Data Sheet. AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel. Features. Description. Applications

Similar documents
Data Sheet. AEDT-9340 Series High Temperature 115 C 1250/2500 CPR 6-Channel Commutation Encoder. Description. Features.

Data Sheet. AEDS-9240 Series 360/720 CPR Commutation Encoder Module. Features. Description. Applications

Data Sheet. AEDT-9140 Series High Temperature 115 C Three Channel Optical Incremental Encoder Modules 100 CPR to 1000 CPR. Description.

Data Sheet. HEDB-9100 and HEDB-9000 Two Channel Optical Incremental Encoder Modules Bundle With Codewheel. Description. Features.

1.52 (0.060) 20.8 (0.82) 11.7 (0.46) 1.78 ± 0.10 (0.070 ± 0.004) 2.92 ± 0.10 (0.115 ± 0.004) (0.400)

Data Sheet. AEDx-8xxx-xxx 2- or 3-Channel Incremental Encoder Kit with Codewheel. Description. Features. Assembly View. Housing.

HEDS-9730, HEDS-9731 Small Optical Encoder Modules 480lpi Digital Output. Features. Applications VCC 3 CHANNEL A 2 CHANNEL B 4 GND 1

Features DIMENSIONS ARE MILLIMETERS INCHES LEAD THICKNESS: CH B CH A. Gnd VCC X 50 H97X

HEDS-9000/9100 Two Channel Optical Incremental Encoder Modules. Features. Applications

Data Sheet. HEDL-65xx, HEDM-65xx, HEDS-65xx Series Large Diameter (56 mm), Housed Two and Three Channel Optical Encoders. Description.

The two channel digital outputs and the single 5 V supply input are accessed through five (0.060) 20.8 (0.82) 11.7 (0.

Data Sheet. HEDS-978x Series Small Optical Encoder Modules. Description. Features. Package Dimensions


8.6 (0.34) 1.52 (0.060) 20.8 (0.82) 11.7 (0.46) 1.78 ± 0.10 (0.070 ± 0.004) 2.92 ± 0.10 (0.115 ± 0.004) 10.2 (0.400)

The quadrature signals and the index pulse are accessed through five inch square pins located on 0.1 inch centers.

Agilent AEDS-962x for 150 LPI Ultra Small Optical Encoder Modules

Features 8.6 (0.34) 1.52 (0.060) 20.8 (0.82) 11.7 (0.46) 1.78 ± 0.10* (0.070 ± 0.004) 2.92 ± 0.10** (0.115 ± 0.004) 10.2 (0.400)

The line driver option offers enhanced performance when the encoder is used in noisy environments, or when it is required to drive long distances.

codestrip, these modules detect relative linear position.

Data Sheet. HEDS-9710, HEDS-9711 Small Optical Encoder Modules 360 Ipi Analog Current Output. Features. Description. Block Diagram.

Features. Electrical Outputs Complementary outputs: A, A, B, B, I, I I and I available only on three channel encoders

AEDA-3200-Txx Series Ultra Miniature, High Resolution Incremental Encoders


Quick Assembly Two and Three Channel Optical Encoders. Features. Applications

Data Sheet. HEDR-5xxx High Resolution Series Three Channel Quick Assembly Encoders. Description. Features. Applications

Small Optical Encoder Modules Technical Data

HEDR-8000 Series, HEDR-8100 Series, HEDR-8010 Series Reflective Optical Surface Mount Encoders. Features 6.2 ± 0.20 (0.244 ± 0.

Features. Applications

Data Sheet. AEAT-601B Incremental Magnetic Encoder. Description. Features. Exploded View. Applications


Agilent AEDA-3200-Txx Series Ultra Miniature, High Resolution Incremental Encoders

Data Sheet. AEDR-850x 3 Channel Reflective Incremental Encoders. Description. Features. Applications

Data Sheet. AEDR-850x 3 Channel Reflective Incremental Encoders. Description. Features. Applications

Agilent AEDA-3300 Series Ultra Miniature, High Resolution Incremental Kit Encoders Data Sheet

Product Change Notice

Data Sheet. AEDR-8320 Encoder. Reflective Surface Mount Optical Encoder. Description. Features. Applications

Motion Sensing and Control Products

AEDR-871x. Data Sheet. 3-Channel High Resolution Reflective Incremental Encoder (Digital Outputs) Description. Features.

Optical Kit Encoder Page 1 of 5. Description. Features

Optical encoder MEC22 HR

Magnetic Encoder MEM 22

Features. Applications. Plastic Housing. Sensor PCB Assembly. Plastic Hub. Plastic Base Plate. 2 x screws

The World of Motion Control

The World of Motion Control

JR12 Jam Nut Mount Optical Encoder

Data Sheet MEM 22. Incremental Encoder Magnetic


Data Sheet MEM 16. Incremental Encoder Magnetic

Data Sheet. AEAT-6600-T16 10 to16-bit Programmable Angular Magnetic Encoder IC. Description. Features. Specifications.

EM2. Transmissive Optical Encoder Module Page 1 of 7. Description. Features

Data Sheet. AEAT-7000 Series Ultra-precision 13-Bit Gray Code Absolute Encoder Module. Description. Features. Applications

QR12. Output. A = Line Driver B = Line Driver ABZ/ Open Collector UVW C = Sin/Cos/ Line Driver UVW D = Sin/Cos/Open Collector UVW

Mini Encoder High Resolution

AS37-H39B Series. 39-Bit Battery Backup Multi-Turn Absolute Encoder. Data Sheet. Introduction. Features. Benefits. Operating Theory.

LP12 (1.22 ) Diameter Optical Encoder

Optical Kit Encoder Page 1 of 11. Description. Mechanical Drawing. Features

EC35. Optical Commutation Kit Encoder Page 1 of 7. Description. Mechanical Drawing. Features

AS38-H39E Series. 39-Bit Energy-Harvesting Multi-Turn Absolute Encoder. Data Sheet. Introduction. Features. Benefits. Applications.

SE22 Mini Encoder Data Sheet 5V TTL power supply optical model

QR12 (1.22 ) Diameter Optical Encoder

Data Sheet. AEDR-872x 3-Channel Reflective Incremental Encoder (Analog Output) Description. Features. Applications

Data Sheet. AEAS Ultra-Precision 16 bit Gray Code Absolute Encoder Module. Description. Functional Description. Features. Background.

Data Sheet. AEAT GSH0 (Full Option) Ultra-precision 17-Bit Absolute Single Turn Encoder. Features. Description. Applications

HS30A Optical Kit Encoder A, B Channel Quadrature TTL Outputs

Feedback Devices. By John Mazurkiewicz. Baldor Electric

JHS-30A Optical Kit Encoder A, B Channel Quadrature TTL Outputs Features

HD25. Industrial Rugged Metal Optical Encoder Page 1 of 6. Description. Mechanical Drawing. Features

Features. Applications

MAE3. Absolute Magnetic Kit Encoder Page 1 of 8. Description. Mechanical Drawing. Features

MT6801 Magnetic Rotary Encoder IC

Model 25B-F/S/L Solid Shaft Low Line Incremental Optical Rotary Encoder

MODEL S15 Incremental Optical Rotary Encoder

MA3. Miniature Absolute Magnetic Shaft Encoder Page 1 of 8. Description. Mechanical Drawing. Features

WSE22 - Magnetic shaft encoder

Rotary Position Technology Incremental Encoders

Evaluation Kit: MPS 160 ASIC. Magneto Encoder ASIC

Motor Encoders. With Motor encoders Series M - Optimal control of motor feedback -

12 Megabaud Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and 200 μm HCS. Features. Applications

MT6804 Magnetic Rotary Encoder IC

4 / 24,5 2,6 / steel, black coated. clockwise, viewed from the front face. ø15,9 ø17-0,052 ø6-0,05 8,1 ±0,3 2, T

Encoders. Series 21 Hollow-Shaft Rotary Optical Encoders Digital incremental or sine/cosine and absolute format. Features & Benefits.

RM22 rotary magnetic modular encoder

MA3. Miniature Absolute Magnetic Shaft Encoder Page 1 of 8. Description. Order Using #MA3 starting at $36.00 per unit. Features

Data Sheet. HDSM-291x/293x (7.0mm) Dual digit surface mount LED display. Features. Description. Package Dimensions. Ordering Information

Commutation and incremental magnetic encoder solutions

MAE3. Absolute Magnetic Kit Encoder Page 1 of 9. Description. Features EH-1009.pdf

Photologic Dual Channel Encoder OPB950Z, OPB951

Data Sheet AS25/AS50. Absolute / Incremental Singleturn Encoder 18 Bit

Features. Red Green Yellow Orange Description

RoHS. Unipolar and Bipolar winding Lead wire type 2H5654U20

Data Sheet. HDSM-541x, HDSM-543x 0.56 (14.22mm) Dual digit surface mount LED display. Description. Features. Package Dimensions. Ordering Information

43000 Series: Size 17 Linear Actuator. Haydon Series Size 17 hybrid linear actuators are our best selling compact hybrid motors.

WSM22 - Magnetic shaft encoder

Data Sheet. Description. Features. Transmitter. Applications. Receiver. Package

Rotary Measurement Technology Incremental Encoders

Data Sheet. ASMT-Lx50 Flexible Light Strip Module. Features. Description. Applications

DRS61: Incremental encoders, number of lines and zero pulse width freely programmable DRS60: Incremental Encoders with Zero-Pulse-Teach

Features & Benefits 360, 512, 720, 1000, 1024, 1440, 1800, 2000, 2048, 2880, 3000, 3600, 4000, 4096, 5000, 5120, 6000, 7200, 8000, 8192, 9000, 10000

Data Sheet. HLMP-132x Series, HLMP-142x Series, HLMP-152x Series T-1 (3 mm) High Intensity LED Lamps. Features. Description. Package Dimensions

Data Sheet. ASSR-4118, ASSR-4119 and ASSR Form A, Solid State Relay (Photo MOSFET) (400V/0.10A/35 ) Features. Description. Functional Diagram

Transcription:

AEDB-9340 Series 1250/2500 CPR Commutation Encoder Modules with Codewheel Data Sheet Description The AEDB-9340 optical encoder series are six-channel optical incremental encoder modules with codewheel. The encoder is compliant to RoHS directive and had been declared as a lead free product. When used with codewheel, these modules detect rotary position. Each module consists of a collimated LED source and detector IC enclosed within a small plastic package. Due to highly collimated light source and unique photo detector array designs, these modules are extremely tolerant to mounting misalignment. The AEDB-9340 optical encoder has integrated commutation output (U, V, W), two-channel quadrature outputs plus a third channel index output (A, B, I). This ungated index output is a positive index pulse that is generated once for each full rotation of the codewheel. The AEDB-9340 series optical encoder is designed for use with a codewheel that has an optical radius of 15 mm (0.590 inch) for 1250/2500 CPR, 12.3 mm (0.484 inch) for 1024/2048 CPR and 12 mm (0.472 inch) for 1000/ 2000 CPR. The quadrature, index, commutation signals and power supplied to encoder are accessed through eight 0.46 mm square male connector pins located on 1.27 mm (pitch). Features Two-channel quadrature output with ungated index pulse (A, B, I) Three-channel integrated commutation output (U, V, W) Up to 2500 Cycles Per Revolution (CPR) Easy assembly with alignment jig Designed to fit into circular shaped housing Up to 150 khz frequency response 10 C to 85 C operating temperature TTL compatible Single 5 V supply Integrated feedback device for Brushless DC Motor Applications Typical applications include industrial printers, plotters, tape drives, and industrial and factory automation equipment. Note: Avago Technologies encoders are not recommended for use in safety critical applications, e.g., ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed. The AEDB-9340 optical encoder provides advanced motion control detection with integrated commutation outputs (U, V, and W). It is equivalent to those produced by Hall Switches, thus making it ideal for servo motor application. With the AEDB-9340 solution, the system will be more compact, have reduced alignment time with usage of alignment jig, thus making assembly process much easier for housed encoder integration. It has superior switching accuracy due to much lower hysteresis when compared to a Hall Switches. The commutation signals can be generated for Brushless DC motor of different rotor pole-pairs by simply changing with matching pole-pair codewheel.

Theory of Operation The AEDB-9340 optical encoder is a emitter-detector module. Coupled with codewheel, these modules translate the rotary motion of a shaft into six-channel digital output. The modules contain a single Light Emitting Diode (LED) as light source. The light is collimated into a parallel beam by means polycarbonate lens located directly over the LED. Opposite the emitter is a detector IC. This IC consists of multiple sets of photo detectors and signal processing circuitry necessary to produce digital waveforms output. The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by pattern of spaces and bars on the codewheel. The Photodiodes that detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced in such away that light period on one pair of detectors corresponds to dark period on adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in A, A, B, B, I, and I. Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase). The commutation feedback (U, V, W) signals are generated based on the codewheel design. Definitions Cycles (N): The number of electrical cycles per revolution (CPR). Note: CPR refers to the raw signal from encoder, that is the cycles before 4x decode. One Cycle: 360 electrical degrees ( e). One Shaft Rotation: 360 mechanical degrees. Cycle Error (D C): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of 1/N of a revolution. Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180 e or 1/2 cycle. Pulse Width Error (D P): The deviation, in electrical degrees, of the pulse width from its ideal value of 180 e. State Width (S): The numbers of electrical degrees between transitions in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90 e. State Width Error (D S): The deviation, in electrical degrees, of each state width from its ideal value of 90 e. Commutation Accuracy (D I): The deviation, in mechanical degrees, after shaft rotates passing the reference point (Index channel) to the first Channel-U pulse. The measurement from middle of Channel-I to rising edge of Channel-U. Phase (f): The numbers of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally 90 e for quadrature output. This value is nominally 90 e for quadrature output. Phase Error (Df ): The deviation of the phase from its ideal value of 90 e. Direction of Rotation: When the codewheel rotates in the clockwise direction viewing from top of the module (direction from pin U to B), channel A will lead channel B. If the codewheel rotates in the opposite direction (direction from pin B to U), channel B will lead channel A. Optical Radius (Rop): The distance from the codewheel s center of rotation to the optical center (O.C.) of the encoder module. Index Pulse Width (Po): The number of electrical degrees that an index is high with reference to channel A or channel B during one full shaft rotation. 2

AEDB-9340 Technical Specifications Absolute Maximum Ratings Parameter Symbol Min. Max. Units Notes Storage Temperature T S -40 85 C Operating Temperature T A -10 85 C Supply Voltage V CC -0.5 7 Volts Recommended Operating Conditions Parameter Min. Typ. Max. Units Notes Temperature -10 25 85 C Supply Voltage (Detector) 4.5 5.0 5.5 Volts Ripple < 100 mvpp Operating Frequency 1250 CPR 75 khz Velocity (rpm) x N/60 2500 CPR 150 khz Shaft Radial Play Plus Eccentricity ±0.025 mm TIR Shaft Axial Play ±0.100 mm Electrical Characteristics Electrical Characteristics over Recommend Operating Range, Typical at 25 C Parameter Symbol Min. Typ. Max. Units Notes Supply Current I CC 40 60 80 ma High Level Output Voltage V OH 2.4 V Low Level Output Voltage V OL 0.4 V Rise Time t r 200 ns C L = 14 pf Fall Time t f 20 ns Loading Capacitance C LOAD 47 pf Encoding Characteristics Encoding Characteristics over the Recommended Operating Conditions and Mounting tolerances. These characteristics include codewheel contribution. The typical values are average over the full rotation of the codewheel tested at 25 C, 500 RPM, 5V. Parameter Symbol Minimum Typical Maximum Units Pulse Width Error DP 7 50 e Logic State Width Error DS 5 50 e Phase Error Df 2 25 e Cycle Error DC 20 50 e Position Error DQ 20 50 min. of arc Index Pulse Width 1000/1024/1250 CPR P 0 90 150 360 e 2000/2048/2500 CPR P 0 180 300 540 e 3

Commutation Characteristics (Channel U, V, W) Encoding Characteristics over the Recommended Operating Conditions and Mounting Conditions. These characteristics include codewheel contribution. The typical values are average over the full rotation of the codewheel. Parameter Symbol Minimum Maximum Units Commutation Format Three Phase 4, 6, or 8 poles Commutation Accuracy (Middle of Channel I to Channel U) DI -1 +1 mechanical Commutation Accuracy (Channel U,V and W) D UVW -2 +2 mechanical Device Pinout Pin #1 start from left side. Pin Function 1 U 2 I 3 V 4 W 5 Ground PIN #1 PIN #8 6 V CC 7 A 8 B 4

Package Dimensions 40.12 28.4 R 20.00 C L 3.5 R 22.00 1.50 2 1.11 1.1 7.4 12.6 0.50 19.75 33.4 CHAMFER 45 x 1.60 TOP VIEW Note: All dimensions are given in mm. Figure 1a. 1000/1024/1250/2000/2048/2500 CPR encoder module dimensions 5

Package Dimensions, continued 40.12 28.4 C L 1.50 R 20.0 3.5 R 22.00 2 1.1 7.4 12.6 19.923 10.4 33.4 9.300 9.300 37.42 35.00 12.00 10.000 9.75 0.50 TOP VIEW Note: All dimensions are given in mm. Figure 2a. 1250/2500 CPR encoder module with codewheel dimensions 6

Mounting Considerations C L 25.40 12.70 2.00 13.33 16.00 BOTTOM VIEW RECOMMENDED SCREW SIZE: M1.6 x 0.35 RECOMMENDED MOUNTING SCREW TORQUE: 1Lbin (0.113 Nm) NOTES: 1. ALL DIMENSIONS ARE GIVEN IN mm. 2. USE ALIGNMENT TOOL HEDS-8952 TO MOUNT THE ENCODER WITH RESPECT TO SHAFT CENTER. 3. REFER TO AEDB-9340 SERIES APPLICATION NOTE FOR STEP BY STEP ALIGNMENT AND INSTALLATION PROCEDURE. Figure 2b. 1250/2500 CPR encoder mounting considerations 7

Package Dimensions 40.12 33.4 28.4 C L 3.5 1.50 2 1.1 7.4 12.6 7.7 6.588 31.91 29.40 12.00 9.75 0.50 TOP VIEW NOTE: ALL DIMENSIONS ARE GIVEN IN mm. Figure 3a. 1024/2048 CPR encoder module with codewheel dimensions 8

Mounting Considerations 25.40 C L R 20.00 12.70 R 22.00 2.00 10.62 2.71 16.00 BOTTOM VIEW RECOMMENDED SCREW SIZE: M1.6 x 0.35 RECOMMENDED MOUNTING SCREW TORQUE: 1Lbin (0.113 Nm) NOTES: 1. ALL DIMENSIONS ARE GIVEN IN mm. 2. USE ALIGNMENT TOOL HEDS-8951 TO MOUNT THE ENCODER WITH RESPECT TO SHAFT CENTER. 3. REFER TO AEDB-9340 SERIES APPLICATION NOTE FOR STEP BY STEP ALIGNMENT AND INSTALLATION PROCEDURE. Figure 3b. 1024/2048 CPR encoder mounting considerations 9

Package Dimensions 40.12 28.4 C L 3.5 1.50 2 1.1 7.4 12.6 7.41 33.4 6.300 6.300 31.42 29.00 12.00 10.000 9.75 0.50 TOP VIEW NOTE: ALL DIMENSIONS ARE GIVEN IN mm. Figure 4a. 1000/2000 CPR encoder module with codewheel dimensions 10

Mounting Considerations 25.40 C L R 20.00 12.70 R 22.00 2.00 10.33 3.00 16.00 BOTTOM VIEW RECOMMENDED SCREW SIZE: M1.6 x 0.35 RECOMMENDED MOUNTING SCREW TORQUE: 1Lbin (0.113 Nm) NOTES: 1. ALL DIMENSIONS ARE GIVEN IN mm. 2. USE ALIGNMENT TOOL HEDS-8950 TO MOUNT THE ENCODER WITH RESPECT TO SHAFT CENTER. 3. REFER TO AEDB-9340 SERIES APPLICATION NOTE FOR STEP BY STEP ALIGNMENT AND INSTALLATION PROCEDURE. Figure 4b. 1000/2000 CPR encoder module mounting considerations 11

1.80 ±.03 CODEWHEEL A 0.20 3.00 3.80 1.10 ± 0.5 12.50 14.33 5.50 HUB 6.03 0.80 SHAFT RIGHT VIEW NOTES: 1. ALL DIMENSIONS ARE GIVEN IN mm. 2. CODEWHEEL GAP IS ALIGNED AT 0.2 mm FROM DATUM A. Figure 5. 1000/1024/1250/2000/2048/2500 CPR encoder module and codewheel mounting considerations 12

Codewheel Mechanical Drawing A 12.50 B +0.01 0 5.50 16.00 B +0.01 0 12.00 A 2-TAP M3 TILL HOLE 3.00 A SECTION A - A NOTES: ALL DIMENSIONS ARE GIVEN IN MILLIMETERS (mm). B = HUB INTERNAL DIAMETER (BASED ON THE SHAFT DIAMETER OPTION SELECTED). A= CODEWHEEL OUTER DIAMETER. CODEWHEEL CPR OUTER DIAMETER 1250/2500 35 mm 1024/2048 29.4 mm 1000/2000 29 mm Figure 6. Codewheel and hub dimensions 13

Output Waveform Specifications P C B A S1 S2 S3 S4 ø 360e-DEG QUADRATURE SIGNALS A AND B I P o I 0 ± 1 MECHANICAL DEGREE U V W S1 S2 S3 S4 S5 S6 180 MECH-DEG 30 MECH-DEG ONE ABSOLUTE MECHANICAL REVOLUTION (360 MECH-DEG) INDEX AND COMMUTATION SIGNALS Figure 7. Output waveform specification of 2 pole pairs (= 4 poles) for counterclockwise rotation, viewed from the top. Note: In the above waveform, quadrature signals A,B are not drawn to scale with respect to index pulse and commutation signals. Pole vs. State Width Table Number of States/ State Width Pole Mechanical Revolution (Mechanical Degree) 4 12 30 6 18 20 8 24 15 14

Ordering Information Encoder Bundled with Codewheel AEDB-9340 CPR Shaft # # W = 2500 CPR U = 2048 CPR T = 2000 CPR L = 1250 CPR J = 1024 CPR B = 1000 CPR 02 = 3 mm 04 = 5/32 in 05 = 3/16 in 06 = 1/4 in 11 = 4 mm 14 = 5 mm 12 = 6 mm 13 = 8 mm 15 = 10 mm Pole Pair # A 2 Pole Pairs B 3 Pole Pairs C 4 Pole Pairs Encoder Only AEDS-9340 CPR # W = 2500 CPR U = 2048 CPR T = 2000 CPR L = 1250 CPR J = 1024 CPR B = 1000 CPR 00 Alignment Tool HEDS-8950 Alignment tool for 1000/2000 CPR HEDS-8951 Alignment tool for 1024/2048 CPR HEDS-8952 Alignment tool for 1250/2500 CPR Note: Options highlighted in RED are currently available to order. Contact factory for enquiries on the rest of the options. For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0248EN AV02-0075EN January 9, 2007