Microsatellite Ionospheric Network in Orbit

Similar documents
Preparation for Flight of Next Generation Space GNSS Receivers

ESA Study GNSS Reflectometry Instrument & Algorithms NCEO/CEOI Conference, 19 th Sept 2012

Developments in GNSS Reflectometry from the SGR-ReSI on TDS-1

Outline. GPS RO Overview. COSMIC Overview. COSMIC-2 Overview. Summary 9/29/16

Recent GNSS Reflectometry Results from the UK TDS-1 Satellite

Galileo signal reflections used for monitoring waves and weather at sea

Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes

GNSS Remo Sensing in ensin a 6U Cubesat

New Technologies for Future EO Instrumentation Mick Johnson

Sub-Mesoscale Imaging of the Ionosphere with SMAP

THE SPACE TECHNOLOGY RESEARCH VEHICLE 2 MEDIUM WAVE INFRA RED IMAGER

Changing the economics of space. STRaND-1 & TDS-1. How the UK does Low Cost TechDemo Missions. Shaun Kenyon Mission Concepts, SSTL

GLOBAL SATELLITE SYSTEM FOR MONITORING

detected by Himawari-8 then the location will be uplinked to approaching Cubesats as an urgent location for medium resolution imaging.

(CSES) Introduction for China Seismo- Electromagnetic Satellite

Changing the economics of space. Redefining the word Responsive in Operationally Responsive Space

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region

National SPace Organization

SSTL Contribution to NDU Spacepower Symposium. Dr. Stuart Eves 26 April 2007

FORMOSAT-5. - Launch Campaign-

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

SNIPE mission for Space Weather Research. CubeSat Developers Workshop 2017 Jaejin Lee (KASI)

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Study of Ionospheric Perturbations during Strong Seismic Activity by Correlation Technique using NmF2 Data

Micro-STAR Potential Contribution to Human Safety and Security

Using COTs components to Reduce Space Mission Costs: Facts, Myths, Advantages & Pitfalls

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan

GNSS Reflectometry and Passive Radar at DLR

Ionospheric Monitoring in China. Zhen Weimin, Ou Ming

V. Bui, J.J. Soon, U. Tawon Y.T. Xing, M.D. Pham, L.S. Lim, I. Kamajaya K.S. Low. Satellite Research Centre (SaRC) Nanyang Technological University

Present and future IGS Ionospheric products

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere

Remote Sensing Platforms

Integrity of Satellite Navigation in the Arctic

An overview of the COSMIC follow-on mission (COSMIC-II) and its potential for GNSS-R

Development in GNSS Space Receivers

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE

TopSat: Brief to Ground Segment Coordination. Presenter Ian Pilling. By : W.A. Levett. Co author: E.J. Baxter.

GNSS remote sensing (GNSS-RS)

Introduction to ILWS. George Withbroe. Office of Space Science Sun Earth Connection Division NASA Headquarters

A Global System for Detecting Dangerous Seas Using GNSS Bi-static Radar Technology

Space Situational Awareness 2015: GPS Applications in Space

Development of Microsatellite to Detect Illegal Fishing MS-SAT

CYGNSS Mission Update

Ionospheric Variations Associated with August 2, 2007 Nevelsk Earthquake

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

MEMS in Space A New Technology Advancing from Flight Experiment to Proven COTS Product

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Ionospheric Corrections for GNSS

TechDemoSat-1 & NovaSAR-S

Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances

RemoveDebris Mission: Briefing to UNCOPUOS

Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services

AstroBus S, the high performance and competitive Small Satellites platform for Earth Observation

OPAL Optical Profiling of the Atmospheric Limb

New Synergistic Opportunities for Magnetosphere-Ionosphere-Thermosphere Coupling Investigations Using Swarm and CASSIOPE e-pop

PROCEEDINGS OF SPIE. Low-cost thermal-ir imager for an Earth observation microsatellite

The Promise and Challenges of Accurate Low Latency GNSS for Environmental Monitoring and Response

Preliminary results from the Arecibo Heating EXperiment (HEX): From HF to GPS

Sensor Technologies and Sensor Materials for Small Satellite Missions related to Disaster Management CANEUS Indo-US Cooperation

Five Years Orbit Experience of a Small Satellite Hyperspectral Imaging Mission. Mike Cutter & Martin Sweeting. AIAA Utah, August 2007

Activities of the JPL Ionosphere Group

Spatial and Temporal Variations of GPS-Derived TEC over Malaysia from 2003 to 2009

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager

Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads

Miniaturized In-Situ Plasma Sensors Applications for NSF Small Satellite program. Dr. Geoff McHarg

Research by Ukraine of the near Earth space

The Future of GNSS-RO for Global Weather Monitoring and Prediction A COSMIC-2 / FORMOSAT-7 Program Status Update

Multispectral Scanners for Wildland Fire Assessment NASA Ames Research Center Earth Science Division. Bruce Coffland U.C.

Remote Sensing Platforms

Introduction. Satellite Research Centre (SaRC)

Arctic Navigation Issues. e-nav conference Nordic Institute of Navigation Bergen, March 5 th 2009

Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures

First Results From the GPS Compact Total Electron Content Sensor (CTECS) on the PSSCT-2 Nanosat

2 INTRODUCTION TO GNSS REFLECTOMERY

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

Prepared by IROWG 18 September 2013 IROWG/DOC/2013/01

Industry Day of the Copernicus Sentinel-5 and Jason-CS Projects

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments

RAPID DEVELOPMENT OF NAVIGATION PAYLOADS FOR GALILEO FULL OPERATIONAL CAPABILITY

TAIWAN S SPACE PROGRAM DEVELOPMENT

Current and Future Meteorological Satellite Program of China

CIRiS: Compact Infrared Radiometer in Space August, 2017

RECONNAISSANCE PAYLOADS FOR RESPONSIVE SPACE

DYNAMIC IONOSPHERE CUBESAT EXPERIMENT

GNSS (GPS) buoy array in the Pacific for natural disaster mitigation. Teruyuki KATO Earthquake Research Institute the University of Tokyo, Japan

Sensor resolutions from space: the tension between temporal, spectral, spatial and swath. David Bruce UniSA and ISU

Emerging Technology for Satellite Remote Sensing of Boundary Layer Clouds and their Environment

GNSS buoy array in the ocean for natural hazard mitigation. Teruyuki KATO Earthquake Research Institute the University of Tokyo, Japan

NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Service (NESDIS)

COSMIC / FormoSat 3 Overview, Status, First results, Data distribution

Storms in Earth s ionosphere

Japan's Greenhouse Gases Observation from Space

100-year GIC event scenarios. Antti Pulkkinen and Chigomezyo Ngwira The Catholic University of America & NASA Goddard Space Flight Center

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi

Developments in GNSS-Reflectometry from the SGR-ReSI in orbit on TechDemoSat-1

Supplement to. Global navigation satellite systems (GNSS) L E C T U R E. Zuzana Bělinová. TELEMATIC SYSTEMS AND THEIR DESIGN part Systems Lecture 5

SEMEP. Search for ElectroMagnetic Earthquake Precursors

Transcription:

Changing the economics of space Microsatellite Ionospheric Network in Orbit Dr Stuart Eves Lead Mission Concepts Engineer SSTL s.eves@sstl.co.uk In tribute to Mino Freund 1962-2012

Introduction Objective To propose a multi-satellite constellation that could provide adequate warning of impending earthquake events Talk structure A brief discussion of the risk Possible precursor mechanisms Evidence for the selected precursors Payload instruments Platform concept System concept Conclusions and outstanding questions

Earthquakes occur on a global basis They most frequently occur on plate boundaries Clearly, though, the Earth s population lives between 60 N and 60 S Any satellite constellation should be designed to cover this band of latitudes Where is the risk?

Where s the risk? Pseudotachylites veins are formed by frictional melting of the wall rocks during rapid fault movement They indicate significant but less frequent risks exist in regions well away from identified plate boundaries, such as the New Madrid zone on the Mississippi Monitoring needs to cover these regions too..

How frequent is the risk? USGS indicates ~1500 earthquakes a year worldwide with magnitude > 5 ~5 per day (on average) A multiple-satellite constellation with automated data processing appears indicated to cope with the expected volume of events

Physical Precursor Mechanisms There is considerable debate concerning the physics that may create observable precursors But there is increasing agreement that there are precursors

Effective Event Prediction Government agencies require a reliable prediction system with an associated measure of confidence Ideal prediction consists of timely prediction in three areas: Temporal accurate forecasting of when an event will occur Spatial prediction of the epicentre of the event and its spatial extent Magnitude how powerful the principal earthquake event will be The inherent variability in these elements still needs to be established Correlation of more than one precursor measurement could provide greater levels of certainty

Potential Precursor Phenomena Release of radon gas at the Earth s surface Light pulses emitted at or near the surface Thermal fluctuations of the order ~2-10K Atmospheric pressure/humidity anomalies resulting extremely localised weather phenomena Production of low frequency electromagnetic waves Changes in the Total Electron Content of the Ionosphere Earthquake lights photographed by T. Kuribashi during 1966 Matsushiro earthquake swarm, Japan Of these possible precursors:- variations in the ionosphere thermal fluctuations appear to be detectable and offer up to a week s warning

Thermal Precursors Land Surface Temperature (LST) maps showing Nominal thermal characteristics of the Gujarat, Bhuj, India. Maps prior to the earthquake of 26 January 2001 in Bhuj, India. Thermal anomaly appeared on 14 January and was maximum on 23 January. Saraf & Swapnamita

Thermal Precursors The air in the vicinity of the earthquake zone is ionised Water molecules are attracted to ions in the air, ionisation triggers the large scale condensation of water. Tohoku M9 Earthquake March 11, 2011 Dimitar Ouzounov - NASA Goddard The process of condensation also releases heat and it is this that causes infrared emissions Time series of daytime anomalous OLR observed from NOAA/AVHRR (06.30LT equatorial crossing time) March 1-March12, 2011. Tectonic plate boundaries are indicated with red lines and major faults by brown ones and earthquake location by black stars. Red circle show the spatial location of abnormal OLR anomalies within vicinity of M9.0 Tohoku earthquake.

Ionospheric Precursors The Total Electron Content of the ionosphere 3 days prior to the Tohoku earthquake, (compared to the previous 15-day mean) The evidence of a precursor effect would seem indisputable, but it would be hard to argue that it offers a reliable indication of location

Tohoku M9 Earthquake (Dst: Geomagnetic Disturbance storm time) Time series of GPS/TEC variability observed from Feb 23 to March 16, 2011 for the grid point closest to epicenter for the 15.5 LT (top); and the Dst index for the same Period (bottom). The Dst data were provided by World Data Center (WDC), Geomagnetism, Kyoto, Japan.

Candidate Thermal Sensor SSC/SSTL Microbolometer Two commercial-off-the-shelf (COTS) un-cooled microbolometer arrays in a push-broom configuration Two wavebands MIR (3um to 5um) TIR (8um to 12um) Noise equivalent temperature difference (NETD) for a 300 K ground scene = 0.4K GSD = 300 m Swath = 100 km Unit Length ~14cm Unit Flight Mass ~2 kg Bench prototype TIR sensor 6-sensor array to provide 600km swath

SSC/SSTL Microbolometer

GNSS Radio Occultation Detecting effects in the ionosphere using GNSS occultation techniques Dual band receivers can be used to detect both the total electron content and shortterm scintillation effects The Cosmic-1/Formosat-3 constellation demonstrates what could be achieved

Analogous to COSMIC-1/FORMOSAT-3 Unprecedented spatial and temporal coverage will be possible using both GPS and Galileo for occultation measurements MINO will also provide better models for meteorology, ionosphere and climate change. Significant improvements in data void regions in weather forecasting GNSS Radio Occultation provides superior vertical resolution compared to conventional sounders Additional Data Applications Medium range (3-15day) weather forecasting Typhoon / Hurricane path prediction Climate modelling Space weather forecasting

Poise Experiment Originally conceived as a scintillation measurement experiment by a UK school who won a competition to put an experiment on an SSTL spacecraft SSTL s SGR GPS receiver modified to fly algorithms to sense and record scintillation events on TopSat Currently using existing SGR-10 receiver on UK-DMC2 to measure scintillation using GPS signals TopSat UK-DMC-2

SGR-ReSI Capability SSTL developing new generation of GNSS receivers GNSS: GPS, Galileo, Glonass, EGNOS/WAAS Dual frequency, (L1 & L2C), new wider BW signals Support for multiple front-ends Reconfigurable FPGA-based design SRAM FPGA co-processor First instantiation SGR-ReSI for remote sensing First flight is on TechDemoSat-1 Launch 2012/13 Primary goals Replacement for SGR-10 Ocean roughness sensing through reflectometry May also demonstrate the ability to provide earthquake warning measurements.

SSTL-50 Platform PAYLOAD MASS IR Optics 6 x 2kg = 12 kg GNSS receivers = 1 kg Total = 13 kg PAYLOAD POWER IR Optics 6 x 2 W = 12 W GNSS receivers Total = 16 W = 4 W Platform design includes magnetometers which may also have a role to play

System Concept 6 satellites - 5 operational missions and one on-orbit spare in one orbit plane Launch on a single vehicle into a single low Earth orbit at 60 degrees inclination An orbit altitude providing a ground-trace repeat may be favoured to allow automated data processing At least two IR passes per day over all land areas, one ascending and one descending Illustrative daily IR coverage from constellation of 5 satellites in a 700 km altitude orbit

System Concept Ideally for correlation, we would want to simultaneously measure multiple parameters over the same ground area (i.e. measure temperature changes and ionospheric perturbations over the same area at the same time) However, the required geometry for GNSS occultation measurements means that it will not be possible to have collocated, contemporaneous measurements from a single spacecraft Occultation measurements (for e.g. Total Electron Count measurements) observe along the line of sight through the Earth limb to the GPS satellites MINO IR Bolometer FOV Potenti al Earthquake Region GNSS The IR coverage would occur at the sub-satellite point Need to build up coverage over the target area via time-separated measurements from multiple satellites RO measur ements from the MINO satellite obser ve the ionosphere along the line of sight to the GPS satellite, which is not coincident to the area observed by the IR payload

Communications Architecture A first-generation system would probably need to downlink data to a network of 4-6 ground stations in order to provide timely warning a few days in advance With improved on-broad processing and inter-satellite link capabilities, a second generation system could provide an even more responsive service

Conclusions & Outstanding Questions A constellation of 6 satellites could make a significant contribution to earthquake forecasting, up to a week in advance of the event itself IR detectors could pick up thermal anomalies GNSS occultation could provide data for correlation A trial constellation could address outstanding questions Do the observed signatures occur in association with all types of earthquakes? Does the magnitude/intensity of the observed signatures correlate with the magnitude of the subsequent earthquake? Do the observed signatures ever occur in the absence of an earthquake event?

Changing the economics of space Thank you for the inspiration, Mino Surrey Satellite Technology Ltd. Tycho House, 20 Stephenson Road, Surrey Research Park, Guildford, Surrey, GU27YE, United Kingdom Tel: +44(0)1483803803 Fax:+44(0)1483803804 Email: info@sstl.co.uk Web:www.sstl.co.uk