Design of Low Power Linear Multi-band CMOS Gm-C Filter

Similar documents
Enhancing the Slew rate and Gain Bandwidth of Single ended CMOS Operational Transconductance Amplifier using LCMFB Technique

A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier

A Wide Tuning Range Gm-C Continuous-Time Analog Filter

A Low Power Single Ended Inductorless Wideband CMOS LNA with G m Enhancement and Noise Cancellation

Ultra Low Static Power OTA with Slew Rate Enhancement

An Analog Phase-Locked Loop

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Class-AB Low-Voltage CMOS Unity-Gain Buffers

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

Ultra Low Power Multistandard G m -C Filter for Biomedical Applications

International Journal of Pure and Applied Mathematics

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

SOLIMAN A. MAHMOUD Department of Electrical Engineering, Faculty of Engineering, Cairo University, Fayoum, Egypt

DESIGN OF TWO-STAGE CLASS AB CASCODE OP-AMP WITH IMPROVED GAIN

WITH THE exploding growth of the wireless communication

A Comparative Analysis of Various Methods for CMOS Based Integrator Design

ECEN 474/704 Lab 7: Operational Transconductance Amplifiers

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

[Kumar, 2(9): September, 2013] ISSN: Impact Factor: 1.852

A 3 8 GHz Broadband Low Power Mixer

An Ultralow-Power Low-Voltage Fully Differential Opamp for Long-Life Autonomous Portable Equipment

Multimode 2.4 GHz Front-End with Tunable g m -C Filter. Group 4: Nick Collins Trevor Hunter Joe Parent EECS 522 Winter 2010

2 Filter Topology Design and Reconfiguration Method 2.1 Filter Topology Design

Design of Reconfigurable Baseband Filter. Xin Jin

Yet, many signal processing systems require both digital and analog circuits. To enable

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

Performance Analysis of A Driver Cricuit and An Input Amplifier for BCC

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Design and Analysis of High Gain Differential Amplifier Using Various Topologies

Rail to rail CMOS complementary input stage with only one active differential pair at a time

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

Low-Power Linear Variable Gain Amplifier

Low Power Analog Multiplier Using Mifgmos

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA

A new class AB folded-cascode operational amplifier

Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier

Design and Simulation of Low Dropout Regulator

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

A 1MHz-64MHz Active RC TI-LPF with Variable Gain for SDR Receiver in 65-nm CMOS

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS

Low Power Phase Locked Loop Design with Minimum Jitter

Design of Wide Tuning Range and Low Power Dissipation of VCRO in 50nm CMOS Technology

Design of Single to Differential Amplifier using 180 nm CMOS Process

Design of Gain Enhanced and Power Efficient Op- Amp for ADC/DAC and Medical Applications

Seventh-order elliptic video filter with 0.1 db pass band ripple employing CMOS CDTAs

Advanced Operational Amplifiers

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.8

LOW POWER FOLDED CASCODE OTA

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

A low-if 2.4 GHz Integrated RF Receiver for Bluetooth Applications Lai Jiang a, Shaohua Liu b, Hang Yu c and Yan Li d

Design of Analog and Mixed Integrated Circuits and Systems Theory Exercises

Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

HIGH GAIN, HIGH BANDWIDTH AND LOW POWER FOLDED CASCODE OTA WITH SELF CASCODE AND DTMOS TECHNIQUE

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

Ultra-Low-Voltage Floating-Gate Transconductance Amplifiers

A Low Power Low-Noise Low-Pass Filter for Portable ECG Detection System

CHAPTER 2 THE DESIGN OF ACTIVE POLYPHASE FILTER

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp ,

Keywords - Analog Multiplier, Four-Quadrant, FVF Differential Structure, Source Follower.

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

FOR applications such as implantable cardiac pacemakers,

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

Shireen T. Sheikh 1 1 (Department of Electronics and Telecommunication Engineering, Nagpur University, India.)

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

LOW-VOLTAGE operation and optimized power-to-performance

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007.

Operational Amplifier with Two-Stage Gain-Boost

A 2-V 10.7-MHz CMOS Limiting Amplifier/RSSI

Low-voltage high dynamic range CMOS exponential function generator

An Improved Recycling Folded Cascode OTA with positive feedback

A Compact Folded-cascode Operational Amplifier with Class-AB Output Stage

ECEN 474/704 Lab 6: Differential Pairs

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Int. J. Electron. Commun. (AEU)

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

Design and Simulation of Low Voltage Operational Amplifier

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations

AN OPERATIONAL AMPLIFIER WITH RECYCLING FOLDED CASCODE TOPOLOGY AND ADAPTIVE BIAISNG

System on a Chip. Prof. Dr. Michael Kraft

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Class-AB Single-Stage OpAmp for Low-Power Switched-Capacitor Circuits

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA)

Low Power High Speed Differential Current Comparator

A Simple On-Chip Automatic Tuning Circuit for Continuous-Time Filter

A Performance Comparision of OTA Based VCO and Telescopic OTA Based VCO for PLL in 0.18um CMOS Process

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching

Design of a Capacitor-less Low Dropout Voltage Regulator

Transcription:

Design of Low Power Linear Multi-band CMOS Gm-C Filter Riyas T M 1, Anusooya S 2 PG Student [VLSI & ES], Department of Electronics and Communication, B.S.AbdurRahman University, Chennai-600048, India 1 Assistant Professor, Department of Electronics and Communication, B.S.AbdurRahman University, Chennai-600048, India 2 ABSTRACT: A continuous-time low-pass reconfigurable Gm-C filter exhibiting a tuning wide bandwidth is presented. The filter uses a wide frequency, linear operational transconductance amplifier (OTA). The operational transconductance amplifier takes an advantage of common mode feed forward (CMFF), two cross-coupling pairs with source degeneration and cascoding topology to realize a low power multi-band filter performance. Based on the proposed idea, a 1 st -order low pass Gm-C filter prototype has been designed in 0.18µm standard CMOS process. Simulated results show the filter is tunable in frequency from about 15KHz to 15MHz. The power consumption of the filter ranges from 9uW to 10mW, and it is operated with 3.3V supply voltage. The cut-off frequency of the filter is tuned by changing the dc bias current of the OTA. KEYWORDS: Gm-C filter, OTA, Common Mode Feed Forward (CMFF), Cascode Topology I. INTRODUCTION Recent trends and developments in portable applications and systems have lead to a significant in wireless standards. Therefore, cost and efficiency of CMOS technology implementation has been tremendously enhanced with the emergence of multi-mode wireless applications. Now multi-mode/multi-band wireless receivers are designed based on the persuasion of reuse [1][4]. Chip designing is the soul of electronic art. Designer should avoid using multiple chipsets and can be made tunable which makes them more efficient in term of area and power consumptions. In a flexible receiver front-end, analog baseband filtering is a key task as it is used to select the required information under desired channel bandwidth. A large tuning range of the analog low-pass filter is widely used in many areas, such as wireless transceivers, channel selection in the system, anti-aliasing and smoothing application [2]. Due to the open-loop operation behavior, Gm-C filter usually use operational transconductance amplifier (OTA) driving a capacitor load at the cost of moderate linearity, sensitivity to parasitic capacitance and high frequency performance. An OTA is a voltage controlled current source (VCCS). The key attractive properties of OTA are their fast speed in relation with conventional low impedance operational amplifiers, and their bias is based on transconductance tunability [6]. Furthermore, the major disadvantage of OTA is the large distortion caused by the nonlinear behavior of the transistors involved. The existing design having high power consumption and low cutoff frequency tuning range, because of the large non-linearity and distortion at the output. This does not provide high impedance at the output and transconductance for the required filter operations. This paper introduces a low power multi-mode Gm-C low pass filter, functionally equivalent to a first order LPF. The proposed circuit designed by the proper combination of common mode feed forward (CMFF), two cross-coupled differential pairs with source degeneration and cascoding the transistors. In Section II, the multi-band linear transconductor Gm is presented. The design of the proposed 1 st order low-pass filter architecture is given in Section III. Simulated results are described in Section IV. The conclusion is depicted in Section V. Copyright to IJAREEIE www.ijareeie.com 7402

II. PROPOSED OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) A. Implementation of the Proposed Linearization Transconductor In order to achieve a good tuning range of the filter, the range of the transconductance should be increased. Usually, Gm-C filter is preferred in high frequency application because of its open-loop operation. The filter performance is largely determined by the Gm value of the OTA. The basic building block in filter design is the integrator which consists of an OTA and a load capacitor [2]. The double ended Gm generator is shown in Figure 1. Figure1. Double ended Gm generator The proposed OTA circuit consummate on the common mode feed forward (CMFF) and cross-coupling pairs with source degeneration is depicted in Figure 2. The common mode feed forward scheme (NM7, NM9) ideally cancel the harmonic distortion components seem at the output with the same amplitude and phase when the differential output current is processed. The two cross-coupled differential pairs (NM1-NM3, NM2-NM4) at the input level reduce the nonlinearities as designated in the Figure 2. Figure2. Proposed linear OTA cell The source degeneration resistors NM5 and NM6 furthermore improve the linear behavior of the OTA structure. The transconductance is restricted by the value of these resistors. The linearity of the transconductor with passive source degeneration resistor cannot be realized perfectly. So the active MOS resistor works in triode region Copyright to IJAREEIE www.ijareeie.com 7403

fulfill the requirements [3]. A major advantage of this transconductor is that the quiescent current of the transistor does not vary with the tuning voltage. MOSFET NM11 and NM12 are used for driving the bias current to the OTA in order to tuning the DC transconductance. At the high cut-off frequencies all the transistors operate in the saturation region and at the low frequencies in the weak-invertion region except for the transistors NM5 and NM6. Figure3. Overall Structure of linear Operational Transconductance Amplifier The MOS transistor is approximated the value as Where K R is relative to MOS process parameter, V R is control voltage of source degeneration resistor, and V CM is common mode voltage of tuning current source. In the Figure2, linearization is realized because the I OUT is expressed as Where k= 1/2 C ox W/L, The transconductance Gm is Where gm is the transconductance of MOS transistor. Copyright to IJAREEIE www.ijareeie.com 7404

B. The Simulation of the proposed linear Operational Transconductance Amplifier The overall structure of the linear operational transconductance amplifier (OTA) is shown in Figure 3. The gain bandwidth product (GBW) of the proposed OTA is verified by using 1pF as the loading capacitance. The AC response simulation of the OTA gives the bandwidth of unit gain is about 25MHz, and the phase margin is about 180degree. The Transconductance Gm plot with the input voltage as depicted in the Figure 4. Figure4. The linearity simulation of the proposed OTA The linear range of the proposed transconductance cell with CMFF and cross-coupling pairs with source degeneration resistance are from -2V to +2V. The transconductance value is ranges from 12nS to 140nS. III. THE PROPOSED LOW-PASS FILTER ARCHITECTURE To demonstrate the basic building block in a system level, a first order lo-pass filter prototype is implemented using proposed OTA, as shown in Figure 5. Figure5. First order Low pass filter proto type In multi-band low-pass filter design, the cut off frequency of the filter is proportional to gm/c, where gm is the transconductance and C is the capacitance. Here the load capacitors CI and C2 are NMOS capacitors instead of MIM capacitor. The use of NMOS capacitor as load capacitor, it shows the two terminals N-well capacitor operated in accumulation mode exhibits good linearity [2]. Copyright to IJAREEIE www.ijareeie.com 7405

Figure6. AC response of the filter at cutoff frequency 15KHz In order to operate the NMOS capacitor into accumulation region, the voltage across the capacitor needs to be higher than a reasonable value [2]. The benefit of using NMOS capacitor rather than MIM capacitor is it occupy much less area and also provides decent linearity. The cutoff frequency of the Gm-C is tuned by the changing the DC bias current of the operational transconductance. Because, to achieve wide cutoff frequency range the transconductance range should be quite wide. The capacitor value shown in the Figure 5 is 1pf and it is easy to integrate with other sub-circuits. IV. RESULTS AND DISCUSSIONS The frequency and phase response of the filter is given in Figure 6. The AC gain and phase margin of the filter is about 26dB and 140degree, respectively when the cutoff frequency is 15KHz. At this stage of operation all the MOSFETs are in weak- inversion region except source degeneration resistors. The distortion due to the leakage current at this region is ideally eliminated by the common mode feed forward structure of the proposed OTA cell. Figure7. AC response of the filter at cutoff frequency15mhz Copyright to IJAREEIE www.ijareeie.com 7406

The AC gain and phase margin of the filter is about 3.7dB and 130 degree when the cutoff frequency is about 15MHz as shown in Figure 7. At this stage of operation all the MOSFETs are operated in saturation region except source degeneration MOSFETs. Figure8. The frequency response of the proposed low-pass filter The low-pass filter cutoff frequency can be tuned about 15KHz to 15MHz as shown in Figure 8.The transconductor was tested with bias current ranges from 40nA to 900uA and the supply voltage of 3.3V. The transistor dimensions are listed in the TABLE I. TABLE I TRANSISTOR ASPECT RATIOS Transistor W/L (µm/µm) NM1 to NM6 2/0.18 PM1 to PM12 10/0.18 NM7 to NM10 2.5/0.18 NM11 & NM12 3.5/0.18 The comparison result of different existing design of linear Gm-C filter is prescribed in the TABLE II. This shows the proposed design achieved a wide range of cutoff frequency and low power consumption than existing design. Most the recent works are implemented in 180nm CMOS process, in order to reduce the area of the chip. The wide cutoff frequency is obtained, because of high linear and low harmonics in the circuit. The linearity range is about ±2V. Copyright to IJAREEIE www.ijareeie.com 7407

TABLE II COMPARISON WITH OTHER LINEAR GM-C FILTERS Reference [1] 2009 [2] 2012 [4] 2011 [5] 2011 [6] 2002 [7] 2002 [8] 2010 [9] 2010 [10] 2010 This Work 2014 Cut-off Frequency (Hz) Power Consumption (W) CMOS Fabrication Process ( µm) Supply Voltage (V) 6M- 12M 30 m 0.5 5 100M 11 m 0.13 2.2 46M 8.87 m 0.35 3.3 0.75-9.4 0.05µ- 0.740µ 0.5 ±1.5 5M 25m 0.25 1.8 1.08M 6m 0.6 2.5 24M 384.44µ 0.18 1.8 70M- 280M 21m 0.13 1.5 5.8G 456µ 0.18 2.5 15K-15M 9µ- 10m 0.18 3.3 V. CONCLUSION In this paper, Operational Transconductance Amplifier based on CMFF and cross-coupling pairs with source degeneration structure is designed with its transconductance. A first order low-pass filter is designed with the OTAs as the main functional block. Simulated results show the filter achieves cutoff frequency tuning range of 15KHz~ 15MHz in 0.18µm standard CMOS process. It can be used as baseband channel selection of low-pass filter in multi-mode/ multiband receivers. REFERENCES [1] Mariano Jimenez, Antonio J. Lopez-Martin, Jaime Ramirez-Angulo, Ramon G. Carvajal, Lucia Acosta, Highly Linear Tunable CMOS Gm-C Low-Pass Filter, IEEE Transactions on Circuits and Systems- I: Vol. 56, No. 10, October 2009. [2] Fa Foster Dai and Xin Jin, 100MHz Fifth-Order Low-Pass Gm-C Filter Using Folded Stages, IEEE- 978-1-4673-2421-2, 2012. [3] Weimin Li, Chong Duan and A 46MHz Biquad Gm-C High Q Bandpass Filter Design for Wireless Application, IEEE Ninth International Conference on Dependable, Autonomic and Secure computing -2011. [4] F. Munoz, A. Torralba, Ramirez-Angulo, R. G. Carvajal, Tunable CMOS Low-Voltage Linear Transconductor and its application to HF Gm-C filter design, IEEE- 0-7803-5491-5/99, 1999. [5] Amir M. Sodagar, Mohammad Hossein Maghami, Fully-Integrated Large-Time-Constant, Low-pass Gm-C Filter Based on current conveyor, IEEE- 978-1-4577-1846-5/11, 2011. [6] H.A. Aslanzadeh, M. Atarodi, S. Mehrmanesh, M.B. Vahidfar A 1.8V High Dynamic Range CMOS Gm-C Filter for Portable video Systems, IEEE-0-7803-7573-4/02, 2002. [7] K. Sharaf H.F. Ragai, A. Hassan, H. El-Ghitani, The Design and Implementation of a Bandpass Gm-C Filter for Bluetooth, IEEE- 0-7803- 7523-8/02, 2002. [8] Sattar Mirzakuchaki, and Mohammad Megdi Farhad A second-order Gm-C Continuous Time Filter in Mobile Radio Receiver Architecture, 2 nd International Conference on Education Technology and computer, IEEE-2010. [9] Yumei Huang, Zhiliang Hong, Weinan Li, A 70-280 MHz frequency and Q tunable 53 db SFDR Gm-C Filter for Ultra-Wideband, IEEE- Asian Solid-State Circuits Conference, November 2010. Copyright to IJAREEIE www.ijareeie.com 7408

[10] Hang Yu, Yan Li, Lai Jiang, Zhen Ji, Design of Low power CMOS Band-Pass Gm-C Filter for 5.8 GHz RF transceiver of ETC System, IEEE- 978-1-4244-6871-3/10, 2010. BIOGRAPHY RIYAS T M received his B.E degree in Electronics and Communication Engineering from Visvesvaraya Technological University (VTU), Karnataka in 2011. He successfully completed the project on Low power CMOS band-gap reference circuit in his under graduate program. He is currently pursuing his M.Tech Degree in VLSI and Embedded Systems from B.S.AbdurRahman University, Chennai. His area of interests includes analog circuit design, layout design and verifications. ANUSOOYA S received her B.E degree in Electronics and Communication Engineering from Anna University, Chennai in 2005. She successfully completed the M.E degree in Applied Electronics from Anna University, Chennai in 2009. She was a gold medalist with first rank in her Post Graduate from Anna University. Currently she is working as an Assistant Professor and pursuing PhD in B.S.AbdurRahman University, Chennai. Her area of interests includes analog circuit design and Verifications. Copyright to IJAREEIE www.ijareeie.com 7409