Z-PACK 2mm FB 5 Row, Vertical Plug to Right Angle Receptacle

Similar documents
0.8mm FH, Board to Board Vertical Plug to Vertical Receptacle, 10mm Stack Height

0.8mm FH, Board to Board Vertical Plug to Vertical Receptacle, 5mm Stack Height

Z-PACK 2 mm HM Connector 2mm Centerline, Eight-Row, Right-Angle Applications

Z-PACK HS3 6 Row Vertical Plug to Right Angle Receptacle

Z-PACK HS3 10 Row Vertical Plug to Right Angle Receptacle

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch

Aries Kapton CSP socket

Aries QFP microstrip socket

SIGNAL INTEGRITY ANALYSIS AND MODELING

Aries Center probe CSP socket Cycling test

Aries Kapton CSP socket Cycling test

LVDS Owner s Manual. A General Design Guide for National s Low Voltage Differential Signaling (LVDS) Products. Moving Info with LVDS

Agilent E2695A SMA Probe Head for InfiniiMax 1130 Series Active Oscilloscope Probes. User s Guide

High Data Rate Characterization Report

Z-Dok High-Performance Docking Connector

High Speed Characterization Report

MICTOR. High-Speed Stacking Connector

High Speed Characterization Report

Aries CSP microstrip socket Cycling test

RClamp3654P RailClamp Low Capacitance TVS Array

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch ADG3248

if the conductance is set to zero, the equation can be written as following t 2 (4)

High Speed Characterization Report

High Data Rate Characterization Report

High Speed Characterization Report

DS1868B Dual Digital Potentiometer

DesignCon Design of Gb/s Interconnect for High-bandwidth FPGAs. Sherri Azgomi, Altera Corporation

High Speed Characterization Report

Logic Analyzer Probing Techniques for High-Speed Digital Systems

DesignCon 2003 High-Performance System Design Conference (HP3-5)

B2501 B Series 0.5mm (.0197) Pitch

On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital VLSI

SN65176B, SN75176B DIFFERENTIAL BUS TRANSCEIVERS

High Data Rate Characterization Report

LVDS Flow Through Evaluation Boards. LVDS47/48EVK Revision 1.0

High Data Rate Characterization Report

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

CLOCK AND SIGNAL DISTRIBUTION USING FCT CLOCK BUFFERS

I(A) FIGURE 1 - Current vs. Time graph

Application Note 5044

DS1267 Dual Digital Potentiometer Chip

DS1267B Dual Digital Potentiometer

DS1806 Digital Sextet Potentiometer

High Speed Competitive Comparison Report. Samtec MMCX-J-P-H-ST-TH1 Mated With MMCX-P-P-H-ST-TH1 Competitor A (Mated Set) Competitor B (Mated Set)

High Speed Digital Systems Require Advanced Probing Techniques for Logic Analyzer Debug

October Suzhou - Shenzhen, China. Archive TestConX - Image: Breath10/iStock

Application Note. Signal Integrity Modeling. SCSI Connector and Cable Modeling from TDR Measurements

Minh Quach. Signal Integrity Consideration and Analysis 4/30/2004. Frequency & Time Domain Measurements/Analysis

Features. Description. Pin Configuration. Block Diagram. Truth Table (1) PI3CH480. TSSOP/QSOP Top View. UQFN3x3-16 Top View

VLSI is scaling faster than number of interface pins

TEL: FAX: Electrical Specifications, (continued) Parameter Conditions Min. Typ. Max Units Output Low Voltage 2 V Output Rise /

HMC853LC3. High Speed Logic - SMT. 28 Gbps, D-TYPE FLIP-FLOP. Typical Applications. Features. Functional Diagram. General Description

USB2.0 Hi-Speed and Audio Switches with Negative Signal Capability

Texas Instruments DisplayPort Design Guide

CHAPTER 4. Practical Design

A Simplified QFN Package Characterization Technique

IEEE 802.3ae Interim Meeting - May 21st - 25th. XAUI Channel. Connector Noise Analysis - Z-Pack HM-Zd May 22, 2001

Pin Connections and Package Marking. GUx

Fuzz Button interconnects at microwave and mm-wave frequencies

7. Experiment K: Wave Propagation

Amphenol Amphenol Taiwan Corporation Sheet 1 of 14

HMC959LC3 HIGH SPEED LOGIC - SMT. 26 GHz, DIVIDE-BY-4 WITH RESET & PROGRAMMABLE OUTPUT VOLTAGE. Typical Applications. Features. Functional Diagram

Internal Model of X2Y Chip Technology

High Speed Digital Systems Require Advanced Probing Techniques for Logic Analyzer Debug

Surface Mount RF PIN Low Distortion Attenuator Diodes. Technical Data. HSMP-381x Series and HSMP-481x Series. Features

Surface Mount RF PIN Diodes. Technical Data. HSMP-383x Series. Features. Package Lead Code Identification (Top View)

HMC723LP3E HIGH SPEED LOGIC - SMT. 13 Gbps, FAST RISE TIME D-TYPE FLIP-FLOP w/ PROGRAMMABLE OUTPUT VOLTAGE. Typical Applications.

LM V Monolithic Triple Channel 15 MHz CRT DTV Driver

TIAJEIA STANDARD. Electrical Characteristics for an Interface at Data Signaling Rates TIAIEIA-612. up to 52 Mbit/s

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

NMTTLD6S5MC Digital Isolator DC-DC

Validation Report Comparison of Eye Patterns Generated By Synopsys HSPICE and the Agilent PLTS

Technology in Balance

TABLE OF CONTENTS 1 Fundamentals Transmission Line Parameters... 29

AP4310A. Pin Assignments. Description. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

High-Speed Circuit Board Signal Integrity

High Speed Characterization Report

PRODUCT SPECIFICATION

HMC850LC3. High Speed Logic - SMT. Features. Typical Applications. Functional Diagram. General Description

Standardized Direct Charge Device ESD Test For Magnetoresistive Recording Heads I

DS1867 Dual Digital Potentiometer with EEPROM

Single Supply, Low Power Triple Video Amplifier AD813

PI90LV031A. 3V LVDS High-Speed Differential Line Drivers. Description. Features. Applications PI90LV027A PI90LV031A PI90LV017A

BCT4222B 350MHz DPDT Analog Switch

High Speed, 10 GHz Window Comparator HMC974LC3C

CHAPTER 7 HARDWARE IMPLEMENTATION

FSUSB20 Low-Power 1-Port High-Speed USB (480Mbps) Switch

Programmable Low Voltage 1:10 LVDS Clock Driver ADN4670

HMC721LP3E v Gbps, FAST RISE TIME XOR / XNOR GATE w/ PROGRAMMABLE OUTPUT VOLTAGE

QUICKSWITCH BASICS AND APPLICATIONS

HOD /BBA HOD /BBA

MC3487 QUADRUPLE DIFFERENTIAL LINE DRIVER

CD22M x 8 x 1 BiMOS-E Crosspoint Switch. Features. Applications. Block Diagram FN Data Sheet January 16, 2006

SUNSTAR 微波光电 TEL: FAX: v HMC672LC3C 13 Gbps, AND / NAND / OR / NOR Gate T

Transmission Lines and TDR

F i n i s a r. Product Specification C.wire 120 Gb/s Parallel Active Optical Cable FCBGD10CD1Cxx

v Gbps, FAST RISE TIME D-TYPE FLIP-FLOP w/ PROGRAMMABLE OUTPUT VOLTAGE & POSITIVE SUPPLY Features

EQCD High Speed Characterization Summary

OBSOLETE. Ultrahigh Speed Window Comparator with Latch AD1317

ua733c, ua733m DIFFERENTIAL VIDEO AMPLIFIERS

Transcription:

ELECTRICAL PERFORMANCE REPORT EPR 1242176 Issued: 4-1998 Z-PACK 2mm FB 5 Row, ertical Plug to Right Angle Receptacle ACD - AMP Circuits & Design A Division of AMP Circuits & Packaging Published by AMP Incorporated, Harrisburg, PA 17105

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 TABLE OF CONTENTS INTRODUCTION... iii What is an EPR?... iii Why use this EPR?... iii HOW TO USE AN EPR...iv The Simulation Page...v Simulation Graphs...v Input oltage...v Near & Far End Noise alues...vii MODEL OERIEW...viii The Single Line Model (SLM)...viii The Multi Line Model (MLM)...viii SINGLE LINE MODEL DATASHEET... ix SIMULATION DATA... 1 Z-PACK 2mm FB, 5 Row, ertical Plug to Right Angle Receptacle Electrical Interconnection Performance Information... 2 MODEL WIRING PATTERNS... 3 SIMULATION LOOK-UP TABLE... 4 SIMULATION LOOK-UP TABLE (Continued)... 5 SIMULATION LOOK-UP TABLE (Continued)... 6 Specifications subject to change. Consult AMP for latest design specifications. Copyright 1998 by AMP Incorporated All Rights Reserved. AMP is a registered trademark. ii Contents Printed on Recycled Paper

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 INTRODUCTION The first several pages of this Electrical Performance Report (EPR) are intended to give an overview of the AMP EPR. By understanding how to apply information from an AMP EPR, system designers will be able to select the best AMP product for their application. What is an EPR? EPRs (Electrical Performance Reports) are technical documents composed of electrical simulations of connector models. Each of these simulations varies in several system parameters. EPRs are used to assist system design engineers in the selection of potential connector solutions for their particular application. While there are several non-technical issues that enter into the connector selection decision, these electrical performance criteria are becoming very important. Why use this EPR? The EPR provides system designers with fundamental data relating to the electrical performance of a connector. This data, in turn, allows the system designer to decide if the connector under analysis is the proper interconnection device for his or her application. Criteria that impact the electrical performance of a connector include wiring patterns, edge rates, system impedances and logic families. The EPR permutes these criteria one step at a time, while holding all other parameters constant. This approach reveals the effects that each change may or may not cause. If used properly, an EPR can facilitate in choosing the proper connector for an application. Furthermore, the EPR can help in selecting wiring patterns, edge rates, system impedances, and logic families within an application. iii

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 HOW TO USE AN EPR Following a systematic method, pertinent information can be derived from the various EPR simulations. The parametric nature of simulations can best be explained by recognizing that various factors affect coupled noise: Wiring Pattern Logic Family (excitation) System Impedance (Z o ) Signal Risetime oltage Swing Connection Capacitance SIMULATION LOOK-UP TABLE Consolidates all simulations in the EPR to quickly find pertinent simulation(s). SIMULATION AND NOTES Defines Simulation Look-up Table fields. Can include graphics to relate. S Wiring patterns used for the simulations. Single-ended and differential patterns are simulated, where applicable. Select a representative model pattern that is similar to your application setup. Find the rows in the Simulation Look-Up Table that correspond to this wiring (model) pattern. In the table, you will see several parameters that vary given this model pattern. Note the simulation filename of interest, and go to that page to find graphs of electrical simulation data. iv

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 The Simulation Page The simulation page shows the graphical results of a simulation on a connector under defined system parameters. Referring to the figure below, it can be seen that the several parameters that effect the electro-dynamics of the connector are shown. Shows the connections to the connector model. SIMULATION GRAPHS Provide voltage versus time information. Graphs include Input oltage, Near and Far End Noise oltages. Defines connections to the connector model. SIMULATION Defines logic family, voltage swing, and rise time used in this simulation. Shows the simulation s system impedance, and the PAD (in the case of SMT) or plated through-hole capacitance. Simulation Graphs The value of the EPR is realized when voltage values are found on the simulation graphs. The plots of voltage versus time reveal both absolute values of voltage levels and where they occur in time. These values can help in determining the contribution or impact of the connector/connection on the system noise budget. In some occurrences, where multiple lines are monitored, a rough estimate of skew can be determined. The total noise tolerance should be determined, understanding that it is different for different logic families. Input oltage The Input oltage graph shows the incident and far end voltage of the connector including the connection effects (PAD or plated through hole capacitance). Overall symmetry (in the case of differential signals) can be seen. Refer to the following graph for more information: v

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 INPUT voltage graphs. In this case, a differential system, the INPUT voltages (IA3 & IA4) are plotted with the output voltages (OA3 & OA4) versus time. 2.4 2.2 2.0 Input oltage [94103187] OA4 (Output voltage, pin A4) IA3 IA4 OA3 OA4 IA3 (Input voltage, pin A3) 1.8 OLTAGE(mv) 1.6 1.4 1.2 1.0 0.8 OA3 (Output voltage, pin A3) 0.6 IA4 (Input voltage, pin A4) 0.4 0.0 0.4 0.8 1.2 1.6 2.0 TIME(ns) The voltage response (refer to the voltage swing in following figure) of the connector should approach that of the logic family as defined in the simulation area of the EPR graph pages. The propagation delay of the connector can be determined as the difference in time that the incident and far end graphs cross the same voltage level. In the case below, the propagation delay would be: propagation delay: t = t 2 t 1 2.4 2.2 2.0 Input oltage [94103187] IA3 IA4 OA3 OA4 IA3 (Input voltage, pin A3) 1.8 OLTAGE(mv) 1.6 1.4 1.2 OA3 (Output voltage, pin A3) oltage Swing 1.0 0.8 0.6 0.4 0.0 0.4 0.8 1.2 1.6 2.0 Propagation delay of connector TIME(ns) t1 t2 vi

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 Near & Far End Noise alues Near and Far end noise values include the effects of the return path in their determination. Simulated values are absolute and can be included in their percent contribution to the total noise budget as determined by the system designer. In the following Near End Noise oltage figure, the effects of adjacent pairs that are out-of-phase can be seen (the +/- of two differentially-driven lines). Note that similar techniques are used with the Far End Noise voltage graphs. 100.0 80.0 60.0 40.0 Near End Noise oltage [94103187] NDB3B4 NB3 NB4 NDB3B4 Differential voltage between pins B3 & B4 NB3 (Near End noise voltage, pin B3) OLTAGE(mv) 20.0 0.0-20.0-40.0 NB4 (Near End noise voltage, pin B4) -60.0-80.0-100.0 0.0 0.4 0.8 1.2 1.6 2.0 TIME(ns) To summarize, the EPR arms the system designer with simulation information from the simulation setups that closely match his or her design. This information can be effectively used to focus on follow-up simulations, and it is of great aid in selecting connector and wiring pattern candidates. vii

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 MODEL OERIEW The Single Line Model (SLM) The SLM is used to evaluate the effects of a single set of connector pins. A SLM is independent of connector wiring pattern and is an approximation of a well referenced connector. A simulation with the SLM can show the following effects: PROPAGATION DELAY ATTENUATION REFLECTIONS DRIE POWER TIMING Single Line Model The SLM for the connector found in this EPR is listed on the next page. Note: A SLM was NOT used to generate simulation data in this EPR. (FOR CROSSTALK, A MULTI-LINE MODEL MUST BE USED.) The Multi Line Model (MLM) The MLM (Multi-Line Model) is used in all the simulations found in this EPR. The MLM accounts for the electrostatic and electromagnetic coupling (crosstalk) as well as the common impedance noise found in a connector. Its structure couples, in three dimensions, all pins to one another. This results in a complex model that uses series resistance, inductance, coupling capacitance and inductive coupling coefficients so arranged to allow connections at both the input and output. This modeling technique effectively shows coupled noise at the expense of CPU runtime. Simulations done using the MLM will show the following information: Multi Line Model - The Fundamental Structure ELECTROSTATIC COUPLING COMMON MODE NOISE ATTENUATION PROPAGATION DELAY ELECTROMAGNETIC COUPLING REFLECTIONS DRIE POWER TIMING CROSSTALK The fundamental MLM varies in the number of pins (rows & columns) and the number of sections. Note that faster rise times require multiple sections. To Learn more about AMP Simulation capabilities, please call 1-717-986-7824 (fax 800-521-5495). AMP, Harrisburg, PA 17105-3608. In Canada, call 905-470-4425 viii

SINGLE LINE MODEL DATASHEET Z-PACK, 2mm CL, FB, 5 Row, ertical Plug to Right Angle Receptacle ALIDATED Well referenced pattern Cp1 CONNECTOR R L C Cp2 Cp1 CONNECTOR Z Tpd Cp2 Connector Lumped Constant Model Connector Distributed Model Row R (m Ω ) L (nh) C (pf) Z ( Ω ) Tpd (ps) A 12 5.61 1.54 60 93 B 18 6.01 55 110 C 23 6.95 2.30 55 126 D 28 7.89 2.59 55 143 E 33 10.25 2.50 64 160 Mean 23 7.34 2.19 58 126 Note: SINGLE LINE MODEL DATASHEET (1) The following RLC model is appropriate for edge speeds < 10*(<highest Tpd value>). To accommodate faster edge speeds, the lumped model must be divided into two or more RLC sections. Typically, a section s propagation delay should be 1/10 th of the edge speed. (2) The single line inductance and capacitance values are extracted from a specified pattern. The placement and number of ground returns effect the inductance and capacitance of the single line model. Please contact AMP for other wiring patterns. (3) The parameters for the Single Line Model are for the connector only without any mounting effects such as plated through holes or pads capacitance (Cp1 and Cp2). The impedance and propagation delay for the connector are calculated as follows: L Z = Connector C ( Ω ) and Tpd = L * Connector C ( sec ) For an interconnection path model, the mounting effects must be added because the additional capacitance of the pad to ground or plated through hole (Cp1 and Cp2) decrease impedance and increase propagation delay of the interconnection path. The impedance and propagation delay for an interconnection path are calculated as follows: Z Interconnect = L ( Ω) C + ( Cp1 + Cp2) and Tpd Interconne ct = L * ( C + Cp1 + Cp2)( sec) FOR ADDITIONAL ELECTRICAL MODELING/SIMULATION SUPPORT, CALL 717-986-7824 Datasheet Filename: ZPACK_2mmFB_5Row_-P_RA-R_TH Modeled by: [SC] Created on 01/30/98 2:06 PM Copyright 1998, AMP Incorporated ix Reviewed By: [CTK] SPICE File: [FB5] ACD Internal Form: Form_SLM-DS_1998_0304

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 (THIS PAGE INTENTIONALLY LEFT BLANK) x

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 SIMULATION DATA Z-PACK 2mm FB 5 Row, ertical Plug to Right Angle Receptacle 1

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 Z-PACK 2mm FB, 5 Row, ertical Plug to Right Angle Receptacle Electrical Interconnection Performance Information This document contains abstracts of the results of various computer simulations of electrical interconnection performance. E D C B A a The Z-PACK 2mm FB evaluated in this report is a five-row, vertical plug to right angle receptacle interconnection designed specifically for Futurebus+ applications. The Model Pattern Orientation in this set of data represents a board to board interconnection. The simulations are run on a six (6) column model, Section a-a as shown, which is adequate for most wiring patterns. As shown in the Simulation Circuit Abstract figure to the right, the simulation model is a validated matrix circuit model (AMP Part Number 7-105005-5) which provides for the series resistance and inductance elements of each line, the electrostatic coupling between lines, and the electromagnetic coupling between lines. The model for this connector is multiple sections and is useful for digital signals with edge rates as fast as 500 ps. RS RC driven line(s) LC S CP CP RT near end ref CP E D C B A Model Pattern Orientation (Section a-a) RC reference line(s) quiet line(s) RC C M a CONNECTOR MODEL LC L M LC Simulation Circuit Abstract far end ref CP RT RT The model is configured so that any position in the matrix may be assigned as a driven line, a quiet line, or a reference line. Each line can be terminated (RT) as desired, pad capacitances (CP) can be assigned as desired, with driving functions (S) and source impedances (RS) assigned as desired. The near end and far end references are isolated to allow observation of common impedance effects of the connector. The simulation model outputs include both the electrostatic (E) and magnetic (M) crosstalk and the common mode noise contributions. This sum is reported as Near End Noise oltage and/or Far End Noise oltage. signal s b Backward crosstalk driven line (-) (+) (-) coupled region signal i Zc noise (+) (+) (-) Common Impedance Noise Forward crosstalk Electrostatic and Electromagnetic Crosstalk f 2

MODEL WIRING PATTERNS EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 1:1 Signal to Ground 2:1 Signal to Ground 2:1 Signal to Ground Differential (Horizontal) Pairs E X a X Q X a D a X A X a X C X a X Q X a B a X a X a X A X a X Q X a 3:1 Signal to Ground 4:1 Signal to Ground Grounds Towards Inside Rows E a X a Q a X E a a Q a a a D a a a X a a D a X a X a X C X a a Q A X C a a A Q a a B a a X a a a B X a X a X a A X a Q a X a A a a a Q a a 4:1 Signal to Ground Differential (Horizontal) Pairs Grounds Towards Inside Rows E a Q Q a D a A A I a C X X X X X X B a a a E a X Q a X a D X a A X a a C a a X Q a X B a X a a X a A X a Q X a a 4:1 Signal to Ground Differential (ertical) Pairs Grounds Towards Inside Rows E Q A a D a Q a A I a C X X X X X X B a a Q a E q X a X q D X Q Q X a C a X A A I X B q X Q Q X q A X a X a 4:1 Signal to Ground Grounds Towards Outside Rows E a X Q X a X D a a a a a a C a a A Q a a B a a a a a a A X a X Q X a 4:1 Signal to Ground Differential (ertical) Pairs Grounds Towards Outside Rows E a X a X Q X D Q a Q a C a Q A a B a A I a a A a Q Q a A a a Q A X X X 9:1 Signal to Ground E a a a Q a a D a a A a a X C a a a Q a a B X a X a X a A a a a Q a a 3

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 SIMULATION LOOK-UP TABLE (Indexed by S/G Ratio, then by Logic Family, then by Tr) Cp DH D GI GO Logic: S/G Ratio Tr f o Zo: Table Legend: Pad or Plated Through Hole capacitence Differential signal (horizontal pairs) Differential signal (vertical pairs) Grounded Lines Towards Inside Rows Grounded Lines Towards Outside Rows Logic family simulated Ratio of signal lines to reference (ground) lines Rise time of source Source final voltage Source initial voltage Characteristic Impedance Simulation S/G Tr o f Zo Cp Filename Page Ratio Logic (ns) (olts) (olts) (Ohms) (pf) 1998032601 7 1:1 ACT 1.0 0.0 5.0 65 1.5 1998032602 8 1:1 ACT 2.0 0.0 5.0 65 1.5 1998032603 9 1:1 AST 1.0 0.3 3.3 50 1.5 1998032604 10 1:1 AST 1.0 0.3 3.3 65 1.5 1998032605 11 1:1 AST 2.0 0.3 3.3 50 1.5 1998032606 12 1:1 AST 2.0 0.3 3.3 65 1.5 1998032607 13 1:1 BTL 1.0 1.0 2.1 65 1.5 1998032608 14 1:1 BTL 2.0 1.0 2.1 65 1.5 1998032609 15 1:1 ECL 0.5-1.8-0.8 50 1.5 1998032610 16 1:1 ECL 1.0-1.8-0.8 50 1.5 1998032611 17 1:1 GTL 1.0 0.4 1.2 65 1.5 1998032612 18 2:1 ACT 1.0 0.0 5.0 65 1.5 1998032613 19 2:1 ACT 2.0 0.0 5.0 65 1.5 1998032614 20 2:1 AST 1.0 0.3 3.3 50 1.5 1998032615 21 2:1 AST 1.0 0.3 3.3 65 1.5 1998032616 22 2:1 AST 2.0 0.3 3.3 50 1.5 1998032617 23 2:1 AST 2.0 0.3 3.3 65 1.5 1998032618 24 2:1 BTL 1.0 1.0 2.1 65 1.5 1998032619 25 2:1 BTL 2.0 1.0 2.1 65 1.5 1998032620 26 2:1 ECL 0.5-1.8-0.8 50 1.5 1998032621 27 2:1 ECL 1.0-1.8-0.8 50 1.5 1998032622 28 2:1 GTL 1.0 0.4 1.2 65 1.5 1998032623 29 2:1 DH ECL 0.5-1.8-0.8 50 1.5 1998032624 30 2:1 DH ECL 1.0-1.8-0.8 50 1.5 4

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 SIMULATION LOOK-UP TABLE (CONTINUED) (Indexed by S/G Ratio, then by Logic Family, then by Tr) Cp DH D GI GO Logic: S/G Ratio Tr f o Zo: Table Legend: Pad or Plated Through Hole capacitence Differential signal (horizontal pairs) Differential signal (vertical pairs) Grounded Lines Towards Inside Rows Grounded Lines Towards Outside Rows Logic family simulated Ratio of signal lines to reference (ground) lines Rise time of source Source final voltage Source initial voltage Characteristic Impedance Simulation S/G Tr o f Zo Cp Filename Page Ratio Logic (ns) (olts) (olts) (Ohms) (pf) 1998032625 31 3:1 ACT 1.0 0.0 5.0 65 1.5 1998032626 32 3:1 ACT 2.0 0.0 5.0 65 1.5 1998032627 33 3:1 AST 1.0 0.3 3.3 50 1.5 1998032628 34 3:1 AST 1.0 0.3 3.3 65 1.5 1998032629 35 3:1 AST 2.0 0.3 3.3 50 1.5 1998032630 36 3:1 AST 2.0 0.3 3.3 65 1.5 1998032631 37 3:1 BTL 1.0 1.0 2.1 65 1.5 1998032632 38 3:1 BTL 2.0 1.0 2.1 65 1.5 1998032633 39 3:1 ECL 0.5-1.8-0.8 50 1.5 1998032634 40 3:1 ECL 1.0-1.8-0.8 50 1.5 1998032635 41 3:1 GTL 1.0 0.4 1.2 65 1.5 1998032636 42 4:1 GI ACT 1.0 0.0 5.0 65 1.5 1998032637 43 4:1 GI ACT 2.0 0.0 5.0 65 1.5 1998032638 44 4:1 GI AST 1.0 0.3 3.3 50 1.5 1998032639 45 4:1 GI AST 1.0 0.3 3.3 65 1.5 1998032640 46 4:1 GI AST 2.0 0.3 3.3 50 1.5 1998032641 47 4:1 GI AST 2.0 0.3 3.3 65 1.5 1998032642 48 4:1 GI BTL 1.0 1.0 2.1 65 1.5 1998032643 49 4:1 GI BTL 2.0 1.0 2.1 65 1.5 1998032644 50 4:1 GI ECL 0.5-1.8-0.8 50 1.5 1998032645 51 4:1 GI ECL 1.0-1.8-0.8 50 1.5 1998032646 52 4:1 GI GTL 1.0 0.4 1.2 65 1.5 5

EPR - Z-PACK 2mm FB, 5 Row, ertical Plug to Right EPR 1242176 SIMULATION LOOK-UP TABLE (CONTINUED) (Indexed by S/G Ratio, then by Logic Family, then by Tr) Cp DH D GI GO Logic: S/G Ratio Tr f o Zo: Table Legend: Pad or Plated Through Hole capacitence Differential signal (horizontal pairs) Differential signal (vertical pairs) Grounded Lines Towards Inside Rows Grounded Lines Towards Outside Rows Logic family simulated Ratio of signal lines to reference (ground) lines Rise time of source Source final voltage Source initial voltage Characteristic Impedance Simulation S/G Tr o f Zo Cp Filename Page Ratio Logic (ns) (olts) (olts) (Ohms) (pf) 1998032647 53 4:1 GO ACT 1.0 0.0 5.0 65 1.5 1998032648 54 4:1 GO ACT 2.0 0.0 5.0 65 1.5 1998032649 55 4:1 GO AST 1.0 0.3 3.3 50 1.5 1998032650 56 4:1 GO AST 1.0 0.3 3.3 65 1.5 1998032651 57 4:1 GO AST 2.0 0.3 3.3 50 1.5 1998032652 58 4:1 GO AST 2.0 0.3 3.3 65 1.5 1998032653 59 4:1 GO BTL 1.0 1.0 2.1 65 1.5 1998032654 60 4:1 GO BTL 2.0 1.0 2.1 65 1.5 1998032655 61 4:1 GO ECL 0.5-1.8-0.8 50 1.5 1998032656 62 4:1 GO ECL 1.0-1.8-0.8 50 1.5 1998032657 63 4:1 GO GTL 1.0 0.4 1.2 65 1.5 1998032658 64 4:1 DH;GI ECL 0.5-1.8-0.8 50 1.5 1998032659 65 4:1 DH;GI ECL 1.0-1.8-0.8 50 1.5 1998032660 66 4:1 D;GI ECL 0.5-1.8-0.8 50 1.5 1998032661 67 4:1 D;GI ECL 1.0-1.8-0.8 50 1.5 1998032662 68 4:1 D;GO ECL 0.5-1.8-0.8 50 1.5 1998032663 69 4:1 D;GO ECL 1.0-1.8-0.8 50 1.5 1998032664 70 9:1 HCMOS 4.0 0.0 5.0 65 1.5 1998032665 71 9:1 HCMOS 6.0 0.0 5.0 65 1.5 6

1998032601 5.00 vid3 vod3 E X a X Q X a 4.50 D a X A X a X 4.00 C X a X Q X a 3.50 3.00 B a X a X a X 2.50 A X a X Q X a 0.50 8 vna4 vnc4 vne4 7 6 5 4 3 2 1 ACT SIMULATION -1 0.0 to 5.0 Tr (ns): 1.0 (10%-90%) 13 vfa4 vfc4 vfe4 12 11 65 Ohm Lines 10 9 8 7 6 5 4 3 2 1-1 Page 7

1998032602 E X a X Q X a 5.50 vid3 vod3 D a X A X a X 5.00 C X a X Q X a 4.50 4.00 B a X a X a X 3.50 A X a X Q X a 3.00 2.50 0.50 45.00 vna4 vnc4 vne4 4 35.00 3 25.00 2 15.00 1 ACT SIMULATION 5.00 0.0 to 5.0 Tr (ns): 2.0 (10%-90%) 65.00 vfa4 vfc4 vfe4 65 Ohm Lines 6 55.00 5 45.00 oltage(m ) 4 35.00 3 25.00 2 15.00 1 5.00 Page 8

1998032603 3.50 vid3 vod3 E X a X Q X a 3.00 D a X A X a X 2.50 C X a X Q X a B a X a X a X A X a X Q X a 0.50 5 vna4 vnc4 vne4 45.00 4 35.00 3 25.00 2 15.00 1 5.00-5.00-1 -15.00 AST SIMULATION -2 0.3 to 3.3 85.00 8 75.00 7 65.00 6 55.00 5 45.00 4 35.00 3 25.00 2 15.00 1 5.00 vfa4 vfc4 vfe4 Page 9 Tr (ns): 1.0 (10%-90%) 50 Ohm Lines

1998032604 E X a X Q X a 3.50 vid3 vod3 D a X A X a X 3.00 C X a X Q X a 2.50 B a X a X a X A X a X Q X a 0.50 5 vna4 vnc4 vne4 45.00 4 35.00 3 25.00 2 15.00 1 AST SIMULATION 5.00 0.3 to 3.3-5.00 Tr (ns): 1.0 (10%-90%) 8 vfa4 vfc4 vfe4 65 Ohm Lines 7 6 oltage(m ) 5 4 3 2 1 Page 10

1998032605 3.50 vid3 vod3 E X a X Q X a 3.00 D a X A X a X 2.50 C X a X Q X a B a X a X a X A X a X Q X a 0.50 25.00 vna4 vnc4 vne4 2 15.00 1 5.00-5.00 AST SIMULATION -1 0.3 to 3.3 4 vfa4 vfc4 vfe4 Tr (ns): 2.0 (10%-90%) 35.00 50 Ohm Lines 3 25.00 2 15.00 1 5.00-5.00 Page 11

1998032606 E X a X Q X a 3.50 vid3 vod3 D a X A X a X 3.00 C X a X Q X a 2.50 B a X a X a X A X a X Q X a 0.50 3 vna4 vnc4 vne4 25.00 2 15.00 1 AST SIMULATION 5.00 0.3 to 3.3 Tr (ns): 2.0 (10%-90%) 4 vfa4 vfc4 vfe4 65 Ohm Lines 35.00 3 oltage(m ) 25.00 2 15.00 1 5.00 Page 12

1998032607 2.20 vid3 vod3 E X a X Q X a 2.10 D a X A X a X 1.90 1.80 1.70 C X a X Q X a B a X a X a X 1.60 1.40 A X a X Q X a 1.30 1.20 1.10 0.90 0.80 2 vna4 vnc4 vne4 15.00 1 5.00 BTL SIMULATION -5.00 1.0 to 2.1 3 vfa4 vfc4 vfe4 Tr (ns): 1.0 (10%-90%) 25.00 65 Ohm Lines 2 15.00 1 5.00-5.00 Page 13

1998032608 E X a X Q X a 2.20 vid3 vod3 D a X A X a X 2.10 C X a X Q X a 1.90 1.80 B a X a X a X A X a X Q X a 1.70 1.60 1.40 1.30 1.20 1.10 0.90 0.80 1 vna4 vnc4 vne4 9.00 8.00 7.00 6.00 5.00 4.00 3.00 BTL SIMULATION 1.0 to 2.1 Tr (ns): 2.0 (10%-90%) 14.00 vfa4 vfc4 vfe4 65 Ohm Lines 13.00 1 1 1 9.00 oltage(m ) 8.00 7.00 6.00 5.00 4.00 3.00 - Page 14

1998032609-0.50 vid3 vod3 E X a X Q X a -0.60-0.70 D a X A X a X -0.80-0.90 C X a X Q X a - -1.10 B a X a X a X -1.20-1.30 A X a X Q X a -1.40 - -1.60-1.70-1.80-1.90-2 vna4 vnc4 vne4 18.00 16.00 14.00 1 1 8.00 6.00 4.00 - -4.00-6.00-8.00 ECL SIMULATION -1-1.8 to -0.8 35.00 vfa4 vfc4 vfe4 Tr (ns): 0.5 (20%-80%) 3 50 Ohm Lines 25.00 2 15.00 1 5.00-5.00 Page 15

1998032610 E X a X Q X a -0.50 vid3 vod3 D a X A X a X -0.60-0.70 C X a X Q X a -0.80-0.90 B a X a X a X - -1.10 A X a X Q X a -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 vna4 vnc4 vne4 9.00 8.00 7.00 6.00 5.00 ECL SIMULATION 4.00 3.00 - - -3.00-1.8 to -0.8-4.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Tr (ns): 1.0 (20%-80%) 18.00 vfa4 vfc4 vfe4 50 Ohm Lines 16.00 14.00 1 oltage(m ) 1 8.00 6.00 4.00-0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 16

1998032611 1.30 vid3 vod3 E X a X Q X a 1.20 1.10 D a X A X a X C X a X Q X a 0.90 0.80 B a X a X a X 0.70 0.60 0.50 A X a X Q X a 0.40 0.30 0.20 0.10 13.00 vna4 vnc4 vne4 1 1 1 9.00 8.00 7.00 6.00 5.00 4.00 3.00 GTL SIMULATION - 0.4 to 1.2 2 vfa4 vfc4 vfe4 Tr (ns): 1.0 (10%-90%) 2 18.00 65 Ohm Lines 16.00 14.00 1 1 8.00 6.00 4.00 Page 17

1998032612 E a X Q a X a 5.50 vid3 vod3 D X a A X a a 5.00 C a a X Q a X 4.50 4.00 B a X a a X a 3.50 A X a Q X a a 3.00 2.50 0.50 65 vna3 vnc4 vne3 60 55 50 45 40 35 30 25 20 15 ACT SIMULATION 10 5 0.0 to 5.0 Tr (ns): 1.0 (10%-90%) 2 vfa3 vfc4 vfe3 65 Ohm Lines -2-4 -6 oltage(m ) -8-10 -12-14 -16-18 -20-22 -24 Page 18

1998032613 5.50 vid3 vod3 E a X Q a X a 5.00 D X a A X a a 4.50 4.00 C a a X Q a X 3.50 B a X a a X a 3.00 2.50 A X a Q X a a 0.50 32 vna3 vnc4 vne3 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 ACT SIMULATION 0.0 to 5.0 vfa3 vfc4 vfe3 Tr (ns): 2.0 (10%-90%) -1 65 Ohm Lines -2-3 -4-5 -6-7 -8-9 Page 19

1998032614 E a X Q a X a 3.50 vid3 vod3 D X a A X a a 3.00 C a a X Q a X 2.50 B a X a a X a A X a Q X a a 0.50 AST SIMULATION 0.3 to 3.3 vna3 vnc4 vne3 425.00 40 375.00 35 325.00 30 275.00 25 225.00 20 175.00 15 125.00 10 75.00 5 25.00 Tr (ns): 1.0 (10%-90%) vfa3 vfc4 vfe3 50 Ohm Lines -2-4 -6-8 oltage(m ) -10-12 -14-16 -18-20 -22 Page 20

1998032615 3.50 vid3 vod3 E a X Q a X a 3.00 D X a A X a a 2.50 C a a X Q a X B a X a a X a A X a Q X a a 0.50 40 vna3 vnc4 vne3 35 30 25 20 15 10 5 AST SIMULATION 0.3 to 3.3 2 vfa3 vfc4 vfe3 Tr (ns): 1.0 (10%-90%) 65 Ohm Lines -2-4 -6-8 -10-12 -14 Page 21

1998032616 E a X Q a X a 3.50 vid3 vod3 D X a A X a a 3.00 C a a X Q a X 2.50 B a X a a X a A X a Q X a a 0.50 22 vna3 vnc4 vne3 20 18 16 14 12 10 8 6 AST SIMULATION 4 2 0.3 to 3.3 Tr (ns): 2.0 (10%-90%) vfa3 vfc4 vfe3 50 Ohm Lines -1-2 -3 oltage(m ) -4-5 -6-7 -8-9 -10 Page 22

1998032617 3.50 vid3 vod3 E a X Q a X a 3.00 D X a A X a a 2.50 C a a X Q a X B a X a a X a A X a Q X a a 0.50 20 vna3 vnc4 vne3 18 16 14 12 10 8 6 4 2 AST SIMULATION 0.3 to 3.3 vfa3 vfc4 vfe3 Tr (ns): 2.0 (10%-90%) -5.00-1 65 Ohm Lines -15.00-2 -25.00-3 -35.00-4 -45.00-5 -55.00 Page 23

1998032618 E a X Q a X a 2.20 vid3 vod3 D X a A X a a 2.10 C a a X Q a X 1.90 1.80 B a X a a X a A X a Q X a a 1.70 1.60 1.40 1.30 1.20 1.10 0.90 0.80 15 14 13 vna3 vnc4 vne3 12 11 10 9 8 7 6 5 4 3 BTL SIMULATION 2 1 1.0 to 2.1 Tr (ns): 1.0 (10%-90%) 5.00 vfa3 vfc4 vfe3 65 Ohm Lines -5.00-1 -15.00 oltage(m ) -2-25.00-3 -35.00-4 -45.00-5 Page 24

1998032619 2.20 vid3 vod3 E a X Q a X a 2.10 D X a A X a a 1.90 1.80 1.70 C a a X Q a X B a X a a X a 1.60 1.40 A X a Q X a a 1.30 1.20 1.10 0.90 0.80 75.00 vna3 vnc4 vne3 7 65.00 6 55.00 5 45.00 4 35.00 3 25.00 2 15.00 1 5.00 BTL SIMULATION 1.0 to 2.1 vfa3 vfc4 vfe3 Tr (ns): 2.0 (10%-90%) - -4.00-6.00 65 Ohm Lines -8.00-1 -1-14.00-16.00-18.00-2 Page 25

1998032620 E a X Q a X a -0.50 vid3 vod3 D X a A X a a -0.60-0.70 C a a X Q a X -0.80-0.90 B a X a a X a - -1.10 A X a Q X a a -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90-18 vna3 vnc4 vne3 16 14 12 10 8 6 4 2 ECL SIMULATION -1.8 to -0.8-2 Tr (ns): 0.5 (20%-80%) 1 vfa3 vfc4 vfe3 50 Ohm Lines -1-2 oltage(m ) -3-4 -5-6 -7-8 -9 Page 26

1998032621-0.50 vid3 vod3 E a X Q a X a -0.60-0.70 D X a A X a a -0.80-0.90 C a a X Q a X - -1.10 B a X a a X a -1.20-1.30 A X a Q X a a -1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 9 vna3 vnc4 vne3 8 7 6 5 4 3 2 1 ECL SIMULATION -1 0.0 0.5 1.0 1.5 2.0 2.5 3.0-1.8 to -0.8 5.00 vfa3 vfc4 vfe3 Tr (ns): 1.0 (20%-80%) 50 Ohm Lines -5.00-1 -15.00-2 -25.00-3 -35.00-4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 27

1998032622 E a X Q a X a 1.30 vid3 vod3 D X a A X a a 1.20 1.10 C a a X Q a X B a X a a X a 0.90 0.80 A X a Q X a a 0.70 0.60 0.50 0.40 0.30 0.20 0.10 11 vna3 vnc4 vne3 10 9 8 7 6 5 4 3 GTL SIMULATION 2 1 0.4 to 1.2 Tr (ns): 1.0 (10%-90%) 5.00 vfa3 vfc4 vfe3 65 Ohm Lines -5.00-1 oltage(m ) -15.00-2 -25.00-3 -35.00-4 Page 28

1998032623-0.50 vic4 vic5 voc4 voc5 E q X a X q -0.60-0.70 D X Q Q X a -0.80-0.90 C a X A A I X - -1.10 B q X Q Q X q -1.20-1.30 A X a X a -1.40 - -1.60-1.70-1.80-1.90-1 vnb3b4 vnd2d3-1 -2-3 -4-5 -6-7 ECL SIMULATION -8-1.8 to -0.8 45.00 vfb3b4 vfd2d3 Tr (ns): 0.5 (20%-80%) 4 35.00 50 Ohm Lines 3 25.00 2 15.00 1 5.00-5.00-1 -15.00 Page 29

1998032624 E q X a X q -0.50 vic4 vic5 voc4 voc5 D X Q Q X a -0.60-0.70 C a X A A I X -0.80-0.90 B q X Q Q X q - -1.10 A X a X a -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 5.00 vnb3b4 vnd2d3-5.00-1 -15.00-2 -25.00-3 ECL SIMULATION -35.00-1.8 to -0.8-4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Tr (ns): 1.0 (20%-80%) 2 vfb3b4 vfd2d3 50 Ohm Lines 18.00 16.00 14.00 1 oltage(m ) 1 8.00 6.00 4.00 - -4.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 30

1998032625 5.50 vic5 voc5 E a X a Q a X 5.00 D a a a X a a 4.50 4.00 C X a a Q A X 3.50 B a a X a a a 3.00 2.50 A X a Q a X a 0.50 90 vna3 vnc4 vne4 80 70 60 50 40 30 20 10 ACT SIMULATION 0.0 to 5.0 vfa3 vfc4 vfe4 Tr (ns): 1.0 (10%-90%) -5 65 Ohm Lines -10-15 -20-25 -30-35 -40-45 Page 31

1998032626 E a X a Q a X 5.50 vic5 voc5 D a a a X a a 5.00 C X a a Q A X 4.50 4.00 B a a X a a a 3.50 A X a Q a X a 3.00 2.50 0.50 50 vna3 vnc4 vne4 45 40 35 30 25 20 15 10 ACT SIMULATION 5 0.0 to 5.0 Tr (ns): 2.0 (10%-90%) vfa3 vfc4 vfe4 65 Ohm Lines -25.00-5 -75.00 oltage(m ) -10-125.00-15 -175.00-20 -225.00 Page 32

1998032627 3.50 vic5 voc5 E a X a Q a X 3.00 D a a a X a a 2.50 C X a a Q A X B a a X a a a A X a Q a X a 0.50 60 vna3 vnc4 vne4 55 50 45 40 35 30 25 20 15 10 5 AST SIMULATION 0.3 to 3.3 vfa3 vfc4 vfe4 Tr (ns): 1.0 (10%-90%) -5 50 Ohm Lines -10-15 -20-25 -30-35 -40 Page 33

1998032628 E a X a Q a X 3.50 vic5 voc5 D a a a X a a 3.00 C X a a Q A X 2.50 B a a X a a a A X a Q a X a 0.50 55 vna3 vnc4 vne4 50 45 40 35 30 25 20 15 AST SIMULATION 10 5 0.3 to 3.3 Tr (ns): 1.0 (10%-90%) vfa3 vfc4 vfe4 65 Ohm Lines -25.00-5 -75.00-10 oltage(m ) -125.00-15 -175.00-20 -225.00-25 -275.00-30 Page 34

1998032629 3.50 vic5 voc5 E a X a Q a X 3.00 D a a a X a a 2.50 C X a a Q A X B a a X a a a A X a Q a X a 0.50 35 vna3 vnc4 vne4 30 25 20 15 10 5 AST SIMULATION 0.3 to 3.3 vfa3 vfc4 vfe4 Tr (ns): 2.0 (10%-90%) -2-4 -6 50 Ohm Lines -8-10 -12-14 -16-18 -20 Page 35

1998032630 E a X a Q a X 3.50 vic5 voc5 D a a a X a a 3.00 C X a a Q A X 2.50 B a a X a a a A X a Q a X a 0.50 30 vna3 vnc4 vne4 275.00 25 225.00 20 175.00 15 125.00 10 75.00 AST SIMULATION 5 25.00 0.3 to 3.3 Tr (ns): 2.0 (10%-90%) vfa3 vfc4 vfe4 65 Ohm Lines -1-2 -3-4 oltage(m ) -5-6 -7-8 -9-10 -11-12 -13 Page 36

1998032631 2.20 vic5 voc5 E a X a Q a X 2.10 D a a a X a a 1.90 1.80 1.70 C X a a Q A X B a a X a a a 1.60 1.40 A X a Q a X a 1.30 1.20 1.10 0.90 0.80 20 vna3 vnc4 vne4 18 16 14 12 10 8 6 4 2 BTL SIMULATION 1.0 to 2.1 vfa3 vfc4 vfe4 Tr (ns): 1.0 (10%-90%) -1-2 -3 65 Ohm Lines -4-5 -6-7 -8-9 -10 Page 37

1998032632 E a X a Q a X 2.20 vic5 voc5 D a a a X a a 2.10 C X a a Q A X 1.90 1.80 B a a X a a a A X a Q a X a 1.70 1.60 1.40 1.30 1.20 1.10 0.90 0.80 11 vna3 vnc4 vne4 10 9 8 7 6 5 4 3 BTL SIMULATION 2 1 1.0 to 2.1 Tr (ns): 2.0 (10%-90%) vfa3 vfc4 vfe4 65 Ohm Lines -5.00-1 -15.00 oltage(m ) -2-25.00-3 -35.00-4 -45.00-5 Page 38

1998032633-0.50 vic5 voc5 E a X a Q a X -0.60-0.70 D a a a X a a -0.80-0.90 C X a a Q A X - -1.10 B a a X a a a -1.20-1.30 A X a Q a X a -1.40 - -1.60-1.70-1.80-1.90-24 vna3 vnc4 vne4 22 20 18 16 14 12 10 8 6 4 2 ECL SIMULATION -1.8 to -0.8 1 vfa3 vfc4 vfe4 Tr (ns): 0.5 (20%-80%) -1-2 -3-4 50 Ohm Lines -5-6 -7-8 -9-10 -11-12 -13-14 -15 Page 39

1998032634 E a X a Q a X -0.50 vic5 voc5 D a a a X a a -0.60-0.70 C X a a Q A X -0.80-0.90 B a a X a a a - -1.10 A X a Q a X a -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 13 vna3 vnc4 vne4 12 11 10 9 8 ECL SIMULATION 7 6 5 4 3 2 1-1.8 to -0.8-1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Tr (ns): 1.0 (20%-80%) 1 vfa3 vfc4 vfe4 50 Ohm Lines -1-2 oltage(m ) -3-4 -5-6 -7-8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 40

1998032635 1.30 vic5 voc5 E a X a Q a X 1.20 1.10 D a a a X a a C X a a Q A X 0.90 0.80 B a a X a a a 0.70 0.60 0.50 A X a Q a X a 0.40 0.30 0.20 0.10 15 vna3 vnc4 vne4 14 13 12 11 10 9 8 7 6 5 4 3 2 1 GTL SIMULATION 0.4 to 1.2 vfa3 vfc4 vfe4 Tr (ns): 1.0 (10%-90%) -1 65 Ohm Lines -2-3 -4-5 -6-7 -8 Page 41

1998032636 E a a Q a a a 5.50 vic3 voc3 D a X a X a X C a a A Q a a 5.00 4.50 4.00 B X a X a X a A a a a Q a a 3.50 3.00 2.50 0.50-0.50 150 140 130 vna4 vnc4 vne3 120 110 100 90 80 70 60 50 40 30 ACT SIMULATION 20 10 0.0 to 5.0 Tr (ns): 1.0 (10%-90%) vfa4 vfc4 vfe3 65 Ohm Lines -10-20 -30 oltage(m ) -40-50 -60-70 -80-90 Page 42

1998032637 5.00 vic3 voc3 E a a Q a a a 4.50 D a X a X a X 4.00 3.50 C a a A Q a a 3.00 B X a X a X a 2.50 A a a a Q a a 0.50-0.50 80 vna4 vnc4 vne3 70 60 50 40 30 20 10 ACT SIMULATION 0.0 to 5.0 vfa4 vfc4 vfe3 Tr (ns): 2.0 (10%-90%) -5 65 Ohm Lines -10-15 -20-25 -30-35 -40-45 Page 43

1998032638 E a a Q a a a 4.00 vic3 voc3 D a X a X a X 3.50 C a a A Q a a 3.00 B X a X a X a 2.50 A a a a Q a a 0.50 100 vna4 vnc4 vne3 90 80 70 60 50 40 30 AST SIMULATION 20 10 0.3 to 3.3 Tr (ns): 1.0 (10%-90%) vfa4 vfc4 vfe3 50 Ohm Lines -10-20 oltage(m ) -30-40 -50-60 -70 Page 44

1998032639 3.50 vic3 voc3 E a a Q a a a 3.00 D a X a X a X 2.50 C a a A Q a a B X a X a X a A a a a Q a a 0.50 90 vna4 vnc4 vne3 80 70 60 50 40 30 20 10 AST SIMULATION 0.3 to 3.3 vfa4 vfc4 vfe3 Tr (ns): 1.0 (10%-90%) -5-10 65 Ohm Lines -15-20 -25-30 -35-40 -45-50 -55 Page 45

1998032640 E a a Q a a a 3.50 vic3 voc3 D a X a X a X 3.00 C a a A Q a a 2.50 B X a X a X a A a a a Q a a 0.50 55 vna4 vnc4 vne3 50 45 40 35 30 25 20 15 AST SIMULATION 10 5 0.3 to 3.3 Tr (ns): 2.0 (10%-90%) vfa4 vfc4 vfe3 50 Ohm Lines -5-10 oltage(m ) -15-20 -25-30 -35-40 Page 46

1998032641 3.50 vic3 voc3 E a a Q a a a 3.00 D a X a X a X 2.50 C a a A Q a a B X a X a X a A a a a Q a a 0.50 50 vna4 vnc4 vne3 45 40 35 30 25 20 15 10 5 AST SIMULATION 0.3 to 3.3 vfa4 vfc4 vfe3 Tr (ns): 2.0 (10%-90%) -25.00-5 65 Ohm Lines -75.00-10 -125.00-15 -175.00-20 -225.00-25 -275.00 Page 47

1998032642 E a a Q a a a 2.20 vic3 voc3 D a X a X a X 2.10 C a a A Q a a 1.90 1.80 B X a X a X a A a a a Q a a 1.70 1.60 1.40 1.30 1.20 1.10 0.90 0.80 325.00 vna4 vnc4 vne3 30 275.00 25 225.00 20 175.00 15 125.00 10 75.00 BTL SIMULATION 5 25.00 1.0 to 2.1 Tr (ns): 1.0 (10%-90%) vfa4 vfc4 vfe3 65 Ohm Lines -2-4 -6 oltage(m ) -8-10 -12-14 -16-18 -20 Page 48

1998032643 2.20 vic3 voc3 E a a Q a a a 2.10 D a X a X a X 1.90 1.80 1.70 C a a A Q a a B X a X a X a 1.60 1.40 A a a a Q a a 1.30 1.20 1.10 0.90 0.80 18 vna4 vnc4 vne3 16 14 12 10 8 6 4 2 BTL SIMULATION 1.0 to 2.1 vfa4 vfc4 vfe3 Tr (ns): 2.0 (10%-90%) -1-2 -3 65 Ohm Lines -4-5 -6-7 -8-9 -10 Page 49

1998032644 E a a Q a a a -0.50 vic3 voc3 D a X a X a X -0.60-0.70 C a a A Q a a -0.80-0.90 B X a X a X a - -1.10 A a a a Q a a -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90-40 375.00 35 vna4 vnc4 vne3 325.00 30 275.00 25 ECL SIMULATION 225.00 20 175.00 15 125.00 10 75.00 5 25.00-1.8 to -0.8 Tr (ns): 0.5 (20%-80%) 25.00 vfa4 vfc4 vfe3 50 Ohm Lines -25.00-5 -75.00 oltage(m ) -10-125.00-15 -175.00-20 -225.00-25 -275.00 Page 50

1998032645-0.50 vic3 voc3 E a a Q a a a -0.60-0.70 D a X a X a X -0.80-0.90 C a a A Q a a - -1.10 B X a X a X a -1.20-1.30 A a a a Q a a -1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 22 vna4 vnc4 vne3 20 18 16 14 12 10 8 6 4 2 ECL SIMULATION 0.0 0.5 1.0 1.5 2.0 2.5 3.0-1.8 to -0.8 vfa4 vfc4 vfe3 1-1 -2-3 -4-5 -6-7 -8-9 -10-11 -12-13 -14-15 -16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 51 Tr (ns): 1.0 (20%-80%) 50 Ohm Lines

1998032646 E a a Q a a a 1.30 vic3 voc3 D a X a X a X 1.20 1.10 C a a A Q a a B X a X a X a 0.90 0.80 A a a a Q a a 0.70 0.60 0.50 0.40 0.30 0.20 0.10 24 vna4 vnc4 vne3 22 20 18 16 14 12 10 8 6 GTL SIMULATION 4 2 0.4 to 1.2 Tr (ns): 1.0 (10%-90%) vfa4 vfc4 vfe3 65 Ohm Lines -1-2 -3-4 -5 oltage(m ) -6-7 -8-9 -10-11 -12-13 -14 Page 52

1998032647 5.50 vic3 voc3 E a X Q X a X 5.00 4.50 4.00 D a a a a a a C a a A Q a a 3.50 3.00 2.50 B a a a a a a A X a X Q X a 0.50-0.50 160 vna4 vnc4 vne3 140 120 100 80 60 40 20 ACT SIMULATION 0.0 to 5.0 Tr (ns): 1.0 (10%-90%) vfa4 vfc4 vfe3-10 65 Ohm Lines -20-30 -40-50 -60-70 -80-90 Page 53

1998032648 E a X Q X a X 5.50 vic3 voc3 D a a a a a a C a a A Q a a 5.00 4.50 4.00 B a a a a a a A X a X Q X a 3.50 3.00 2.50 0.50-0.50 90 vna4 vnc4 vne3 80 70 60 50 40 30 20 ACT SIMULATION 10 0.0 to 5.0 Tr (ns): 2.0 (10%-90%) vfa4 vfc4 vfe3 65 Ohm Lines -5-10 -15 oltage(m ) -20-25 -30-35 -40-45 -50 Page 54

1998032649 4.00 vic3 voc3 E a X Q X a X 3.50 D a a a a a a 3.00 C a a A Q a a 2.50 B a a a a a a A X a X Q X a 0.50 100 vna4 vnc4 vne3 90 80 70 60 50 40 30 20 10 AST SIMULATION 0.3 to 3.3 vfa4 vfc4 vfe3 Tr (ns): 1.0 (10%-90%) -5-10 -15-20 50 Ohm Lines -25-30 -35-40 -45-50 -55-60 -65-70 -75 Page 55

1998032650 E a X Q X a X 4.00 vic3 voc3 D a a a a a a 3.50 C a a A Q a a 3.00 B a a a a a a 2.50 A X a X Q X a 0.50 100 vna4 vnc4 vne3 90 80 70 60 50 40 30 AST SIMULATION 20 10 0.3 to 3.3 Tr (ns): 1.0 (10%-90%) vfa4 vfc4 vfe3 65 Ohm Lines -5-10 -15-20 oltage(m ) -25-30 -35-40 -45-50 -55 Page 56

1998032651 3.50 vic3 voc3 E a X Q X a X 3.00 D a a a a a a 2.50 C a a A Q a a B a a a a a a A X a X Q X a 0.50 vna4 vnc4 vne3 544.25 444.25 344.25 244.25 144.25 44.25 AST SIMULATION -55.75 0.3 to 3.3 vfa4 vfc4 vfe3 Tr (ns): 2.0 (10%-90%) -5 50 Ohm Lines -10-15 -20-25 -30-35 -40-45 Page 57

1998032652 E a X Q X a X 3.50 vic3 voc3 D a a a a a a 3.00 C a a A Q a a 2.50 B a a a a a a A X a X Q X a 0.50 50 vna4 vnc4 vne3 45 40 35 30 25 20 15 10 AST SIMULATION 5 0.3 to 3.3 Tr (ns): 2.0 (10%-90%) vfa4 vfc4 vfe3 65 Ohm Lines -25.00-5 -75.00-10 oltage(m ) -125.00-15 -175.00-20 -225.00-25 -275.00-30 Page 58

1998032653 2.20 vic3 voc3 E a X Q X a X 2.10 D a a a a a a 1.90 1.80 1.70 C a a A Q a a B a a a a a a 1.60 1.40 A X a X Q X a 1.30 1.20 1.10 0.90 0.80 35 vna4 vnc4 vne3 30 25 20 15 10 5 BTL SIMULATION 1.0 to 2.1 vfa4 vfc4 vfe3 Tr (ns): 1.0 (10%-90%) -2-4 -6 65 Ohm Lines -8-10 -12-14 -16-18 -20 Page 59

1998032654 E a X Q X a X 2.20 vic3 voc3 D a a a a a a 2.10 C a a A Q a a 1.90 1.80 B a a a a a a A X a X Q X a 1.70 1.60 1.40 1.30 1.20 1.10 0.90 0.80 20 vna4 vnc4 vne3 18 16 14 12 10 8 6 4 BTL SIMULATION 2 1.0 to 2.1 Tr (ns): 2.0 (10%-90%) vfa4 vfc4 vfe3 65 Ohm Lines -1-2 -3-4 oltage(m ) -5-6 -7-8 -9-10 -11 Page 60

1998032655-0.40 vic3 voc3 E a X Q X a X -0.60 D a a a a a a -0.80 C a a A Q a a - B a a a a a a -1.20 A X a X Q X a -1.40-1.60-1.80-40 vna4 vnc4 vne3 35 30 25 20 15 10 5 ECL SIMULATION -1.8 to -0.8 25.00 vfa4 vfc4 vfe3 Tr (ns): 0.5 (20%-80%) -25.00 50 Ohm Lines -5-75.00-10 -125.00-15 -175.00-20 -225.00-25 -275.00-30 Page 61

1998032656 E a X Q X a X -0.50 vic3 voc3 D a a a a a a -0.60-0.70 C a a A Q a a -0.80-0.90 B a a a a a a - -1.10 A X a X Q X a -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 25 vna4 vnc4 vne3 225.00 20 175.00 15 125.00 10 75.00 5 ECL SIMULATION 25.00-1.8 to -0.8-25.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Tr (ns): 1.0 (20%-80%) 2 vfa4 vfc4 vfe3 50 Ohm Lines -2-4 oltage(m ) -6-8 -10-12 -14-16 -18 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 62

1998032657 1.30 vic3 voc3 E a X Q X a X 1.20 1.10 D a a a a a a C a a A Q a a 0.90 0.80 B a a a a a a 0.70 0.60 0.50 A X a X Q X a 0.40 0.30 0.20 0.10 25 vna4 vnc4 vne3 225.00 20 175.00 15 125.00 10 75.00 5 25.00 GTL SIMULATION 0.4 to 1.2 vfa4 vfc4 vfe3 Tr (ns): 1.0 (10%-90%) -1-2 -3-4 65 Ohm Lines -5-6 -7-8 -9-10 -11-12 -13-14 -15 Page 63

1998032658 E a Q Q a -0.50 vid3 vid4 vod3 vod4 D a A A I a -0.60-0.70 C X X X X X X -0.80-0.90 B a a a - -1.10 A a Q Q a -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90-2 vna3a4 vne4e3-2 -4-6 -8-10 -12-14 ECL SIMULATION -16-1.8 to -0.8-18 Tr (ns): 0.5 (20%-80%) 9 vfa3a4 vfe4e3 50 Ohm Lines 8 7 6 5 oltage(m ) 4 3 2 1-1 -2-3 Page 64

1998032659-0.50 vid3 vid4 vod3 vod4 E a Q Q a -0.60-0.70 D a A A I a -0.80-0.90 C X X X X X X - -1.10 B a a a -1.20-1.30 A a Q Q a -1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 vna3a4 vne4e3-1 -2-3 -4-5 -6-7 -8 ECL SIMULATION -9 0.0 0.5 1.0 1.5 2.0 2.5 3.0-1.8 to -0.8 4 vfa3a4 vfe4e3 Tr (ns): 1.0 (20%-80%) 35.00 3 25.00 50 Ohm Lines 2 15.00 1 5.00-5.00-1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 65

1998032660 E Q A a -0.50 vie4 vid4 voe4 vod4 D a Q a A I a -0.60-0.70 C X X X X X X -0.80-0.90 B a a Q a - -1.10 A a a Q -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90-2 vna5b5 vne2d2-2 -4-6 -8-10 -12 ECL SIMULATION -14-1.8 to -0.8-16 Tr (ns): 0.5 (20%-80%) 7 vfa5b5 vfe2d2 50 Ohm Lines 6 5 4 oltage(m ) 3 2 1-1 -2-3 Page 66

1998032661-0.50 vie4 vid4 voe4 vod4 E Q A a -0.60-0.70 D a Q a A I a -0.80-0.90 C X X X X X X - -1.10 B a a Q a -1.20-1.30 A a a Q -1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 vna5b5 vne2d2-1 -2-3 -4-5 -6-7 ECL SIMULATION -8 0.0 0.5 1.0 1.5 2.0 2.5 3.0-1.8 to -0.8 35.00 vfa5b5 vfe2d2 Tr (ns): 1.0 (20%-80%) 3 50 Ohm Lines 25.00 2 15.00 1 5.00-5.00-1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 67

1998032662 E a X a X Q X -0.50 vic3 vib3 voc3 vob3 D Q a Q a -0.60-0.70 C a Q A a -0.80-0.90 B a A I a a - -1.10 A X X X -1.20-1.30-1.40 - -1.60-1.70-1.80-1.90 - vnd2c2 vne5d5-1 -2-3 -4-5 -6-7 ECL SIMULATION -8-9 -1.8 to -0.8-10 Tr (ns): 0.5 (20%-80%) 5 vfd2c2 vfe5d5 50 Ohm Lines 4 3 oltage(m ) 2 1-1 -2 Page 68

1998032663-0.50 vic3 vib3 voc3 vob3 E a X a X Q X -0.60-0.70 D Q a Q a -0.80-0.90 C a Q A a - -1.10 B a A I a a -1.20-1.30 A X X X -1.40 - -1.60-1.70-1.80-1.90-0.0 0.5 1.0 1.5 2.0 2.5 3.0 5.00 vnd2c2 vne5d5-5.00-1 -15.00-2 -25.00-3 -35.00-4 -45.00 ECL SIMULATION -5 0.0 0.5 1.0 1.5 2.0 2.5 3.0-1.8 to -0.8 2 vfd2c2 vfe5d5 Tr (ns): 1.0 (20%-80%) 15.00 50 Ohm Lines 1 5.00-5.00-1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Page 69

1998032664 E a a a Q a a 5.50 vid3 vod3 D a a A a a X C a a a Q a a 5.00 4.50 4.00 B X a X a X a A a a a Q a a 3.50 3.00 2.50 0.50-0.50 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 60 vna4 vnc4 vne4 55 50 45 40 35 30 25 20 15 HCMOS SIMULATION 10 5 0.0 to 5.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Tr (ns): 4.0 (10%-90%) vfa4 vfc4 vfe4 65 Ohm Lines -5-10 -15 oltage(m ) -20-25 -30-35 -40-45 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Page 70

1998032665 5.50 vid3 vod3 E a a a Q a a 5.00 4.50 4.00 D a a A a a X C a a a Q a a 3.50 3.00 2.50 B X a X a X a A a a a Q a a 0.50-0.50 0.0 2.0 4.0 6.0 8.0 10.0 12.0 45 vna4 vnc4 vne4 40 35 30 25 20 15 10 5 HCMOS SIMULATION 0.0 2.0 4.0 6.0 8.0 10.0 12.0 0.0 to 5.0 vfa4 vfc4 vfe4 Tr (ns): 6.0 (10%-90%) -25.00-5 65 Ohm Lines -75.00-10 -125.00-15 -175.00-20 -225.00-25 -275.00 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Page 71

1242176-500-AMP-AMP-04/1998