Laser Technology Inc.

Similar documents
ELECTRONIC HOLOGRAPHY AND SHEAROGRAPHY NDE FOR INSPECTION

Pulsed Thermography and Laser Shearography for Damage Growth Monitoring

FlawExplorer NDT inspection system

HIGH-SPEED TIME AVERAGE DIGITAL HOLOGRAPHY FOR NDT OF CURVED SANDWICH STRUCTURES

Benchmarking Shearographic NDT for Composites

Portable Shearography and Portable Electronic Speckle Pattern Interferometry: a Presentation of their Capabilities

Using UT to characterize defects in composites detected with Digital Shearography

AUTOMATED AND QUANTITATIVE METHOD FOR QUALITY ASSURANCE OF DIGITAL RADIOGRAPHY IMAGING SYSTEMS

More Info at Open Access Database by S. Dutta and T. Schmidt

Impact damage detection on composites using optical NDT techniques

Line Scanning Thermography and its Application Inspecting Aerospace Composites

ESPI of Aerospace Composites Using Digital Shearography

SPECTRAL SCANNER. Recycling

VIBRATION ANALYSIS BY DIGITAL SHEAROGRAPHY W.

Eddy Current Array for Aerospace

Equivalent Penetrameter Sensitivity (EPS) for Performance Evaluation of Computed Radiography Systems Muzibur Khan * and Mike Brothers

Tap Testing of Composites Benchmarked with Digital Shearography

Penn State University ESM Ultrasonics R&D Laboratory Joseph L. Rose Research Activities

INTELLECTUAL PROPERTY FINANCIAL SUPPORT

158.doc. 1 The MEDES System

LASER-BASED NDT OF TITANIUM AIRCRAFT ENGINE COMPONENTS J. Doyle Jr and M. J. Brinkman Laser Techniques Company, LLC, Bellevue, USA

AA&S Conference 2018 Eddy Current Array for Aircraft

The Importance of Spatial Resolution in Infrared Thermography Temperature Measurement Three Brief Case Studies

Reliability of Solder Joint Quality on J-Lead Oscillators Using HALT with Lead and Lead Free Compositions

Philip Sperling. Sales Science and New Materials, YXLON International GmbH, Essener Bogen 15, Hamburg, Germany.

Amorphous Selenium Direct Radiography for Industrial Imaging

VD3-71 universal eddy current flaw detector application for field inspection of aeronautical engineering

MUSIC. MUlti Spectral Infrared Countermeasure. Andrew Lovett M.Sc, MBA Senior Director Lasers and EOCM Division

Lab #1 HANDLING FIBERS, NUMERICAL APERTURE

Inspection of composite structures Dr Roger M. Groves Aerospace Non-Destructive Testing Laboratory November 26, 2014

Materials. Density, Hooke's law, Young modulus. 174 minutes. 174 marks. Page 1 of 29

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND

Acoustic Emission Beamforming for Detection and Localization of Damage

NDT-PRO Services expands service offering

A NOVEL HIGH SPEED, HIGH RESOLUTION, ULTRASOUND IMAGING SYSTEM

Exercise questions for Machine vision

COMPOSITE MATERIALS AND STRUCTURES TESTING BY ELECTRONIC HOLOGRAPHY

THE CALIBRATION OF THE OPTICAL IMAGER FOR THE HOKU KEA TELESCOPE. Jamie L. H. Scharf Physics & Astronomy, University of Hawai i at Hilo Hilo, HI 96720

TDI Imaging: An Efficient AOI and AXI Tool

12A Distance, Time, and Speed

17th World Conference on Nondestructive Testing, Oct 2008, Shanghai, China

What professionals look for in an infrared camera

AFRL-RX-WP-TP

Y11-DR Digital Radiography (DR) Image Quality

31th March 2017, Annual ILC detector meeting Tohoku University Shunsuke Murai on behalf of FPCCD group

(1) Brass, an alloy of copper and zinc, consists of 70% by volume of copper and 30% by volume of zinc.

S. GURESH 4 JAN 2017 S. JOHNSON 4 JAN 2017

Development of Concave and Convex Roll Defect Inspection Technology for Steel Sheets by Magnetic Flux Leakage Testing Method

Imaging Optics Fundamentals

Comparison of FRD (Focal Ratio Degradation) for Optical Fibres with Different Core Sizes By Neil Barrie

ISO INTERNATIONAL STANDARD. Non-destructive testing Acoustic emission inspection Secondary calibration of acoustic emission sensors

Improving the Collection Efficiency of Raman Scattering

Southern African Large Telescope. RSS CCD Geometry

Attenuation length in strip scintillators. Jonathan Button, William McGrew, Y.-W. Lui, D. H. Youngblood

Solution Set #2

Screw-Thread Standards for Federal Services, Inspection Methods for Acceptability of UN, UNR, UNJ, M and MJ Screw Threads

Low-Cost Quality Control and Nondestructive Evaluation Technologies for General Aviation Structures

DETECTING DEFECTS by Larry Adams, senior editor. Finding flaws and imperfections in a tube or pipe is made easier using new inspection technologies

LPX SERIES Constant Potential Portable X-Ray

Microwave and Millimeter Wave Testing for the Inspection of the Space Shuttle Spray on Foam Insulation (SOFI) and the Acreage Heat Tiles

Emerging NDE Technology for Aging Aircraft

PHYS2090 OPTICAL PHYSICS Laboratory Microwaves

Tension Perpendicular to Grain Strength of Wood, Laminated Veneer Lumber, and a Wood Plastic Composite.

TECHNICAL DATA. OPTIV CLASSIC 322 Version 3/2013

Comparison of the defect detection capabilities of flash thermography and vibration excitation shearography

DEEP PENETRATING EDDY CURRENT for DETECTING VOIDS in COPPER

Examination of Pipe Welds by Image Plate Based Computed Radiography System

Strain Measurements with the Digital Image Correlation System Vic-2D

CHAPTER 9 POSITION SENSITIVE PHOTOMULTIPLIER TUBES

TESTING FLAT-PANEL IMAGING SYSTEMS: What the Medical Physicist Needs to Know. JAMES A. TOMLINSON, M.S., D.A.B.R. Diagnostic Radiological Physicist

Aberrations of a lens

Adaptive Optics for LIGO

PARALLEL BOX-CAR IMAGING OF ADHESION DEFECfS IN PLASMA-SPRA YED

Acuity. Acuity. AP620 Profile Measurement Scanner. Principles of Operation. Definitions. Typical Scanner Applications

Characterization of Damages in Honeycomb Structures Using SonatestDryScan 410D

Digital Radiography Systems Techniques and Performance Evaluation for Space Applications

Imaging using Ultrasound - I

White Paper Thermal: Detection, recognition, and identification

Holography. Casey Soileau Physics 173 Professor David Kleinfeld UCSD Spring 2011 June 9 th, 2011

Quality Control for X-Ray Systems A Tool Chain for NDT Applications

DEVELOPMENT CENTER X-RAY TECHNOLOGY EZRT XEYE. Radiation proof X-ray detectors for industrial applications

Upgrade of the ultra-small-angle scattering (USAXS) beamline BW4

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design

Features. Applications. Optional Features

Radionuclide Imaging MII 3073 RADIONUCLIDE IMAGING SYSTEM

Defects in Nonceramic Insulators: Can They be Detected in a Timely Manner?

An Investigation into the Performance of Complex Plane Spilt Spectrum Processing Ultrasonics on Composite Materials

EMAT Application on Incoloy furnace Tubing Ramamohan Reddy M (ASNT Level III UT, PCN Level III UT,PAUT&TOFD)

REAL-TIME X-RAY IMAGE PROCESSING; TECHNIQUES FOR SENSITIVITY

Synchronized electronic shutter system (SESS) for thermal nondestructive evaluation Joseph N. Zalameda

INTRODUCTION TO CCD IMAGING

Woven Steel Wire Fence Type-47. Under the state specification for fencing, ASTM A 116 is called out.

Array Eddy Current for Fatigue Crack Detection of Aircraft Skin Structures

Signal to noise ratio (SNR) comparison for lock-in thermographic data processing methods in CFRP specimen

Research Article An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber Bragg Grating Detection

Microwave Testing (µt): An Overview. Johann Hinken, FI Test- und Messtechnik GmbH Magdeburg, Germany, July 2016

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor

UNIVERSAL ULTRASONIC FLAW DETECTOR UD4-76. TOFD version.

Pocket Pumped Image Analysis Ivan Kotov Brookhaven National Laboratory

V (kvt) + Q= pc Ot GLASS FIBER AIRPLANE INSPECTED WITH INFRARED LOCKIN THERMOGRAPHY

Transcription:

Field of View Determination for Shearography Nondestructive Evaluation John W. Newman, President Laser Technology Inc. Norristown, PA 19403 USA Introduction Shearography NDT is a highly developed, mature technology applicable to the structural inspection of a wide variety of applications, from buildings and civil engineered structures to aircraft and spacecraft panels to microcircuits. The field of view (FOV) used for these tests vary widely from 5-10 sq. meters to less than 1.0 sq. cm. In order to obtain the maximum throughput for in-process shearography inspection it is necessary to examine the important factors affecting the output performance of an NDT system as measured by the Probability of Detection and to calculate the maximum field of view for a specific application. Key factors affecting the field of view are camera pixel count in x and y direction, the maximum allowable defect size (mm. or inches) for a specific structure and application, defect indication definition (area), noise. This paper presents the step by step analysis and background to perform the field of view calculation to achieve maximum inspection throughput at minimum cost yet achieving the required defect sensitivity. The maximum field of view for a shearography camera is determined by the following variables: 1. Shear Camera CCD pixels in horizontal and vertical axis, Px and Py, in pixels 2. Dimensions, X and Y, of the largest allowable defect, Dx and Dy, in mm. or inches 3. Minimum pixel count required to define a defect indication, Ix and Iy in pixels 4. Optical Resolution of Shearography System 5. Signal to Noise ratio, S/N These variables are used to calculate the maximum field of view to achieve a specific probability of defect detection. The maximum allowable defect size, (Dx, Dy) is determined through engineering fracture mechanical techniques or failure analysis of the structure. Defects below this size are benign; defects that are large must be recorded for analysis and disposition. The critical question is to determine how large a field of view can be established to detect the critical flaw sizes 95% or more.

Definition of Defect Indication All optical inspection technologies requiring an operator to identify defects on a monitor, such as video imaging, shearography, thermography and real-time X-Ray require a definition of a minimum defect indication size, measured in pixels. A single pixel in an entire computer monitor screen can not practically be detected by an operator and used to define a defect. Camera pixel sensitivity is not uniform and all CCD detectors have missing pixels or pixels with variable electrical response to incoming light. Multiple pixels together having a measurable signal to noise ratio (S/N Ratio) must be used to define a defect. Extensive tests by government laboratories and industry have led to conventions requiring pixel counts of 5x5 pixels to 12x12 pixels, with a signal to noise ratio greater than 1.1 to be used to define a defect. Test at LTI have shown a 95% reliability/confidence factor is achieved with a defect definition of 10x10 pixels. Fig. 1 shows the PoD curves for three operators presented monitor indications having pixel counts 3x3, 5x5, 7x7 and 10x10. All operators detected the indication at the 10x10 size more than 95% of the time. For a typical monitor image, with 1350 pixels x 1024 pixels, these results indicate a defect measuring approximately 0.74% of the screen width x 1% of the screen height is detected by operators 95% of the time or more. Fig. 1 Probability of defect detection plotted as a function of defect pixel dimensions for three operators. While some operators will detect defects with smaller indication pixel counts, all operators will identify defects with a size of 10x10 pixels 95% of the time or more.

Calculating Shearography Image Scale, Is With a minimum defect indication defined as (Ix, Iy) =10x10 pixels, we can determine the required image scale or resolution required for any shearography camera. For the maximum field of view, the dimensions of the Largest Allowable Defect, (Dx, Dy) in mm. or inches, must allow detection better than 95% of the time, hence we can set Dx/10 and Dy/10 as equal to the Image Scale in mm/pixel. For example, with a maximum allowable defect of 9mm. the image scale, or Is, is 0.9mm/pixel. Calculating the Field of View With the Image Scale defined for a specific application, the field of view is then simply The Image Scale times the shear camera CCD pixel count in the x and y directions, Px and Py. Horizontal Field of View = Is (Px) Vertical Field of View = Is (Py) In the example above, where the maximum allowable defect is 9mm, the Is = 0.9 mm/pixel. For a shearography camera such as the LTI-5100HD, with a CCD resolution of 1350 x 1024 pixels, the field of view to image a 9 mm defect 95% of the time or more is: Horizontal FOV= 0.9mm/pixel x 1350 pixels = 1215 mm Vertical FOV = 0.9mm/pixel x 1024 pixels = 921.6 mm The total area of the field of view is 1215 x 921.6 mm = 1.12 sq.m Additional Factors The above calculation represents an idealized FOV calculation. In the real world, additional factors must be examined that may degrade image quality and reduce the probability of defect detection. Shearography NDT requires uniform stressing of the panel or structure to achieve identical strain change response of the homogeneous material. Variations in thermal load changes, acoustic signals can lead to variable defect detection response. It is important to apply load changes during shearography NDT in a highly repeatable manner. Second, the use of an NDT Reference Std. Panel, with a representative flaw sized to the Maximum Allowable Defect dimensions is critical. This panel should be used to evaluate defect sensitivity over the field of view. A weak indication, with a measured S/N ratio less than 1.1, will require a reduction in the Image Scale (Is) factor for the test.

Other factors, unique to shearography, such as interference from air currents or test panel movement due to acoustical noise can also cause a reduction in the necessary Is and hence overall field of view. Conclusion The determination of the maximum field of view for shearography NDT is a critical factor in the system output Probability of Defect Detection and resulting product quality. The FOV is application specific. Variables that must be defined for a specific application include the required Maximum Allowable Defect, shear camera pixel count and test data to support the definition of detectable defect area. Further, software tools for measuring the defect indication S/N ratio are critical to assuring correct establishment of the FOV for a given test panel to detect critical defect sizes. The author, John W. Newman, is President of Laser Technology Inc. Norristown PA 19073 USA, a company he founded in 1980. He has worked in the field of aerospace engineering, holography and shearography NDT since 1968. Mr. Newman is the Chairman of the ASNT Laser Methods Committee, Chairman of the ASTM Shearography Committee, E07.11.3, and has served on the NASA NDT Advisory Board for the last five years. He is the author of more than 80 papers and articles on Shearography NDT and developed the world s first commercial electronic shearography camera in 1987 working with Dr. Y.Y. Hung at Oakland University. Mr. Newman holds 38 patents in the field of shearography NDT technology.

Illustrative Examples Fig. 2 Deformation of brick wall of historic building. LTI-5100 with a FOV of 2x3 M. Fig. 3 Aircraft laminate panel, four defects with a FOV 1.2 x 0.9 M. Close up, 30x30 cm. Fig. 4 1 M. FOV Aluminum honeycomb core with graphite face sheets, 14mm defects