Hybrid Si-SiC Modules for High Frequency Industrial Applications

Similar documents
New 1700V IGBT Modules with CSTBT and Improved FWDi

USING F-SERIES IGBT MODULES

14 POWER MODULES

Efficiency improvement with silicon carbide based power modules

(a) All-SiC 2-in-1 module

All-SiC Modules Equipped with SiC Trench Gate MOSFETs

MBN3600E17F Silicon N-channel IGBT 1700V F version

MBN1000FH65G2 Silicon N-channel IGBT 6500V G2 version

V-Series Intelligent Power Modules

Pitch Pack Microsemi full SiC Power Modules

A new compact power modules range for efficient solar inverters

MBN1200F33F-C 3300V Silicon N-channel IGBT F version with SiC Diode

IGBT Module Chip Improvements for Industrial Motor Drives

PrimePACK of 7th-Generation X Series 1,700-V IGBT Modules

Item Symbol Unit MBN1800FH33F Collector Emitter Voltage VCES V 3,300 Gate Emitter Voltage VGES V 20 Collector Current

Some Key Researches on SiC Device Technologies and their Predicted Advantages

MBN1500FH45F Silicon N-channel IGBT 4500V F version

MBN1800F33F Silicon N-channel IGBT 3300V F version

D AB Z DETAIL "B" DETAIL "A"

Power Matters Microsemi SiC Products

A new 3A/600V transfer mold IPM with RC(Reverse Conducting) -IGBT

Item Symbol Condition Value Units V C = 25 C 1200 V V C = 25 C ±20

Development of New Generation 3.3kV IGBT module

CP10TD1-24A. DIP-CIB 3Ø Converter + 3Ø Inverter + Brake 10 Amperes/1200 Volts

SUSPM TM SEPT LUH75G1201_Preliminary LUH75G1201Z*_Preliminary. SUSPM1 94 X 34 X 30mm. 1200V 75A 2-Pack IGBT Module. Features.

Sixth-Generation V-Series IGBT Module Application Note Chapter 1 Basic Concept and Features

High-power IGBT Modules

Item Symbol Unit MBM1000FS17G Collector Emitter Voltage V CES V 1,700 Gate Emitter Voltage V GES V 20 Collector Current

Item Symbol Unit MBL1600E17F Collector Emitter Voltage V CES V 1,700 Gate Emitter Voltage V GES V 20 Collector Current

7th-Generation X Series RC-IGBT Module Line-Up for Industrial Applications

Power Devices. 7 th Generation IGBT Module for Industrial Applications

U-series IGBT Modules (1,700 V)

Trench gate field-stop IGBT, HB series 650 V, 40 A high speed in a TO247-4 package

SG200-12CS2 200A1200V IGBT Module

IGBT Technologies and Applications Overview: How and When to Use an IGBT Vittorio Crisafulli, Apps Eng Manager. Public Information

CHAPTER I INTRODUCTION

MBL1200E17F Silicon N-channel IGBT 1700V F version

New Power Stage Building Blocks for Small Motor Drives

AN1387 APPLICATION NOTE APPLICATION OF A NEW MONOLITHIC SMART IGBT IN DC MOTOR CONTROL FOR HOME APPLIANCES

DIM600XSM45-F000. Single Switch IGBT Module FEATURES KEY PARAMETERS V CES. 4500V V CE(sat) * (typ) 2.9 V I C

STGW60H65DFB, STGWA60H65DFB STGWT60H65DFB

Power Management Discretes. High Speed 3 IGBT. A new IGBT family optimized for high-switching speed. Application Note

New High Power Semiconductors: High Voltage IGBTs and GCTs

L M DETAIL "A" SIGNAL TERMINAL 3 E(L) 4 V D 5 G(H) 6 F O (H) 7 E(H) 8 OPEN

L M DETAIL "A" SIGNAL TERMINAL 3 E(L) 4 V D 5 G(H) 6 F O (H) 7 E(H) 8 OPEN

P Q SIGNAL TERMINAL 1 F O (L) 5 F O (H) V S DETAIL "A"

Tc=25 C 1800 Tc=100 C 1400 Collector current

Trench gate field-stop, 1200 V, 25 A, low-loss M series IGBT in a TO-247 package

STGW40H120DF2, STGWA40H120DF2

CP15TD1-24A. DIP-CIB 3Ø Converter + 3Ø Inverter + Brake 15 Amperes/1200 Volts

Features. Description. NG4K3E2C1_no_d. Table 1: Device summary Order code Marking Package Packaging STGW80H65FB-4 G80H65FB TO247-4 Tube

MBB400TX12A Silicon N-channel IGBT

CM200DY-24A. APPLICATION AC drive inverters & Servo controls, etc CM200DY-24A. IC...200A VCES V Insulated Type 2-elements in a pack

Raffael Schnell, Product Manager, ABB Switzerland Ltd, Semiconductors LinPak a new low inductive phase-leg IGBT module ABB

Tc=25 C 1800 Tc=100 C 1400 Collector current

Trench gate field-stop IGBT, M series 650 V, 120 A low loss in a Max247 long leads package. Features. Description. Table 1: Device summary

L M 1 F O (L) 5 F O (H) DETAIL "A"

10-PZ126PA080ME-M909F18Y. Maximum Ratings

Item Symbol Condition Value Units V C = 25 C 1200 V V C = 25 C ±20

Features. Description. Table 1: Device summary. Order code Marking Package Packing STGW10M65DF2 G10M65DF2 TO-247 Tube

Trench gate field-stop IGBT, HB series 650 V, 40 A high speed. Features. Description

Items Symbols Conditions Maximum ratings Units Collector-Emitter voltage VCES 1700 V Gate-Emitter voltage VGES ±20 V

TRENCHSTOP 5 boosts efficiency in Home Appliance, Solar and Welding Applications

STGW60H65FB STGWT60H65FB

Items Symbols Conditions Maximum ratings Units Collector-Emitter voltage VCES 1200 V Gate-Emitter voltage VGES ±20 V. Continuous

Econo IPM / R-IPM3. Aug Fuji Electric Co.,Ltd. Quality is our message

High Power IGBT Module for Three-level Inverter

MG200Q2YS60A(1200V/200A 2in1)

STGFW40V60DF, STGW40V60DF, STGWT40V60DF

Trench gate field-stop IGBT M series, 650 V, 15 A low-loss in a TO-220FP package. Features. Description

C Storage temperature Tstg -40 ~ +125 Isolation voltage between terminal and copper base (*1) Viso AC : 1min VAC Screw torque

Introduction Device Achievements & Needs Future Prospects of SiC Power Devices Conclusion

STGW80H65DFB, STGWT80H65DFB

IGBT MODULE (V series) 1200V / 75A / IGBT, RB-IGBT 12 in one package

Items Symbols Conditions Maximum ratings Units Collector-Emitter voltage VCES 1200 V Gate-Emitter voltage VGES ±20 V. Icp 1ms TC=100 C 7200

QID Dual IGBT HVIGBT Module 85 Amperes/6500 Volts

Icp 1ms TC=80 C 70 -Ic 35. IC Continuous TC=80 C 35 ICP 1ms TC=80 C 70

Items Symbols Conditions Maximum ratings Units Collector-Emitter voltage VCES 1200 V Gate-Emitter voltage VGES ±20 V

TOSHIBA IGBT Module Silicon N Channel IGBT MG400Q2YS60A

Collector-Emitter voltage VCES 600 V Gate-Emitter voltage VGES ±20 V Ic Continuous Tc=80 C 100

Ic Continuous Tc=80 C 35 Icp 1ms Tc=80 C 70 -Ic 35 -Ic pulse 1ms 70 Collector power dissipation Pc 1 device 210 W

IGBT MODULE (V series) 1200V / 300A / IGBT, 600V/300A/RB-IGBT, 4 in one package

Trench gate field-stop IGBT, HB series 650 V, 40 A high speed. Features. Description

Sixth-Generation V-Series IGBT Module Application Note Chapter 1 Basic Concept and Features

C Storage temperature Tstg -40 ~ 125 Isolation voltage between terminal and copper base (*1) Viso AC : 1min VAC Screw torque

STGFW20H65FB, STGW20H65FB, STGWT20H65FB

Chapter 2. Technical Terms and Characteristics

Items Symbols Conditions Maximum ratings Units Collector-Emitter voltage VCES 1700 V Gate-Emitter voltage VGES ±20 V

Tc=100 C 300 Tc=25 C 360 Collector current

Collector-Emitter voltage VCES 1200 V Gate-Emitter voltage VGES ±20 V Ic Continuous Tc=100 C 50

1200 V CoolSiC Schottky Diode Generation 5: New level of system efficiency and reliability. May 2016

Advanced Silicon Devices Applications and Technology Trends

Items Symbols Conditions Maximum ratings Units Collector-Emitter voltage VCES 1200 V Gate-Emitter voltage VGES ±20 V. Icp 1ms 2400

CM1800HCB-34N. <High Voltage Insulated Gate Bipolar Transistor:HVIGBT >

Power Semiconductors Contributing in Energy Management

New SiC Thin-Wafer Technology Paving the Way of Schottky Diodes with Improved Performance and Reliability

Using the Latest Wolfspeed C3M TM SiC MOSFETs to Simplify Design for Level 3 DC Fast Chargers

Features. Description. Table 1: Device summary. Order code Marking Package Packing STGYA120M65DF2AG G120M65DF2AG Max247 long leads Tube

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications

T-series and U-series IGBT Modules (600 V)

Transcription:

Hybrid Si-SiC Modules for High Frequency Industrial Applications ABSTRACT This presentation introduces a new family of 1200V IGBT modules that combine high switching frequency optimized silicon IGBTs with SiC SBD (Schottky Barrier Diode) free wheel diodes to provide dramatically reduced losses in hard switched applications. The performance of these new modules will be compared to currently available standard speed and high frequency optimized IGBT modules. INTRODUCTION Standard industrial IGBT modules are usually optimized for motor drive applications in which the carrier frequency is typically less than 5kHz. For these applications conduction losses tend to dominate so the IGBT chip is optimized primarily for low VCE(SAT). As a result these standard devices typically have a rather large turn-off switching loss. Likewise at turn-on the free wheel diode is optimized for a soft recovery characteristic that has well controlled dv/dt and is free of oscillations and surge voltages. Often these characteristics come with a corresponding increase in recovery losses. Despite these optimizations standard industrial modules are increasingly being used in applications such as medical, laser, induction heating, and welding power supplies where higher operating frequencies are desired to improve performance and reduce the size of magnetic components. Higher frequency operation is also desirable to reduce the filter size in grid connected inverters for alternative energy applications and active rectification for recovery of mechanical energy in motor drives. The latest generations of modules [1] having both lower VCE(SAT) and lower turn-off losses offer improved performance in high frequency applications but are still seriously limited by their relatively high turn-off and free wheel diode recovery losses. This paper introduces for the first time a standard line-up of industrial modules that utilize both high frequency optimized IGBTs and SiC SBD free wheel diodes to provide dramatically reduced losses in high frequency hard switched applications. Hybrid Module Si-IGBT + SiC SBD SiC SBD Pure SiC Module SiC-MOSFET + SiC SBD Figure 1: Hybrid and Full SiC Modules RATIONAL FOR HYBRID CONFIGURATION The advantages of SiC as a material for power semiconductor devices is well known [2]. The main drawbacks are the relatively high cost of SiC compared to Silicon and lingering concerns about the long term reliability of SiC devices. One approach to at least partially mitigate these concerns in the near term is to make hybrid modules consisting of Silicon IGBTs and SiC Schottky free wheel diodes as shown in figure 1. This combination of the more mature SiC SBD technology with a wellestablished high frequency optimized silicon IGBT provides both lower cost and greater reliability confidence. VCE(sat) [V] 5 4 3 2 1 Low E OFF 1200V CSTBT Standard Industrial 1200V CSTBT 0 0.0 0.0 0.1 0.1 Turn-off Loss [mj/pulse A] Figure 2: Low Eoff CSTBT Optimization

Standard IGBT 1200V LOW EOFF CSTBT CHIP Silicon IGBTs optimized for low turn off losses (Eoff) have been commercially available for more than a decade [3]. In the design of an IGBT chip it is possible to trade VCE(SAT) for lower switching losses by adjusting the minority carrier lifetime. Fig. 2. shows the trade-off curve of saturation voltage versus turn-off switching losses obtained for a 5 th generation 1200V CSTBT chip [3]. For the target high frequency industrial applications an optimum point was selected at a VCE(SAT) of 3.8V and an Eoff of 0.028mJ/pulse A. Fig. 3 shows example switching waveforms comparing the high speed CSTBT to a standard IGBT. These waveforms clearly show the dramatic reduction in turn-off losses and almost complete elimination of the tail current. Unfortunately this technology does not improve the hard switched turn-on losses (Eon) which depend mainly on the free wheel diode recovery characteristics. As a result conventional high frequency optimized IGBT modules offer a large performance improvement in applications having a soft turn-on but only a modest improvement in applications like PWM inverters with a hard turn-on switching. I C IC Low Eoff CSTBT V CE V CE Esw(off) ( ) HYBRID MODULE CHARACTERISTICS Fig. 3 Turn Off Switching Waveform The advantage of using an SiC Schottky diode instead of a conventional silicon PIN diode is illustrated in Fig. 4. The SiC Schottky almost completely eliminates the reverse recovery loss. In addition, for applications such as PWM inverters that have a hard switched turn-on there is also a significant reduction in turn-on losses due the dramatic reduction in free wheel diode recovery current. Fig. 5 shows the turn-on current waveforms for 600A, 1200V modules. The dramatic reduction of reverse recovery current in the hybrid module is readily apparent. APPLICATION PERFORMANCE Figure 6 shows a comparison of the performance of a standard 6 th generation industrial IGBT module, a conventional high frequency optimized IGBT module, and the new hybrid SiC module in a hard switched SiC SBD Turn-On Si Diode Recovery Fast IGBT Module CM600DU-24NFH 200ns/div 150A/div SiC SBD Si Hybrid IGBT Module CMH600DU-24NFH Figure 4: Hybrid Module Hard Turn On Waveform Figure 5: Hard Turn On Comparison

sinusoidal output inverter. At low PWM frequencies which are common in many industrial drives the standard speed module still has the lowest losses. For the modules in this comparison the practical power dissipation limit in a typical air cooled application is around 600W per module. At this power level the standard speed module is limited to about 12KHz, the high frequency optimized all silicon device gives a modest improvement to about 17KHz but the hybrid module is usable up to 50KHz. MODULE LINE-UP A new line-up of 1200V SiC hybrid modules has been developed as shown in Table II. All modules have a dual (half bridge) configuration and are available with nominal current ratings ranging from 100A to 600A. In order to take full advantage of the increased switching speed the modules utilize the same low inductance packaging that was developed for the conventional high frequency devices [5]. Figure 6: Sinusoidal output hard switched PWM inverter loss comparison TABLE II: New Hybrid IGBT Module Line Up CONCLUSIONS AND FUTURE WORK This presentation introduces for the first time a new family of standard 1200V IGBT modules that combine high switching frequency optimized silicon IGBTs with SiC SBD (Schottky Barrier Diode) free wheel diodes to provide dramatically reduced losses in hard switched applications. It has been shown that these new devices enable dramatically higher modulation frequencies in high power hard switched inverters. REFERENCES [1] T. Nishiyama, et al., The IGBT Module with 6th Generation IGBT Proceedings PCIM 2009 [2] T. Kobayashi, et al., Energy Saving Operation for Railway Inverter Systems with SiC Power Module PCIM Europe 2012 [3] Junji Yamada,et al. Low Turn-off Switching Energy 1200V IGBT Module, IEEE IAS Conference 2002 [4] Takahashi, et al., Carrier Stored Trench-Gate Bipolar Transistor (CSTBT) - A Novel Power Device for High Voltage Application, The 8th International Symposium on Power Semiconductor Devices and ICs 1996 [5] E. R. Motto, A New Low Inductance IGBT Module Package, PCIM Conference 1996

Speaker Biography: Eric R. Motto is principal application engineer with Powerex. He is a senior member of IEEE and holds a BSEE from Pennsylvania State University. Since 1990 Eric has been with Powerex Inc. in Youngwood PA. providing technical support for users of power semiconductor devices. Eric has written and presented more than fifty technical papers at industry conferences and published numerous application notes and magazine articles related to the design and application of high power IGBTs, Intelligent Power Modules and SiC power devices.

Hybrid Si SiC High Power Modules For cost effective high voltage, high current, high frequency switching 1

INTRODUCTION High Power Module Status & Outlook Use of SiC is on the rise More than 20 module types using SiC chips are in various stages of development and production. The cost premium of SiC versus silicon requires applications where significant performance improvements yield high value. These are primarily high frequency (20KHz+), high voltage (1200V+) hard switching applications. Hybrid devices consisting of SiC Schottky in combination with a silicon IGBT provide a good compromise between cost and performance for many industrial applications. Current SiC module offerings are utilizing standard IGBT module packaging and manufacturing processes. Therefore, the maximum operating temperature is limited to 150C-175C. 2 Silicon is not dead yet The Silicon IGBT is expected to continue as the most cost effective power device for most industrial applications for the next five to ten years Currently a new 7 th generation family of silicon IGBT modules is being introduced. Support for three level topologies using silicon devices is being expanded for applications requiring increased efficiency at higher voltages

Power Device Technology Trend Mitsubishi started development of SiC power devices in the early 1990 s. Reaching the limits of Si performance 3

Commercialization of Mitsubishi SiC Power Modules 2009 2010 2011 2012 R&D For 11kW Inverter (SiC-MOSFET&SBD) For Air Conditioner (SiC-SBD) For Electric Railways (SiC-SBD) For Servo Drive (SiC-SBD) R&D For 20kW Inverter (SiC-MOSFET&SBD) Component Technology Practical Applications Mitsubishi Electric started research and development of SiC devices in the early 1990 s and has gained knowledge and experience to cost effectively produce high power devices. Schottky Barrier Diode (SBD) and Power MOSFET are the two key chip technologies currently emphasized for power module product applications. Mitsubishi Electric has released several module types to production since 2012. 4

Why SiC? Physical Properties of SiC Compared to Si Large Band Gap Energy makes higher temperature operation feasible. High field break down means that a thinner blocking junction can be used for a given voltage. The thinner junction provides reduced switching and conduction losses especially at higher voltages These properties allow us to make high performance Schottky Diodes and MOSFETs at voltages up to 3000V or more 5 Also, IGBT structure has no significant benefit until about 5000V

Hybrid Si-IGBT + SiC SBD Hybrid versus Pure SiC Pure SiC SiC-MOSFET + SiC SBD Si Si-SiC SiC Module Type Advantages Disadvantages Hybrid Si-SiC Module Pure SiC Module 6 SiC SBD technology considered more mature Lower Cost than Pure SiC Higher temperature operation may be possible with new module designs and chip passivation Lowest switching losses Si-IGBT has higher turn-off loss and/or On-state voltage drop. Frequency of operation limited by Si-IGBT speed Operating temperature limited by Si-IGBT Limited SiC MOSFET application experience. Low Impedance Short Circuit Survival Concerns

Hybrid Si-SiC Modules for High Frequency Industrial Applications Product Range 1200V, 100A-600A Package: Same as existing NFH-Series Power Chips: NFH Si IGBT, SiC SBD Cost: Today ~1.5X all silicon device 7

NFH Series IGBT Chip Development Concept Start with CSTBT for best V CE(sat) versus E off trade-off Adjust the carrier lifetime to trade V CE(sat) for increased switching speed 8

V CE(sat) [V] IGBT E SW Versus V CE(sat) Trade-Off 5 4 Low E OFF 1200V CSTBT Target 3 Standard Industrial Optimization 1200V CSTBT Chip 2 1 0 0.000 0.050 0.100 Turn-off Loss [mj/pulse*a] 0.150 9

How do we make the 1200V CSTBT faster? Optimize buried layer Optimize n- carrier lifetime and concentration n- drift region wafer material Optimize n backside layer and collector n layer p+ collector electrode 10

IGBT Turn-Off Switching Waveform Comparison Standard IGBT Turn-Off Waveform Tj=125C, Vcc=600V, Ic=300A, t:200ns/div High speed NFH IGBT Turn-Off Waveform Tj=125C, Vcc=600V, Ic=300A, t:200ns/div I C V CE IC V CE Esw(off) 70mJ Esw(off) 20mJ 11

Hybrid versus Standard module Turn-On Switching and Diode Reverse Recovery Loss Turn-On Diode Recovery SiC SBD Si SiC SBD Si 12

Hybrid versus Standard module Turn-On Switching Waveform 600A, 1200V Module 200ns/div 200A/div No reverse recovery charge at SiC-SBD turn-off 13

CMH600DU-24NFH Performance 40% 99% 14

Hybrid versus Standard Module Inverter Loss Comparison Err Eon Eon 15

Loss(W) Hard Switched Sinusoidal Output Inverter Loss Vs. Switching frequency 600A, 1200V Modules 1400 1200 1000 Conditions: Io=212ARMS, PF=0.8, M=1, Vcc=600V, Tj=125C Standard 6 th Gen. IGBT: CM600DY-24S 800 High Frequency IGBT CM600DU-24NFH 600 400 200 New Si-SiC Hybrid CMH600DU-24NFH 0 0 10 20 30 40 50 fc (KHz) 16

Low Inductance Package Main Terminal Electrode Silicone Gel Cover Insert Molded Case Al Bond Wires Cu Base Plate Power Chips AlN Substrate 17

SiC NFH Hybrid IGBT Module Line-Up Ratings Ic/Vces Part Number Package 100A/1200V CMH100DY-24NFH 48mm X 94mm 150A/1200V 200A/1200V 300A/1200V 400A/1200V 600A/1200V CMH150DY-24NFH CMH200DU-24NFH CMH300DU-24NFH CMH400DU-24NFH CMH600DU-24NFH 62mm X 108mm 80mm X 110mm 18

1200A/1700V hybrid SiC 2in1 HVIGBT Type name: Outline CMH1200DC-34S Internal Circuit Performance comparison Using SiC-SBD Item CM1200DC-34N (Si-IGBT,Si-diode) CMH1200DC-34S (Si-IGBT,SiC-SBD) Tj=125 C Tj=125 C Tj=150 C IGBT on-state voltage 2.40V 2.25V 2.30V IGBT turn-on loss 0.40J/P 0.14J/P 0.14J/P IGBT turn-off loss 0.38J/P 0.37J/P 0.39J/P Diode on-state voltage 2.30V 2.20V 2.30V 19 Diode turn-off loss 0.24J/P 0.01J/P 0.01J/P

1200A/1700V hybrid SiC 2in1 HVIGBT Dynamic Performance IGBT turn-on waveforms at nominal conditions Vcc=850V; Ic=1200A; inductive load CM1200DC-34N Vge Ic CMH1200DC-34S Eon=0. 40J/pulse 68% Reduction Vce Ic=250A/div Vce=250V/div Vge=10V/div t=1μsec/div Eon=0.18J/pulse SiC SBD turn-off waveforms at nominal conditions Vcc=850V; IF=1200A; inductive load IF CM1200DC-34N IF=500A/div Vr=500V/div t=1μsec/div IF IF=500A/div Vr=500V/div t=1μsec/div CMH1200DC-34S 20 Vr Erec=0.22J/pulse 95% Reduction Vr Erec=0.01J/pulse

130mm 62mm 800A/1200V Full-SiC 2in1 Module Feature SiC MOSFET & SiC SBD chip Low inductance package Ls=10nH (P-N) Mounting area Small mounting area (56% off) NEW! 16900mm2 130mm 7502mm2 121mm Package outline CM800DY-24S (Si) 21 Full SiC 800A/1200V(SiC) SiC MOSFET SiC SBD Internal connection

VCEsat, VDS(on) (V) Static Performance Comparison 800A/1200V Full-SiC 2in1 Module Condition : Tj=150degC, VGE=+15V, VGS=+15V 2.5 2.0 VCEsat, Vds(on) VE, VSD 1.5 1.0 CM800DY-24S (Si) 0.5 0.0 Full SiC 800A/1200V(SiC) 0 200 400 600 800 1000 IC, ID (A) M-140507-01 22

Eon + Eoff (mj) Err, Erec (mj) Eon (mj) Eoff (mj) Dynamic Performance Comparison 800A/1200V Full-SiC 2in1 Module Condition : Tj=150degC, VGE=15V, Vcc=600V, Rg=0ohm(Si), Rg=2.2ohm(SiC) 120 100 80 60 40 Eon CM800DY-24S (Si) 80% off 100 80 60 40 Eoff CM800DY-24S (Si) 51% off 20 0 200 180 160 140 120 100 80 60 40 20 0 23 Full SiC 800A/1200V(SiC) 0 200 400 600 800 1000 Esw CM800DY-24S (Si) IC, ID (A) 20 Full SiC 800A/1200V(SiC) 0 0 200 400 600 800 1000 IC, ID (A) 80 Err, Erec 60 40 67% off 99% off 0 0 200 400 600 800 1000 0 200 400 600 800 1000 20 CM800DY-24S (Si) Full SiC 800A/1200V(SiC) Full SiC 800A/1200V(SiC) IC, ID (A) IE, IS (A)

24 SiC Commercial Module Line-Up

Thank You For Your Attention Questions? 25