Investigation on the Parallel Operation of Discrete SiC BJTs and JFETs

Similar documents
Characterization and Modeling of Silicon Carbide Power Devices and Paralleling Operation

Temperature-Dependent Characterization of SiC Power Electronic Devices

High-Temperature and High-Frequency Performance Evaluation of 4H-SiC Unipolar Power Devices

ENHANCING POWER ELECTRONIC DEVICES WITH WIDE BANDGAP SEMICONDUCTORS

A 55 kw Three-Phase Automotive Traction Inverter with SiC Schottky Diodes

Design and Characterization of a Three-Phase Multichip SiC JFET Module

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications

Application Note AN-10A: Driving SiC Junction Transistors (SJT) with Off-the-Shelf Silicon IGBT Gate Drivers: Single-Level Drive Concept

Performance Comparison of SiC Schottky Diodes and Silicon Ultra Fast Recovery Diodes

Dr.R.Seyezhai/ International Journal of Engineering Research and Applications (IJERA)

A SiC JFET Driver for a 5 kw, 150 khz Three-Phase Sinusoidal-Input, Sinusoidal-Output PWM Converter

Investigation of Parasitic Turn-ON in Silicon IGBT and Silicon Carbide MOSFET Devices: A Technology Evaluation. Acknowledgements. Keywords.

Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis

A 55-kW Three-Phase Inverter With Si IGBTs and SiC Schottky Diodes

Effect of driver to gate coupling circuits on EMI produced by SiC MOSFETS

SJEP120R125. Silicon Carbide. Normally-OFF Trench Silicon Carbide Power JFET. Product Summary

Efficiency improvement with silicon carbide based power modules

Computational Model of Silicon Carbide JFET Power Device

Hybrid Behavioral-Analytical Loss Model for a High Frequency and Low Load DC-DC Buck Converter

Application Note AN-10B: Driving SiC Junction Transistors (SJT): Two-Level Gate Drive Concept

Comparison of SiC and Si Power Semiconductor Devices to Be Used in 2.5 kw DC/DC Converter

Study of Static and Dynamic Characteristics of Silicon and Silicon Carbide Devices

Experimental study of snubber circuit design for SiC power MOSFET devices

Performance Evaluation of Full SiC Switching Cell in an Interleaved Boost Converter for PV Applications

SiC JFET Cascode Loss Dependency on the MOSFET Output Capacitance and Performance Comparison with Trench IGBTs

Modeling and Simulation of a 5.8kV SiC PiN Diode for Inductive Pulsed Plasma Thruster Applications

Reduction of Stray Inductance in Power Electronic Modules Using Basic Switching Cells

SiC Transistor Basics: FAQs

Switching and conducting performance of SiC-JFET and ESBT against MOSFET and IGBT

Some Key Researches on SiC Device Technologies and their Predicted Advantages

Unit III FET and its Applications. 2 Marks Questions and Answers

Study on Fabrication and Fast Switching of High Voltage SiC JFET

S.Tiwari, O.-M. Midtgård and T. M. Undeland Norwegian University of Science and Technology 7491 Trondheim, Norway

Turn-On Oscillation Damping for Hybrid IGBT Modules

An SOI-based High-Voltage, High-Temperature Gate-Driver for SiC FET

Impact of Basal Plane Dislocations and Ruggedness of 10 kv 4H-SiC Transistors

Impulse Transformer Based Secondary-Side Self- Powered Gate-Driver for Wide-Range PWM Operation of SiC Power MOSFETs

SIMULATION STUDIES OF HALF-BRIDGE ISOLATED DC/DC BOOST CONVERTER

TA0349 Technical article

Development of SiC BJT based PWM Inverter for renewable energy resources

Novel AC Coupled Gate Driver for Ultra Fast Switching of Normally-Off SiC JFETs

CHAPTER 7 HARDWARE IMPLEMENTATION

Unleash SiC MOSFETs Extract the Best Performance

Balancing Circuit for a 5-kV/50-ns Pulsed Power Switch Based on SiC-JFET Super Cascode

Turn-Off Characteristics of SiC JBS Diodes

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

High voltage and large current dynamic test of SiC diodes and hybrid module

INVESTIGATION OF GATE DRIVERS FOR SNUBBERLESS OVERVOLTAGE SUPPRESSION OF POWER IGBTS

Power SiC DMOSFET Model Accounting for JFET Region Nonuniform Current Distribution

Characterization and Loss Modeling of Silicon Carbide Based Power Electronic Converters

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

Cree SiC Power White Paper: The Characterization of dv/dt Capabilities of Cree SiC Schottky diodes using an Avalanche Transistor Pulser

Comparison of commutation transients of inverters with silicon carbide JFETs with and without body diodes.

TRANSISTOR TRANSISTOR

USCi MOSFET progress (ARL HVPT program)

Experiment (1) Principles of Switching

AC-DC-AC-DC Converter Using Silicon Carbide Schottky Diode

P-cell and N-cell based IGBT Module: Layout Design, Parasitic Extraction, and Experimental Verification

High-Voltage Switch Using Series-Connected IGBTs With Simple Auxiliary Circuit

18 kw Three Phase Inverter System Using Hermetically Sealed SiC Phase-Leg Power Modules

Lecture 19 Real Semiconductor Switches and the Evolution of Power MOSFETS A.. Real Switches: I(D) through the switch and V(D) across the switch

Wide Band-Gap (SiC and GaN) Devices Characteristics and Applications. Richard McMahon University of Cambridge

Power Loss Estimation in SiC Power BJTs

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

Progress Energy Distinguished University Professor Jay Baliga. April 11, Acknowledgements

10-PZ126PA080ME-M909F18Y. Maximum Ratings

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

UNIT 3: FIELD EFFECT TRANSISTORS

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER

PFU70R360G / PFD70R360G

IN THE high power isolated dc/dc applications, full bridge

4. Power Electronics Research and Technology Development

PWRLITE LD1010D High Performance N-Ch Vertical Power JFET Transistor with Schottky G D S

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) for Hybrid Electric and Fuel Cell Vehicles

Driving of a GaN Enhancement Mode HEMT Transistor with Zener Diode Protection for High Efficiency and Low EMI

Multilevel Cascade H-bridge Inverter DC Voltage Estimation Through Output Voltage Sensing

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

Fundamentals of Power Semiconductor Devices

SGP100N09T. Symbol Parameter SGP100N09T Unit. 70* -Continuous (TA = 100 )

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

Experiment#: 8. The JFET Characteristics & DC Biasing. Electronics (I) Laboratory. The Hashemite University. Faculty of Engineering

Drive and Layout Requirements for Fast Switching High Voltage MOSFETs

Power Semiconductor Devices

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

IRFF9130 JANS2N6849 JANTXV2N V, P-CHANNEL. Absolute Maximum Ratings. Features: 1 PD D. REPETITIVE AVALANCHE AND dv/dt RATED

Gate driver design for normally-off SiC JFET

THE SPICE DYNAMIC BEHAVIOURAL ELECTROTHERMAL MODEL OF SILICON CARBIDE POWER MOSFET

Application Note 0009

Compact Modeling of Silicon Carbide Lateral FETs for High Temperature Analog and Digital Circuits

SYSTEM IMPACT OF SILICON CARBIDE POWER DEVICES

Streamlined Design of SiGe Based Power Amplifiers

Triple Pulse Tester - Efficient Power Loss Characterization of Power Modules

PD IRG4PC50WPbF. INSULATED GATE BIPOLAR TRANSISTOR Features. n-channel TO-247AC. 1

I2-PAK G D S. T C = 25 C unless otherwise noted. Drain-Source Voltage 650 V. Symbol Parameter SLB10N65S SLI10N65S Units R θjc

Transcription:

Investigation on the Parallel Operation of Discrete SiC BJTs and JFETs Madhu Chinthavali 1 Puqi Ning Yutian Cui 3 Leon M. Tolbert 1,3 chinthavalim@ornl.gov ningp@ornl.gov ycui7@utk.edu tolbert@utk.edu 1 Oak Ridge National Laboratory Oak Ridge, TN 37831-67 USA Oak Ridge Institute for Science and Education Oak Ridge, TN 37831-117 USA 3 The University of Tennessee Knoxville, TN 37996-1 USA Abstract This paper presents an analysis of single discrete silicon carbide (SiC) JFET and BJT devices and their parallel operation. The static and dynamic characteristics of the devices were obtained over a wide range of temperature to study the scaling of device parameters. The static parameters like on-resistance, threshold voltage, current gains, transconductance, and leakage currents were extracted to show how these parameters would scale as the devices are paralleled. A detailed analysis of the dynamic current sharing between the paralleled devices during the switching transients and energy losses at different voltages and currents is also presented. The effect of the gate driver on the device transient behavior of the paralleled devices was studied, and it was shown that faster switching speeds of the devices could cause mismatches in current shared during transients. I. INTRODUCTION The theoretical promise of SiC devices to improve the performance of power electronics converters continues to drive the development of this technology for several applications. The performance based analysis will be one aspect to prove the potential of SiC based devices; however, the reliability and the cost aspects need to be assessed as well for the commercialization of the technology. Even though significant progress has been made on the quality and size of the SiC wafer, some material defects such as basal plane and screw dislocations have been the roadblocks for devices, especially the bipolar devices. The unipolar switches like MOSFET and JFET have been improved over the years and may be closer to commercialization. MOSFET has the inherent oxide interface issues at high temperatures that need to be solved [1]. JFET does not have any interface issues; however, the normally-on and normally-off structures have been pursued and each structure has its own advantage and disadvantages. The normally-off structure is the preferred choice of the circuit designers. Recently the BJT, which is a normally-off device and also free of oxide interface problems, has been developed and could be an alternate solution to the Si IGBT. However, being a current controlled device, the drive power requirements for the BJT are much higher than the MOSFET or JFET. Parallel operation is an important feature of any semiconductor device in a power module. The gate drive requirements and the current sharing during the dynamic switching impacts the operation of the module and the switch utilization factor of the switches paralleled. SiC switches have positive temperature coefficient which makes the current sharing during conduction easier. However, the dynamic current sharing is very critical and depends on the gate drive and the parasitics associated with it. Several SiC device based power modules have been reported [-]. However, performance of the individual devices during parallel operation in the module has not been studied. Analysis of parallel operation of devices in a module is difficult because of lack of access to the individual devices unless it is specially packaged. The characterization of single SiC JFET and SiC BJT devices has been reported in several papers [6-13]. The parallel operation of SiC BJTs has been studied with pulse power for current sharing on a special package [1]. A comparison of SiC JFET (normally-on) and a similar SiC BJT has been compared in [1]. This paper presents characterization of paralleled discrete SiC JFETs (normallyoff) and paralleled SiC BJTs. The static and dynamic characteristics of the devices were obtained over a wide range of temperatures to study the scaling of device parameters. The freewheeling SiC JBS diode also has been characterized, and its dynamic characteristics are presented. II. STATIC CHARACTERISTICS A. SiC Bipolar Junction Transistor The forward characteristics of SiC bipolar junction transistor (BJT) rated at 1 V, 1 A were obtained for both single and paralleled devices at different temperatures from C to 17 C as shown in Fig. 1 and Fig.. Since 1 Prepared by the Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, managed by UT-Battelle for the U.S. Department of Energy under contract DE-AC-OR7. The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC-OR7. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish from the contribution, or allow others to do so, for U.S. Government purposes.

Ic (A) Gain Ic(A) Resistance (Ohm) the BJT is a current driven device, in order to drive more than one device it requires additional base current to drive both devices. The base current of the device was chosen from the forward characteristics obtained at different base currents. To make sure the devices are operated under linear region at rated current, 3 ma for single BJT and 6 ma for paralleled BJT of base current were chosen. The on state resistance calculated from the forward characteristics is shown in Fig. 3. It has positive temperature coefficient, which means with the temperature increasing, the resistance also increases. This feature makes it easier for parallel operation. The single BJT has almost twice the resistance as paralleled BJTs at the same temperature. However, in order to achieve the lower on state resistance of paralleled BJTs, larger base current is required and this clearly will increase the gate drive power requirements. 7 6 3 1 Base Current =3mA.1..3...6.7.8.9 1 Vce (V) Fig. 1. Forward characteristic of single SiC BJT..16.1.1.1.8.6. Single BJT Paralleled BJT. 6 8 1 1 1 16 18 Temperature(C) Fig. 3. On state resistance of SiC BJT. Another important parameter of BJTs is current gain. Fig. and Fig. show the current gain for single and paralleled BJTs over a temperature range. The gains were measured at a fixed collector-emmiter voltage to ensure that the BJTs are in the forward active region. The figures illustrate that the gain decreases as the temperature increases and the gain increases with increase in collector current. The increasing gain with the colletor currents suggests that this device is suitable for higher current operation. The range of gain for the parallel device is much higher than the single device at all temperatures. This shows that the gain also scales proportionally with the device base current. The leakage current of the single device was obtained over the temperature range of C to 1 C and up to 6 V (Fig. 6). The voltage was limited to 6 V, because the leakage current was of interest rather than the avalanche characteristics of the device. At, 6 V the leakage current increased from 1.3 ua at C to 3.6 ua at 1 C. 1 1 7 6 6 1 8 6 Base Current=6mA 3 3 Vce=V.1..3...6.7.8.9 1 Vce (V) Fig.. Forward characteristics of two paralleled SiC BJTs. 1 1 Ic (A) Fig.. Gain of single SiC BJT.

Resistance (Ohm) Leakage Current (ua) Id(A) Gain Id (A) 8 1 7 7 6 6 1 3 Vce=V Vgs=3V 3 1 1 3 3 Ic (A) Fig.. Gain of two paralleled SiC BJTs....6.8 1 1. 1. Vds (V) Fig. 7. Forward characteristic of single SiC JFET. 3. 1C 3 1. 1 1. 1C 7C 1C C Vgs=3V 1 3 3 6 Voltage (V) Fig. 6. Leakage current of single SiC BJT....6.8 1 1. 1. 1.6 Vds (V) Fig. 8. Forward characteristic of two paralled SiC JFETs. B. Junction Field Effect Transistor The forward characteristics of a SiC Junction Field Effect Transistor (JFET) rated at 1 V, A were also obtained for both single and paralleled devices at different temperatures from C to 17 C as shown in Fig. 7 and Fig. 8. The forward charateristics were obtained at a gatesource voltage of 3 V since it is a normally off device. The JFET also has positive temperature coefficient as shown in Fig. 8. Fig. 9 shows the on state resistance for a single JFET and for two paralleled JFETs over a temperature range from C to 17 C. As expected, the on state resistance for the two paralleled JFETs is approximately one half that of a single JFET..9.8.7.6...3 Single JFET Paralleled JFET. 6 8 1 1 1 16 18 Temperature(C) Fig. 9. On state resistance of SiC JFET.

Id(A) Id (A) Leakage Current (ua) Transconductance(S) Fig. 1 and Fig. 11 show the transfer characterisitics of single and paralleled JFETs. The JFET is normally-off, so the threshold voltage is positive. The threshold voltage decreases with increase in temperature for both the single and paralleled devices. However, as shown in Fig. 1, the transconductance g m of the paralleled devices is higher than the single device. This increase in g m will impact the switching speed of the device as they are paralleled. For both the single and paralleled devices, the value of g m decreases with increase in temperature. The leakage current of the single device was obtained over the temperature range of C to 1 C and up to 6 V (Fig. 13). The voltage was limited to 6 V because the leakage current was of interest rather than the avalanche characteristics of the device. At 6 V the leakage current increased from 37 ua at C to 6 ua at 1 C. 1 11 1 9 8 7 6 3 Paralleled JFET Single JFET 6 8 1 1 1 16 18 Temperature (C) Fig. 1. Transconductance of SiC JFET. 6 1C 1C 3 3 1 Vds=V. 1 1.. 3 Vgs(V) 1 1 8 6 Fig. 1. Transfer characteristic of single SiC JFET. Vds=V. 1 1.. 3 Vgs(V) Fig. 11. Transfer characteristic of two paralleled SiC JFETs. 3 1 1C 3 3 6 Voltage (V) C 7C Fig. 13. Leakage current of single SiC JFET. III. DRIVE REQUIRMENTS AND DESIGN The drive requirements for the normally-off JFET and BJT are very similar even though the JFET is a voltage drive based device. Both devices require steady state current from the drive to keep the device turned on and a dynamic current several times higher than the steady state current during the turn on and turn off to achieve faster switching times. The JFET steady state current is much lower than the BJT, and maximum peak dynamic current is dependent on the internal gate/base resistance of the individual device. However, one major difference is the BJT does not require negative voltage to turn-off unlike the voltage controlled JFET. The output driver stage as shown in Fig. 1 for both devices is the same, and the values of the components were changed based on the requirements of the device. A standard commercial driver IC from IXYS was used in the drive circuit for both devices. The driver IXDN9 can provide a peak output current of 9 A with a maximum output resistance of 1 Ω. The maximum rise time is ns for a capacitive load of 1 nf with V CC =18 V according to

Fig. 1. Schematic of the drive circuit. datasheet specifications. This feature enables the supply of a high dynamic base/gate current to the SiC BJT/JFET with short rise-time. However, parasitic inductance of the circuit and the connections from the driver to the BJT/JFET on the PCB become very critical to minimize the oscillations. The output stage of the drive includes resistor R and capacitor C 1 for transient current and parallel resistor R 1 for static current. The turn-on and turn off times of the devices are controlled by selecting the values of capacitor C 1, and the resistor dampens the oscillation caused by C1 and the parasitic inductance of the circuit. The higher the voltage of the gate drive, the higher the dynamic current will be for a given value of R and C1. However, the value of R1 has to be increased to limit the current to the required base current value. This results in higher power dissipation in the gate drive circuit. The V CC range -1 V was investigated for the SiC BJT and the SiC JFET. Typically, a negative gate voltage is required for the SiC JFET to ensure that the device remains turned-off. For the SiC BJT, no negative voltage is required since it is a current driven device. A negative gate voltage of -1 V was chosen for the SiC JFET. The resistor R 1 in the range of 3- Ω was tried for Vcc of V and 9-1 Ω for Vcc of 1 V. The capacitor C in the range of 1-1 nf and the resistor R in the range of 1-7 Ω was tried to achieve a high dynamic base/gate current during switching. As mentioned earlier, 1 V was chosen to increase the switching speed of the devices and the optimum values chosen for different passive elements are shown in Table I. TABLE I. DRIVE PARAMETERS FOR SIC BJT AND JFET R1 (Ω) R (Ω) C1(nF) Vhigh- VGND (V) Vlow - VGND (V) Single BJT 1 1 1 Single JFET 1 1-1 Parallel BJTs 1 3 1 1 Parallel JFETs 1 7 1 1-1 IV. BJT AND JFET DYNAMIC CHARACTERISITCS To characterize the SiC BJT and SiC JFET dynamically, switching measurements (double pulse test) were performed. A schematic of the circuit topology used in the switching measurements is shown in Fig. 1. The actual test setup is shown in Fig. 16. The same power board layout was used for both BJTs and JFETs for single and parallel measurements. The load inductance of 1 uh and a 1V, 3 A SiC JBS freewheeling diode was used for all the tests. The equipment used in the measurements is Tektronix DPO 71 1GHz, a TEK differential probe P 1 MHz, and a Pearson current probe 877 MHZ range bandwidth. Two current probes were used to measure the current through each device during parallel operation measurements. The dynamic behavior of the switches during the parallel operation of two BJTs or for two JFETs at V, 1 A ( A each device) is shown in Fig. 17 and Fig. 18, respectively. The figure shows a very close match of the waveforms during turn-off. However, during the turn-on the device currents are slightly off and finally match after the ringing settles down. This mismatch during the initial transient during turn-on could be because of several factors like layout parasitic inductance or the difference in device parameters due to sample mismatch. Fig. 1. Schematic of the double-pulse test setup. Fig. 16. Experimental test setup. The device switching speed was slowed by changing gate voltage from +1V to + V thereby adjusting the peak gate current, and the currents of the devices matched perfectly as shown in Fig. 19. The currents were superimposed and they are so identical that the difference in the two waveforms could not be distinguished. This clearly shows that the faster transients could cause unwanted ringing due the resonance of the circuit parasitics and cause mismatches. This also illustrates the importance of packaging for faster switching devices. The other interesting observation is the ringing in the JFET single and paralleled devices is much higher than the paralleled BJT even though the same diode was used for both tests. Again this difference

Turn on Current(A) Total Energy Loss (uj) Turn off Current(A) Turn on Total Energy Loss (uj) Turn off could be because of the parasitic inductance and device switching mechanisms. A detailed analysis is required to further explain the mismatch in the switching behavior during turn-on. The total energy losses of the devices were obtained at V, 6 V and at different currents up to 1 A for the single device and up to A for the paralleled devices shown in Figs. -3. It should be noted that only switches were heated and not the diode so that the temperature effects of the diode would not affect the device measurements. The energy losses of a single BJT at V are almost the same as the two paralleled devices at the same current. On the other hand, the two JFET paralleled device energy losses are two times more than the single device losses. However, at 6 V, the energy losses of paralleled BJT are almost two times the losses of the single device. While the JFET paralleled device losses are up to 1. more than the single device losses at 6 V. 6 Fig. 19. Turn-on and turn-off waveform two paralleled SiC JFETs at 3 V and A. JFET 1 Vgs JFET Vds -. 1 1.. time(s) 3 3.. x 1-7 1 1 1 Single BJT from C to 1C at V Single JFET from C to 17C at V..1.1...3.3... time (s) x 1-6 Fig. 17. Turn-on and turn-off waveforms of two paralleled SiC BJTs at V and 1 A. 3 6 7 8 9 1 Fig.. Total energy loss of a single SiC BJT and a single JFET at V. 6 7 -. 6 6. 7 7. time(s) x 1-7 6 Parallel BJT from C to 17C at V 1 3 Parallel JFET from C to 17C at V 1.6 1.6 1.7 1.7 1.8 1.8 time(s) x 1-6 Fig. 18. Turn-on and turn-off waveforms of two paralleled SiC JFETs at V and 1 A. 1 1 1 Fig. 1. Total energy loss of two paralleled BJTs and two paralleled JFETs at V.

Energy loss, Err (uj) Total Energy Loss (uj) Total Energy Loss (uj) 8 6 18 16 1 1 1 Single BJT from C to 1C at 6V Single JFET from C to 17C at 6V 8 3 6 7 8 9 1 Fig.. Total energy loss of a single SiC BJT and a single JFET at 6V. 1 1 8 6 Parallel BJT from C to 17C at 6V Parallel JFET from C to 17C at 6V The SiC JBS diode was tested in the same chopper circuit as the SiC normally-off SiC JFET with double pulse switching to obtain its dynamic characteristics. The turn-off energy losses of the JBS diode at V, V, and 6 V over a wide temperature range are shown in Fig.. The turn-off losses do not change much with temperature or current exhibiting temperature independent switching loss behavior. However, the loss increases as the voltage increases. Only the dynamic characteristics of the diode are presented to show the effect of the diode on the energy loss of the switches. V. CONCLUSIONS The characterization of single and paralleled SiC JFETs and BJTs were presented. The static parameters like on-stateresistance, threshold voltage, current gains, transconductance, and leakage currents were extracted to show how these parameters would scale as the devices are paralleled. The dynamic current sharing between the paralleled devices was captured to show the effect of device drive and package on the device performance. The effect of the gate driver on the device transient behavior of the paralleled devices was studied, and it was shown that faster switching speeds of the devices could cause mismatches in currents shared during transients. However, both devices showed excellent current sharing capability during steady state current periods. The difference in energy losses of paralleled SiC BJTs compared to the single devices increased with increase in voltage. However, the difference in energy losses of paralleled SiC JFETs compared to the single devices decreased with increase in voltage. 1 1 Fig. 3. Total energy loss of two paralleled BJTs and two paralleled JFETs at 6 V. 1 1 1 8 6 6 V C,7C,1C,1C,17C V C,7C,1C,1C,17C V C,7C,1C,1C,17C 1 1 Fig.. Total energy loss of SiC JBS diode. REFERENCES [1] M. Gurfinkel et al., Characterization of transient gate oxide trapping in SiC MOSFETs using fast I-V techniques, IEEE Trans. on El. Dev., vol., no. 8, August 8, pp. -1. [] Y. Sugawara, D. Takayama, K. Asano, S. Ryu, A. Miyauchi, S. Ogata, T. Hayashi, H-SiC high power SIJFET module, Proc. IEEE 1th International Symposium on Power Semiconductor Devices and ICs, April 1-17, 3, pp. 17 13. [3] T. E. Salem, D. P. Urciuoli, R. Green, G. K. Ovrebo, Hightemperature high-power operation of a 1 A SiC DMOSFET module, Proc. IEEE Applied Power Electronics Conference and Exposition, Feb. 1-19, 9, pp. 63 67. [] H. Zhang, M. Chinthavali, L. M. Tolbert, J. H. Han, F. Barlow, 18 kw three phase inverter system using hermetically sealed SiC phaseleg power modules, IEEE Applied Power Electronics Conference, Palm Springs, California, Feb. 1-, 1, pp. 118-111. [] B. Ozpineci, M. Chinthavali, A. Kashyap, L. M. Tolbert, A. Mantooth, A kw three-phase inverter with Si IGBTs and SiC Schottky diodes, IEEE Transactions on Industry Applications, vol., no. 1, Jan./Feb. 9, pp. 78-8. [6] Y. Gao, A.Q. Huang, X. Xu, Z. Du, A. K. Agarwal, S. Krishnaswami, R. Sei-Hyung, H-SiC BJT characterization at high current high voltage, IEEE Power Electronics Specialists Conference, 6, pp. 1. [7] R. L. Kelley, M. Mazzola, S. Morrison, W. Draper, I. Sankin, D. Sheridan, J. Casady, Power factor correction using an enhancement

mode SiC JFET, IEEE Power Electronics Specialists Conference, Rhodes, June1-19, 8, pp. 766-769. [8] J. S. Lai, H. Yu, J. Zhang, P. Alexandrov, Y. Li, J. H. Zhao, K. Sheng, A. Hefner, Characterization of normally-off SiC vertical JFET devices and inverter circuits, IEEE Industry Applications Annual Meeting,, pp. - 9. [9] M. Chinthavali, B. Ozpineci, L. M. Tolbert, High Temperature and High Frequency Performance Evaluation of H-SiC VJFET and Schottky Diodes IEEE Applied Power Electronics Conference and Exposition, March 6-1,, Austin, TX, pp. 3-38. [1] Z. Chen, A. Grekov, R. Fu, E. Santi, J. Hudgins, A. Mantooth, D. Sheridan, J. Casady, Vertical SiC JFET model with unified description of linear and saturation operating regions, IEEE Energy Conversion Congress and Exposition, Sep. -, 9, San Jose, California, pp. 36-31. [11] M. M. R Ahmed, A. Parker, N. A. Mawby, P.A. Nawaz, M. Zaring, Characterization of the static and dynamic behavior of a SiC BJT, Power Electronics and Motion Control Conference, Sep. 3, 8, Poznan, pp. 7-77. [1] T. K. Gachovska, B. Du, J. L. Hudgins, A. Grekov, A. Bryant, E. Santi, H. A. Mantooth, A. Agarwal, Modeling and simulation of a SiC BJT, IEEE Energy Conversion Congress and Exposition, Sept. 9, pp. -. [13] Y. Gao, A. Q. Huang, S. Krishnaswami, J. Richmond, A. K. Agarwal, Comparison of Static and Switching Characteristicsof 1 V H- SiC BJT and 1 V Si-IGBT, IEEE Transactions on Industry Applications, 8, pp. 887-893. [1] S. L. Kaplan Summary of Inductive SiC BJT Switching, ARL report, ARL-TR-3678, November. [1] T. W. Franke, F. W. Fuchs, Comparison of Switching and Conducting Performance of SiC-JFET and SiC-BJT with a State of the Art IGBT, European Conference of Power Electronics and Applications, 9, pp. 1-1.