument Default Settings S-parameter Mode Source Power -30 dbm Noise RF BW 4 MHz Noise IF BW MHz Noise Averaging Point to Point (1 = 10K) Noise Receiver Gain 30 db Factory Receiver Cal ON Page 3

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise Figure Measurement Instrument Setup Page 33

EuMw Noise 007 Measurement Aerospace Agilent Workshop and Softkeys Defense Symposium 007 Page 34

EuMw Noise 007 Set Aerospace Agilent Up Workshop and Defense Symposium 007 Page 35

EuMw Noise 007 Set Aerospace Up Agilent Workshop and Defense Symposium 007 Page 36

EuMw Noise 007 Figure Aerospace Agilent Measurement Workshop and Defense Calibration Symposium 007 Page 37

EuMw Noise 007 Cal Aerospace Agilent Workshop and Defense Symposium 007 Page 38

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 S-parameters and Noise Calibrations This step provides of the five measurements required. Noise Tuner Noise Source ADAPTER P h, P c, Γ h, Γ c Page 39

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 S-parameters and Noise Calibrations This step provides the rest of measurements required to calibrate the noise receiver. Noise Tuner ADAPTER Γ nr P nt(i), Γ nt(i) Page 40

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 S-parameters and Noise Calibrations S-parameter calibration completes the calibration sequence. Noise Tuner Page 41

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Measurement of DUT Known from Measured S-parameters P out ( 1 ) kbs Γ +Γ 1 + 1 s Ts s X = ( ) * 1 ΓsS11 1 Γ 11 + Re 1 Γ ss X 11 Γ 1 ss sx 4 unknowns, linear equation Page 4

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 DUT S-parameters and Noise Measurement Noise Tuner Meas S-parameters DUT P out(i) @ each Γ nt(i) Page 43

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise Measurement System With On-Wafer Probes Noise Tuner FULL -port Cal 1-port Cal 4 Noise Source Page 44

EuMw 60 µm 007 FET Aerospace Agilent Workshop and Defense Symposium 007 Data sets offset by 1dB N8975 F (1 db per division) Y-factor cold corrected 0 5 10 15 0 5 Frequency (GHz) Page 45

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Measurements Compared 10 0 18 8 16 NF (db) 6 4 14 1 10 8 Gain (db) 0 NFA PNA/NF 1 3 4 5 6 Frequency (GHz) 6 4 0 Page 46

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Noise Figure Uncertainty Example (ATE Setup) 4.500 4.000 Amplifier: Gain = 15 db Input/output match = 10 db NF = 3 db Gamma opt = 0.68 0 o Fmin = 1.87 db Rn = 1 33 Y-factor with noise source connected to DUT via switch matrix NF (db) 3.500 3.000 0.75 db 0.5 db Y-factor with noise source directly at DUT input PNA-X 0. db.500.000 0.5.5 4.5 6.5 8.5 10.5 1.5 14.5 16.5 18.5 0.5.5 4.5 6.5 GHz Page 47

EuMw Noise 007 Figure Aerospace Agilent Uncertainty Workshop and Defense Example Symposium 007 (Wafer Setup) 4.500 4.000 1.1 db Amplifier: Gain = 15 db Input/output match = 10 db NF = 3 db Gamma opt = 0.68 0 o Fmin = 1.87 db Rn = 1 33 Y-factor with noise source connected Y-factor to DUT with via noise switch source matrix connected to probe via switch matrix 3.500 Y-factor with noise source connected to DUT input Y-factor with noise source 0.75 db connected to probe input PNA-X NF (db) PNA-X 0.3 db 3.000.500 Amplifier: Gain = 15 db Input/output match = 10 db NF = 3 db Gamma opt = 0.68 0 o Fmin = 1.87 db Rn = 1 33 Wave model correlation = 50%.000 0.5.5 4.5 6.5 8.5 10.5 1.5 14.5 16.5 18.5 0.5.5 4.5 6.5 GHz Page 48

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Verification approach Need To Avoid Using An Active Device Cannot Guarantee Behavior Over Time Dependence On Temperature Noise May Be Injected Through Bias Supply Use Mismatched Transmission Line, Passive Device Noise Parameters, Noise Figure Are Calculated From S- parameters Can Cascade With Any Amplifier And De-embed Page 49

EuMw Mismatch 007 Aerospace Transmission Agilent Workshop and Defense Line Characteristics Symposium 007 Page 50

EuMw Noise 007 wave Aerospace Agilent representations Workshop and Defense Symposium 007 50 Ω 5 Ω 50 Ω AMP [T L ], [C L ] [T A ], [C A ] a nl a na a 1L b 1L [T L ] a L b L a 1A b 1A [T A ] b A a A b nl b na C tl * a * nl anlbnl a ; C na anabna ta * * b nlanl bnl bnaana bna = = Page 51

EuMw Measured 007 Aerospace S-parameters Agilent Workshop and Defense of Amplifier Symposium 007 Page 5

EuMw Calculated 007 Aerospace Agilent vs. Measured Workshop and Defense Combined Symposium S 007 11 Page 53

EuMw Calculated 007 Aerospace Agilent vs. Measured Workshop and Defense Combined Symposium Gain 007 Page 54

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Calculated vs. Measured Combined Noise Figure Uncertainty Bar k= Page 55

EuMw 007 Aerospace Agilent Workshop and Defense Symposium 007 Additional References: [1] D. Vondran, Noise Figure Measurement: Corrections Related to Match and Gain, Microwave J., pp -38, Mar. 1999 [] Collantes, J. M., R. D. Pollard, et al. (00). "Effects of DUT mismatch on the noise figure characterization: a comparative analysis of two Y-factor techniques." Instrumentation and Measurement, IEEE Transactions on 51(6): 1150-1156. [3] Fundamentals of RF and Microwave Noise Figure Measurements, Hewlett-Packard Application Note 57-1, Palo Alto, CA July 1983 [4] IRE Subcommittee 7.9 On Noise: Representation Of Noise In Linear Two-ports, Proc. IRE, Vol. 48, Pp. 69-74, Jan. 1960 [4] A. C. Davidson, B. W. Leake, et al. (1989). "Accuracy improvements in microwave noise parameter measurements." Microwave Theory and Techniques, IEEE Transactions on 37(1): 1973-1978. [5] R.Q. Lane, The Determination of Device Noise Parameters, Proceedings of the IEEE, Aug. 1969, pp. 1461-146 [6] P. Penfield, Jr "Wave Representation of Amplifier Noise." IRE Transactions On Circuit Theory: Mach (196) pp. 84-86 [7] K. Hartmann, Noise Characterization of Linear Circuits, IEEE Transactions on Circuits and Systems, Vol. cas-3, No. 10, Oct. 1976, pp. 581-590 [8] R.P. Meys, A Wave Approach to the Noise Properties of Linar Microwave Devices, IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-6, No. 1, Jan. 1978, pp 34-37 [9] S. W. Wedg,and D. B. Rutledge (199). "Wave techniques for noise modeling and measurement." Microwave Theory and Techniques, IEEE Transactions on 40(11): 004-01. [10] J. Randa, W. Wiatr, Conte Carlo Estimation of Noise Parameter Uncertainties, IEE Proc. Sci. Meas. Technology, Vol. 149, No. 6, Nov. 00, pp. 333-337 [11] E.C. Valk, D. Routledge, J.F. Vaneldik, T.L. Landecker, De-Embedding Two-Port Noise Parameters Using a Noise Wave Model, IEEE Transactions on Instrumentation and Measurement, vol. 37, no., June 1988, pp 195-00 Page 56

EuMw Noise 007 Option Aerospace Agilent Block Workshop and Diagram Defense Symposium 007 OUT 1 Source 1 OUT Source OUT 1 OUT 4V DC Noise receivers Rear panel R1 10 MHz - 3 GHz 3-6.5 GHz A R 35 db B 65 db 65 db 35 db Test port 1 Source Output 1 DU T Source Output Test port Noise Source Page 57