Module 12 : System Degradation and Power Penalty

Similar documents
FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 24. Optical Receivers-

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Module 10 : Receiver Noise and Bit Error Ratio

Unit-5. Lecture -4. Power Penalties,

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22.

3. Design of single-channel IM/DD systems

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

OFC SYSTEM: Design Considerations. BC Choudhary, Professor NITTTR, Sector 26, Chandigarh.

Module 16 : Integrated Optics I

Fundamentals of Digital Communication

SIGNAL DEGRADATION IN OPTICAL FIBERS

CHAPTER 4 RESULTS. 4.1 Introduction

Fiber-Optic Communication Systems

Lecture 12 Building Components

Optical Fiber. n 2. n 1. θ 2. θ 1. Critical Angle According to Snell s Law

Electronic Dispersion Compensation of 40-Gb/s Multimode Fiber Links Using IIR Equalization

UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS

Fiber Optic Communication Link Design

Chapter 8. Digital Links

BER Analysis for Synchronous All-Optical CDMA LANs with Modified Prime Codes

EE3723 : Digital Communications

for SWL and LWL Fiber Systems Chromatic Dispersion Limited Link Lengths David Cunningham, Leonid Kazovsky* and M. Nowell

Broadcast and distribution networks

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Jitter in Digital Communication Systems, Part 1

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

Digital Communication - Pulse Shaping

Project: IEEE P Working Group for Wireless Personal Area Networks N

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat.

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

Multi-Path Fading Channel

Section B Lecture 5 FIBER CHARACTERISTICS

Dynamic Behavior of Mode Partition Noise in MMF. Petar Pepeljugoski IBM Research

Photonics and Optical Communication Spring 2005

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Lecture 5 Fiber Optical Communication Lecture 5, Slide 1

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 35. Self-Phase-Modulation

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 29.

Wireless Communication Systems Laboratory Lab#1: An introduction to basic digital baseband communication through MATLAB simulation Objective

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

EE5713 : Advanced Digital Communications

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Downloaded from 1

Wireless Channel Propagation Model Small-scale Fading

Chromatic Dispersion Compensation in Optical Fiber Communication System and its Simulation

Improvements to Modal Noise Penalty Calculations

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Ultra Wideband Transceiver Design

DISPERSION COMPENSATION IN OFC USING FBG

af-phy July 1996

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

UNIT - 5 OPTICAL RECEIVER

High-speed Serial Interface

UNIT Write notes on broadening of pulse in the fiber dispersion?

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

The electric field for the wave sketched in Fig. 3-1 can be written as

UNIT - 6 ANALOG AND DIGITAL LINKS

Signal Conditioning Parameters for OOFDM System

Clarifying Issues Related to Spreadsheet Model using Full Link Simulation for 25G on MMF

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Investigations on the performance of lidar measurements with different pulse shapes using a multi-channel Doppler lidar system

STUDY OF ENHANCEMENT OF SPECTRAL EFFICIENCY OF WIRELESS FADING CHANNEL USING MIMO TECHNIQUES

OFC SYSTEM: Design & Analysis. BC Choudhary, Professor NITTTR, Sector 26, Chandigarh.

Dr. Suman Bhattachrya Product Evangelist TATA Consultancy Services

SUPPLEMENTARY INFORMATION

NETW 701: Wireless Communications. Lecture 5. Small Scale Fading

Channel operating margin for PAM4 CDAUI-8 chip-to-chip interfaces

Elements of Optical Networking

Fiber Optic Communications Communication Systems

AC : FIBER OPTICS COURSE FOR UNDERGRADUATE ELECTRICAL ENGINEERING STUDENTS

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0.

Optical Wireless Communications

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel

Understanding the performance of atmospheric free-space laser communications systems using coherent detection

Emerging Subsea Networks

Opto-electronic Receivers

Advanced Optical Communications Prof. R.K Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication

Chapter 2 Channel Equalization

Dynamic Behavior of Mode Partition Noise in MMF. Petar Pepeljugoski IBM Research

Module 19 : WDM Components

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Lectureo5 FIBRE OPTICS. Unit-03

FWM Suppression in WDM Systems Using Advanced Modulation Formats

Simulated Design and Analysis of PMD-induced Broadening of Ultra-Short Pulses in Optical Fiber Communication System

Transcription:

Module 12 : System Degradation and Power Penalty Lecture : System Degradation and Power Penalty Objectives In this lecture you will learn the following Degradation during Propagation Modal Noise Dispersion System Degradation due to Imperfect Components Extinction Ratio Relative Intensity Noise(RIN) Timing Jitter The SNR calculation and or the BER calculation assumes that the optical signal consists of ideal bit streams. That is, it assumes that the bit-1 consists of optical pulse of constant energy, and there is no energy in bit-0. In practice however, the bits are distorted due to various reasons and the optical signal is degraded in addition to the system noise. To compensate for the system degradation, the signal power has to be increased to achieve the same SNR or BER performance as that of an ideal system. This increase in power is called the Power Penalty.

There are two types of signal degradation which can contribute to the power penalty. 1) Degradation during propagation in the optical fiber 2) Degradation due to peripheral electronic and optic components in the system like the lasers, photo-detectors, couplers etc. Degradation during Propagation Modal Noise The modal noise is associate with the multimode fiber. Various propagating modes inside a multimode fiber interfere to produce a speckle pattern on the photo detector. Since the speckle is a spatial redistribution of the energy, and the photo-detector detects the total energy falling on the detector, as such the modal noise degrade the system performance. However, in practice, the photo-detector does not have a uniform response over its surface. Also the speckle pattern varies as function of time due to temperature and pressure variations giving a fluctuating photo current. This is the modal nose. The formation of speckle due to coherent interference of the various modes. Now, since various modes travel with different speeds, the coherent addition of different modes is possible only if the differential delay between different modes is much smaller compared to the coherence time. The coherence time of light is of the order of, where is the bandwidth of the source. The speckles would vanish if the modal delay is much larger than coherence time reducing the modal noise. For a source like LED, the spectral width is about 30-50 nm, giving spectral width of 3-5 THz. The coherence time of LED would be 0.2-0.3 psec. Since the typical inter-modal dispersion inside a multimode fiber is few nsec/km, even for small networks, where usually the multi-mode fiber is used, the modal noise is very small.

Modal noise becomes a problem when laser diodes are used as optical sources. Dispersion As seen earlier, the optical pulse broadens due to dispersion. On a single mode optical fiber, the pulse broadening is due to chromatic dispersion. The pulse broadening affects the system performance in two ways: 1) 2) Part of the bit energy spreads in the neighboring bits causing inter-symbol-interference (ISI). The reduction in the pulse energy because there is energy spread due to dispersion. Due to reduction in the pulse energy inside a bit, causes reduction in SNR and consequently reduction in BER. To get the same BER back, the signal power has to be increases, giving dispersion induced power penalty. The dispersion induced power penalty depends upon many factors like, the pulse shape, spectral profile of laser, fiber dispersion etc. The analysis however, generally carried out assuming that the pulse broadening is Gaussian. The dispersion induced power penalty then is related to the reduction in the peak of the Gaussian due to dispersion. Let a Gaussian pulse of width be launched inside a fiber. The pulse is given as Due to dispersion the pulse will broaden to have a width of where D is the dispersion of the fiber, and is the spectral width of the source. L is the

length of the fiber. The output pulse is The reduction in the peak amplitude of the pulse is Now the ISI is minimized if get,, where B is the bit rate. Even for the equality sign we Substituting in above equation we get The power penalty due to dispersion is Dispersion Power Penalty (db) 0 0 0.05 0.088 0.10 0.378 0.15 0.97 0.20 2.22

0.25 The system sensitivity degrades rapidly with the dispersion. System Degradation due to Imperfect Components Extinction Ratio A typical transmitter does not have zero photo-current during bit-0. This happens due to two reasons. 1) 2) A small optical energy is transmitted during bit-0. This is due to the fact that the laser is not biased at the zero current but is rather biased at the threshold current to increase the switching speed of the laser. For bit-0 then, a small incoherent light is emitted by the laser. There is dark current in a photo-diode. If powers are the photo-currents for the 0 and 1 bit respectively corresponding to optical, the extinction ratio for the data is defined as The parameter Q (defined earlier) can be written as where the average received power is and is the responsivity of the receiver. Inverting the relation we get We can note that for a given Q, the average power requirement increases with the extinction ratio. We can then define the power penalty as

Following Fig. shows the power penalty as a function of the extinction ratio. The power penalty may become significant if the semiconductor laser is biased above the threshold. For lasers biased below threshold, the extinction ratio is typically 0.05 and the power penalty is less than 0.4 db. Timing Jitter In a digital system the signal is generally sampled at the center of the pulse. Due to inaccuracy of the clock recovery at the receiver, the sampling of the pulse is not precisely at the center of the pulse but is little shifted in time. The sampling instant jitters around the mean with some variance. As such if the pulse has constant amplitude, the timing jitter does not affect the sampler out put. However, due to dispersion and due to reshaping, the pulses are rectangular. The sampling jitter then gets converted to the amplitude fluctuation which appears as the noise

on the output as shown in Fig. The sampling jitter random variable. is a random variable and hence the fluctuation in current is also a Due the fluctuations the mean of the peak current is reduced decreasing the SNR. The SNR can be restored by increasing the pulse amplitude. Hence there is power penalty for timing jitter. For raised cosine pulse shaping, the can be analytically calculated. A plot of power penalty due to timing jitter is shown in the Fig.

The timing jitter penalty obviously depends upon the fractional timing error in comparison to the bit duration. The plot therefore gives the power penalty as function of product of the rms value of the timing jitter and the data rate (inverse of bit duration). It can be noted that the power penalty very rapidly increases with the timing jitter. When the rms value of the timing jitter is about 0.15, the power penalty becomes infinite. For a Gaussian variable, the peak to peak deviation is about 6 times the standard deviation. A 0.15 fractional jitter means peak to peak variation in sampling time equal to the bit duration. In this case then, the bits can not be sampled properly, and hence the power penalty is infinite, meaning irrespective of the power, the system will never be able to get the data correctly. Recap In this lecture you have learnt the following Degradation during Propagation Modal Noise Dispersion System Degradation due to Imperfect Components Extinction Ratio

Relative Intensity Noise(RIN) Timing Jitter Congratulations, you have finished Module 12. To view the next lecture select it from the left hand side menu of the page