Research Article Ferroresonance Study on the VT in the Karoon 4 Power Plant 400 kv GIS Substation

Similar documents
Research Article Survey of Induced Voltage and Current Phenomena in GIS Substation

A Study on Ferroresonance Mitigation Techniques for Power Transformer

VFTO STUDIES DUO TO THE SWITCHING OPERATION IN GIS 132KV SUBSTATION AND EFFECTIVE FACTORS IN REDUCING THESE OVER VOLTAGES

Ferroresonance in MV Voltage Transformers: Pragmatic experimental approach towards investigation of risk and mitigating strategy

Capacitive Voltage Substations Ferroresonance Prevention Using Power Electronic Devices

FERRORESONANCE SIMULATION STUDIES USING EMTP

A Special Ferro-resonance Phenomena on 3-phase 66kV VT-generation of 20Hz zero sequence continuous voltage

Power Frequency Withstand Voltage On-site testing of 400 kv GIS

Ferroresonance Experience in UK: Simulations and Measurements

Ferroresonance Conditions Associated With a 13 kv Voltage Regulator During Back-feed Conditions

Research Article A Simplified High Frequency Model of Interleaved Transformer Winding

Validation of a Power Transformer Model for Ferroresonance with System Tests on a 400 kv Circuit

GIS Disconnector Switching Operation VFTO Study

10. DISTURBANCE VOLTAGE WITHSTAND CAPABILITY

A Simple Simulation Model for Analyzing Very Fast Transient Overvoltage in Gas Insulated Switchgear

Ironing out resonance

ISSN: X Impact factor: (Volume 3, Issue 6) Available online at Modeling and Analysis of Transformer

TECHNICAL BULLETIN 004a Ferroresonance

CONTENTS. 1. Introduction Generating Stations 9 40

Research Article Resistive Ferroresonance Limiter for Potential Transformers

Bus protection with a differential relay. When there is no fault, the algebraic sum of circuit currents is zero

Solving Customer Power Quality Problems Due to Voltage Magnification

Simulation and Analysis of Ferroresonance in Power System

Module 2 : Current and Voltage Transformers. Lecture 8 : Introduction to VT. Objectives. 8.1 Voltage Transformers 8.1.1Role of Tuning Reactor

Modeling Ferroresonance Phenomena on Voltage Transformer (VT)

Protection of Electrical Networks. Christophe Prévé

SUPPRESSION METHODS FOR VERY FAST TRANSIENT OVER- VOLTAGES ON EQUIPMENT OF GIS

USING OVER-DAMPING METHOD TO SUPPRESS THE FERRO-RESONANCE OF POTENTIAL TRANSFORMER

UProtection Requirements. Ufor a Large scale Wind Park. Shyam Musunuri Siemens Energy

Do Capacitor Switching Transients Still Cause Problems?

DEPARTMENT OF EEE QUESTION BANK

Spectral analysis of voltages and currents during different modes of ferroresonance in switchgear

Non-conventional instrument transformers and power quality aspects an overview

New HVDC Interaction between AC networks and HVDC Shunt Reactors on Jeju Converter Stations

Tab 2 Voltage Stresses Switching Transients

AORC Technical meeting 2014

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS

Improvement of Power System Distribution Quality Due to Using Dc-Converter Loads and Electric Arc Furnaces. H.A. Khalik, M. A. Aziz, and E. Farouk.

The study of ferroresonance effects in electric power equipment

Estimation of Re-striking Transient Over voltages in a 132KV Gas insulated Substation

Ferroresonance Signal Analysis with Wavelet Transform on 500 kv Transmission Lines Capacitive Voltage Transformers

Parameter Study of Ferro-Resonance with Harmonic Balance Method

System grounding of wind farm medium voltage cable grids

Electromagnetic Disturbances of the Secondary Circuits in Gas Insulated Substation due to Disconnector Switching

COOPERATIVE PATENT CLASSIFICATION

FGJTCFWP"KPUVKVWVG"QH"VGEJPQNQI[" FGRCTVOGPV"QH"GNGEVTKECN"GPIKPGGTKPI" VGG"246"JKIJ"XQNVCIG"GPIKPGGTKPI

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

Finite Element Analysis of Leakage Inductance of 3-Phase Shell-Type and Core Type Transformers

Estimation of Re-striking Transient Overvoltages in a 3-Phase 132KV Gas insulated Substation

Analysis of Transient Recovery Voltage in Transmission Lines Compsensated with Tpcs-tcsc Considering Accurate Model of Transformer & Generator

I. INTRODUCTION IJSRST Volume 3 Issue 2 Print ISSN: Online ISSN: X

Ferroresonances during Black Starts - Criterion for Feasibility of Scenarios

The Effect of Various Types of DG Interconnection Transformer on Ferroresonance

Switching and Fault Transient Analysis of 765 kv Transmission Systems

Substation Preventive Maintenance

Pre-insertion Resistor of Switching Shunt Capacitor Banks

COMPARATIVE PERFORMANCE OF SMART WIRES SMARTVALVE WITH EHV SERIES CAPACITOR: IMPLICATIONS FOR SUB-SYNCHRONOUS RESONANCE (SSR)

Volume I Issue VI 2012 September-2012 ISSN

A SPECIAL CASE OF FERRORESONANCE INVOLVING A SERIES COMPENSATED LINE

Advanced Test Equipment Rentals ATEC (2832) CP RC. Resonance circuit for GIS testing

Effects of Phase-Shifting Transformers, and Synchronous Condensers on Breaker Transient Recovery Voltages

ANALITICAL ANALYSIS OF TRANSFORMER INRUSH CURRENT AND SOME NEW TECHNIQUES FOR ITS REDDUCTION

Electrical Power and Energy Systems

ELECTRICAL POWER ENGINEERING

Reducing the magnetizing inrush current by means of controlled energization and de-energization of large power transformers

Three-Phase/Six-Phase Conversion Autotransformers

Resonances in Collection Grids of Offshore Wind Farms

Earth Fault Protection

International Journal of Engineering Technology and Scientific Innovation

Novel Circuit Breaker Modeling in 275kV Substation

2. Current interruption transients

A Pyrotechnic Fault Current Limiter Model for Transient Calculations in Industrial Power Systems

2 Grounding of power supply system neutral

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

SWITCHING OVERVOLTAGES IN A 400-KV CABLE SYSTEM

4. CAPACITIVE VOLTAGE TRANSFORMERS AND COUPLING CAPACITORS Oil-paper insulation

Study of High Voltage AC Underground Cable Systems Silva, Filipe Miguel Faria da; Bak, Claus Leth; Wiechowski, Wojciech T.

Improving Current and Voltage Transformers Accuracy Using Artificial Neural Network

ACS 1000 Transformer Failure Investigation. Nathan Schachter, Peng

VOLTAGE SAG MITIGATION USING A NEW DIRECT CONTROL IN D-STATCOM FOR DISTRIBUTION SYSTEMS

RESONANT TRANSFORMER

New Modeling of Metal Oxide Surge Arresters

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2011/48

Real Time Monitoring of SF6 Gas Pressure for Optimization Point on Wave Switching of SF6 Circuit Breaker

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS

Effect of Circuit Breaker Shunt Resistance on Chaotic Ferroresonance in Voltage Transformer

DIFFERENCE BETWEEN SWITCHING OF MOTORS & GENERATORS WITH VACUUM TECHNOLOGY

Ferroresonance Elimination in 275kV Substation

Long lasting transients in power filter circuits

Delayed Current Zero Crossing Phenomena during Switching of Shunt-Compensated Lines

Modeling and Analysis of a 3-Phase 132kv Gas Insulated Substation

Neutral Reactor Optimization in order to Reduce Arc Extinction Time during Three-Phase Tripping

HIGH VOLTAGE ENGINEERING(FEEE6402) LECTURER-24

شركة الوقت للكهرباء والمقاوالت ذ.م.م.

Voltage and Current Waveforms Enhancement using Harmonic Filters

Power Quality enhancement of a distribution line with DSTATCOM

Numbering System for Protective Devices, Control and Indication Devices for Power Systems

Protection Basics Presented by John S. Levine, P.E. Levine Lectronics and Lectric, Inc GE Consumer & Industrial Multilin

Unit 3 Magnetism...21 Introduction The Natural Magnet Magnetic Polarities Magnetic Compass...21

Partial Discharge, Survey or Monitor?

Transcription:

Research Journal of Applied Sciences, Engineering and Technology 7(9): 1721-1728, 214 DOI:1.1926/rjaset.7.455 ISSN: 24-7459; e-issn: 24-7467 214 Maxwell Scientific Publication Corp. Submitted: January 2, 213 Accepted: February 22, 213 Published: March 5, 214 Research Article Ferroresonance Study on the VT in the Karoon 4 Power Plant 4 kv GIS Substation Seyed Mohammad Hassan Hosseini and Yasertoghaniholari Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran Abstract: The main subject of the essay is study of ferroresonance in the voltage transformers at 4 kv GIS substation. Ferroresonance has destructive effects such as, undulations of high voltages, warming of transformers, increasing of heat, temperature increasing and damaging voltage transformers, high noise due to evolution due to magnet and bad working of protective instruments. So we have to apply limitations on system parameters to avoid such an undesirable phenomenon like this. In this study ferroresonance phenomenon on VTs of real GIS substation (karon 4 power plant had been studied. With regarding high risk of ferroresonance due to studied substation conditions, damping circuit (FDSD, ZD) had been designed with help of EMTP-RV and the results are presented in two conditions of being without damping and by using of damping in the circuit. The results show damping circuit is successful in obviation of these dangerous oscillations. Keywords: FDSD, ferroresonance, Gas Insulated Substation (GIS), Voltage Transformers (VT), ZD INTRODUCTION Regarding to the advantages of GIS substations in comparison with AIS (Air Insulated Substation) and purposing that instruments such as current and voltage transformer, bypass disconnect or switch, high voltage conductor, grounding switchgear, breaker and etc., that are kept in boxes under pressure of SF6 gas and increasing usage of these substations toward the past and regarding to this point that urban and industries areas with increasing load and insufficient area and needing high voltages are regarded, in last year's the use of GIS substation have increased (Tseng and Cheng, 211). In this paper we study the Karoon 4 power plant GIS substation that is a 4 kv substation with double bus bar and disconnect or switch, this substation is fed by 4 single phase 1 MW transformers. The outputs of these transformers are connected to the 4 kv network with 4 air lines. Despite the advantages of this gas insulated substations, it has fundamental problems. One of the main ingredients of destruction of the instruments in GIS substations is ferroresonance that influenced the insulation of network at different point. Ferroresonance is one of the rare and destructive phenomena in power network that figured as an on linear resonance that happen between the capacitor of the network and the nonlinear inductance of voltage transformer at the saturation instant. The word of ferroresonance, that arrived to the books and papers from the end of the second decade of 2 th century, use for all the oscillation phenomena in electrical circuits that consist of at least nonlinear self, capacitor, voltage source (generally sinusoidal). The effective elements in causing resonance and ferroresonance in power systems are, harmonic, core saturating, changing inductance of wiring, cutting of 1 or 2 phases of system, unsymmetrical load, inappropriate use of circuit breakers and fuses, using cables with high capacitance. Ferroresonance has other destructive effects such as oscillation of high voltages, intricacy in wave forms of voltage and current, warming of transformers, damaging Voltage Transformers (VT), for example in Karoon 4 power plant 4 kv GIS substation, loud noise due of evolution due to magnet, malfunction protective instruments. Numerous cases of ferroresonance in power system have been reported in years. In last year's the number of ferroresonance because of the intricacy of system and operating modern instrument has increased. Hyundai Reports (211) and Jacobson (23) outbreak of ferroresonanc has some signs like permanent over voltage with vast amplitude as phase to phase or phase to ground, permanent over current with vast amplitude, shifting voltage zero point, increasing temperature of voltage transformer, continual increasing of the noise altitude of trans formers and reactors, damaging electrical equipment's such as capacitor banks and CVT because of increasing the thermal effect or breakage of dampers of the protective equipment's. Therefore some Corresponding Author: Seyed Mohammad Hassan Hosseini, Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran This work is licensed under a Creative Commons Attribution 4. International License (URL: http://creativecommons.org/licenses/by/4./). 1721

Res. J. Appl. Sci. Eng. Technol., 7(9): 1721-1728, 214 limitations should be applied to parameters of systems these (Qing and Yufeng, 28; Shahabi et al., 29). All of the studies have been simulated by EMTP-RV software. PARALLEL CAPACITOR IN HV CIRCUIT BREAKER Power capacitors have different usage in structure and mechanism of power circuit breaker especially at high voltage levels. Like grading capacitors that have two breaking boxes in series. Voltage usually doesn t distribute equally on breaking boxes. To avoid making stress of high voltage and smoothing voltage on them, capacitors parallel with contacts of circuit breaker that usually have capacity between 9 to 16 pf for each breaking box are used. Although by the development of technology usage of these capacitors have been reduced but they are used in high voltages yet (Jacobson, 23; Mohseni et al., 28). Some defects of these capacitors are increasing the risk of ferroresonance with nearby voltage transformers, increasing the weight, complexity of installation operation and increasing leakage current. Karoon 4 case study: The purpose of this paper is to study the ferroresonance on Voltage Transformers (VT) in Karoon 4 power plant GIS 4 kv substation as an example of GIS substation with bus bar and long line that have been effected by this phenomenon by to avoid occurrence of undesirable phenomena like increasing the voltage and damaging isolation and heating, destruction and damaging of VT. These simulations are done by EMTP-RV Software and finally propose the practical method to resist it. There conductive wires of A and C phase of damping reactor have been burnt by the high current at secondary circuit because of the single phase with VT ferroresonance. One of the reasons of this phenomenon is that the VT Company adequately doesn t consider the capacity of the damping reactor to absorb the resonance energy in VT in some cases of GIS switching conditions during first energizing at site. Shoup et al. (211) Special recommendation presented in this study offer to avoiding over heating Beside VT of BUS 1 and 2 and damping reactor until additional FDSD (Ferroresonance Detecting and Suppression Device) at site became adjusted. The related Circuit Breaker (CB) for each 4 kv GIS bay should be closed about 5 min after closing of both DS's (disconnecting switches) during energization. Reversely, during power Outage one of both DS's should be opened within 5 min after opening of the circuit breaker (Jacobson, 23; Abbasi and Seifi, 29). On 19 and 24 November in 21, VT of #1 bus was exposed torero-resonance 2 times during energizing (1 min) and de-energizing (2 min.) by switching of CB and DS of C 3 bay that is shown in Fig. 1. Fig. 1: Karoon4 4kV substation single line diagram state of energizing from first circuit output line of Karon3 and bus 1 and corresponding VT 1722

Res. J. Appl. Sci. Eng. Technol., 7(9): 1721-1728, 214 Fig. 2: Karoon4 4kV substation single line diagram state of energizing from second circuit output line of Karoon3 and bus 2 and corresponding VT Fig. 3: Burnt damping reactor (ZD) of A-phase for #2 Bus VT On 2 and 21 November in 21, VT of #2 bus were exposed to ferroresonance 2 times during energizing (5 min) and de-energizing (2 min) by switching of CB and DS of C4 bay through #2 bus bar (Fig. 2 and 3). FERRORESONANCE DETECTION SUPERVISION DEVISE (FDSD) By regarding presented figures of this part such as Fig. 4, a VT with conversion rate of 4/ 3 to 11/ 3 connected to a ferroresonace detector circuit is shown Hyundai Reports (211). In continue internal circuit of detecting unit is connected to burden with value of.33 that is equivalent of parallel branches. And also in 1723 Fig. 5 and 6, appearance of a FDSD and different part of operating lamp A, B, Power Lamp, sensitivity Change, Test Switch, Optional Output Control in three phase and single phase detector unit is shown. Ferroresonance analysis with FDSDZD: The conditions of standard analysis that can be used in done simulation are as below: CB Capacitance = 4, pf/phase Unit Earth Capacitance for GIS = 52.4pF/m Internal Earth Capacitance of M.Tr: 13,366 pf/phase Internal Earth Capacitance of in Shunt Reactor: 3,382 pf/phase In above analysis, karoon 4 power plant GIS substation, that is a 4 kv substation with double bus bar with bypass disconnect or switch, is studied and equivalent circuit of GIS substation, that consist of main parameters like, source and resistance series with it and CB that capacitor C1 is parallel with it and as explained at section 3 above GIS circuit breaker had two 2 pf capacitor parallel with contacts of circuit breaker and equivalent capacitance is 4 pf. The simulation is done on the basis of these values. Above simulated circuit consist of equivalent capacitor of GIS

Res. J. Appl. Sci. Eng. Technol., 7(9): 1721-1728, 214 Setting values of detecting unit 1. Base frequency(5hz) : 63V or 95V±5%, adjustable range: ~12%, 15% of rated voltage 63.5V 2. 1/3 of base frequency: 32V±1% 3. 1/5 of base frequency : 19V±1% 4. Operating time: 35 ms 5. Release time: 5 ms 6. Control voltage: DC11V Burden unit 2 Ω* 6 pieces (total.33ω) parallel connection Fig. 4: Information for adjusting FDSD 1724

Res. J. Appl. Sci. Eng. Technol., 7(9): 1721-1728, 214 Fig. 5: Picture of seeming figure of FDSD Fig. 6: Diagram of three phase FDSD connection 1725

Res. J. Appl. Sci. Eng. Technol., 7(9): 1721-1728, 214 C2 parallel capacitor C.B MPLOT.4uF SW2 1E15 2us.3671uF C1 RL1 32,86.21 L1 8.5 5.12M R1 Lnonl1 1196 1196 p p- VT 2 s1 s1 115 s2 L3 1mH SW3 1E15 S W1 FDSD V1 VM?v 325ms 825ms 4kVRMSLL /_ AC1?vip equivalent capacitor GIS Ideal transf ormer s2 L4 1mH.3 R2 V2 VM?v scp1 scope.33 R4 Vrms ZD prms1 Fig. 7: EMTP model for survey ferroresonance with FDSDZD substation in different studied conditions that are as a result of summation of existing parameters which is studied in bellow waveforms. Also in this circuit, one VT with prime voltage of 4 kv and secondary voltage of 15 V is used for simulation and at last ZD and FDSD equivalent circuit for damping probability of ferroresonance due to 4 pf capacitor parallel with CB are put (Shoup et al., 211; Piasecki et al., 29): If C1 = 4 pf and C2 = 382 pf (for VT of bus 1) Which capacitor: C2 = (53.2 5.6 5.6 2 6.5) *52.4 = 382 voltage v1 (v) 3 2 1-1 -2-3.5 1 1.5 2 2.5 Fig. 8: Voltage waveform of VT secondary voltage in damping ferroresonance (V1) If C1 = 4 pf and C2 = 7669 pf (for VT bus) Which capacitor: C2 = (53.2 5.6 7.5 7.2*9 2 7.2 6.5) *52.4 = 7669 The structure of gas switchers generally act like a capacitor (energized conductor-gas insulator-grounded body). Also because of the mentioned reasons in high voltages, capacitors parallel with breaker contacts are used. Capacitor parallel with breaker contacts are in series with GIS switcher capacitor, therefore always there is a path for transmission of capacitor current, even when the breaker is in open state. This current cause the voltage division between two capacitors and whatever the ratio of breaker parallel capacitor to GIS capacitor is larger (lower impedance), voltage after 1726 voltage (v) 4 x 15 2-2 -4.5 1 1.5 2 2.5 Fig. 9: Voltage waveform of VT primary circuit breaker and on the bus bar will be larger. GIS circuit breaker existing in mentioned substation has two 2 pf capacitors parallel with breaker contact that the

Res. J. Appl. Sci. Eng. Technol., 7(9): 1721-1728, 214 1 4 x 15 5 2 current ( i ) voltage (v) -5-2 -1.5 1 1.5 2 2.5 Fig. 1: Current waveform of VT primary voltage v1 (v) 8 6 4 2-2 -4-6 -8.5 1 1.5 2 2.5 Fig. 11: VT secondary voltage waveform in presence of ferroresonance (V1) 5 Fig. 13: Used voltage source waveform in simulated diagram with EMTP voltage v2 (v) -4.5 1 1.5 2 2.5 5 4 3 2 1-1 -2-3 -4.5 1 1.5 2 2.5 Fig. 14: VT secondary voltage waveform in damping ferroresonance (V2) CONCLUSION voltage v2 (v) 4 3 2 1-1 -2-3 -4-5.5 1 1.5 2 2.5 Fig. 12: VT secondary voltage waveform in presence of ferroresonance (V2) equivalent capacitance will be 4 pf and can cause the ferroresonance on equipment's like VT. Different producers of gas switchers use these capacitors to increase the operation of their circuit breakers (Abbasi and Seifi, 29; Piasecki et al., 29). One effect of ferroresonance due to breaker parallel capacitor is heating and burning VT in Karoon 4 power plant 4 kv GIS substation that is one of problems in such substation that their equipment are made by Hyundai company and other several company. 1727 In this study ferroresonance phenomenon on voltage measuring transformer in real 4 kv GIS substation (karon 4 power plant) has been studied. After simulation, Fig. 7 to 9 show primary and secondary voltage waveforms of VT and Fig. 1 shows primary current of VT for bus number 1. Figure 11 and 12 show secondary voltage waveform of VT in presence of ferroresonance for bus 1 and bus 2 in sequence. Figure 13 shows the source used in simulated diagram with EMTP and Fig. 14 shows the secondary voltage waveform of VT in damping ferroresonance for bus 2. The corresponding model has been presented and for different conditions, simulation proved ferroresonance on VTs of bus 1 and 2. To eliminate this phenomenon, ZDFDSD damper circuit had been designed and added to model, results of simulation showed success damping of these ferroresonance oscillations. REFERENCES Abbasi, A. and A. Seifi, 29. Fast and perfect damping circuit forferroresonance phenomena in coupling capacitor voltage transformers. J. Electr. Pow. Compo. Sys., 37: 393-42.

Res. J. Appl. Sci. Eng. Technol., 7(9): 1721-1728, 214 Hyundai Reports, 211. Ferroresonance of VT. Hyundai Heavy Industries Co., Ltd., Electro Electric System Div./Electro-Mechanical Research Institute. Jacobson, D.A.N., 23. Examples of Ferroresonance in a high voltage power system. Proceeding of the IEEE Power Engineering Society General Meeting, Vol. 2. Mohseni, H., J. Jadidian, A.A. Shayegani-Akmal, E. Hashemi, A. Naieny and E. Agheb, 28. In-situ insulation test of 4 kv GIS. IEEE T. Dielect. El. In., 15(5): 1449-1455. Piasecki, W., M. Stosur, M. Florkowski, M. Fulczyk and B. Lewandowski, 29. Mitigating ferroresonance in HV inductive transformers. Proceeding of the Presented at the International Conference on Power System Transients (IPST 9). Kyoto, Japan, June 3-6. Qing, L. and Z. Yufeng, 28. Influence of switching conditions on very fast transient over-voltage in 5kV gas insulated substation. Proceeding of International Conference on Electrical Machines and Systems (ICEMS 28), pp: 4451-4454. Shahabi, S., D. Babazadeh, R.E. Shirvani and M. Purrezagholi, 29. Mitigating Ferroresonance in Coupling Capacitor Voltage Transformers with Ferroresonance Suppressing Circuits. Proceeding of IEEE EUROCON 29. St.-Petersburg, pp: 817-822. Shoup, D., J. Paserba, D. Sullivan, P. Bolin and R. Whiteside, 211. Ferroresonance Analysis of 5 kv Gas-Insulated Substation. Mitsubishi Electric Power Products, Inc. (MEPPI), Warrendale, PA 1586, USA. Tseng, K.H. and P.Y. Cheng, 211. Mitigating 161 kv electromagnetic potential transformers ferroresonance with damping reactors in a gasinsulated switchgear. IET Gener. Transm. Dis., 5(4): 479-488. 1728