Data Sheet. HFBR-1119TZ Transmitter HFBR-2119TZ Receiver Fiber Optic Transmitter and Receiver Data Links for 266 MBd

Similar documents
Data Sheet. HFBR-1119TZ Transmitter HFBR-2119TZ Receiver Fiber Optic Transmitter and Receiver Data Links for 266 MBd. Description.

Data Sheet. HFBR-1116T Transmitter HFBR-2116T Receiver Fiber Optic Transmitter and Receiver Data Links for 155 MBd

Data Sheet. HFBR-1116TZ Transmitter HFBR-2116TZ Receiver Fiber Optic Transmitter and Receiver Data Links for 155 MBd. Description.

Data Sheet. HFBR-1115TZ Transmitter HFBR-2115TZ Receiver Fiber Optic Transmitter and Receiver Data Links for 125 MBd. Description.

The HFBR-5302 is a 1300 nm transceiver specified for use in 266 MBd, 25 MB/s, 25-M6-LE-I Fibre Channel interfaces to either

HFBR-5805/-5805T ATM Transceivers for SONET OC-3/SDH STM-1 in Low Cost 1 x 9 Package Style Data Sheet

physical layers for ATM and other services.

AFBR-5805Z/5805TZ/5805AZ/5805ATZ ATM Transceivers for SONET OC-3 / SDH STM-1 in Low Cost 1 x 9 Package Style Data Sheet

AFBR-5803Z/5803TZ/5803AZ/5803ATZ

HFBR-5803/-5803T FDDI, 100 Mb/s ATM, and Fast Ethernet Transceivers in Low Cost 1 x 9 Package Style Data Sheet

Data Sheet. AFBR-5803AQZ and AFBR-5803ATQZ FDDI, 100 Mb/s ATM, and Fast Ethernet Transceivers in Low Cost 1 x 9 Package Style.

Data Sheet. AFBR-59E4APZ Multimode Small Form Factor (SFF) Transceiver for Fast Ethernet, with LC connector. Description. Features.

Agilent AFBR-5204Z/-5205Z ATM Multimode Fiber Transceivers for SONET OC-3/SDH STM-1 in Low Cost 1x9 Package Style

AFBR-59E4APZ-HT. Multimode Small Form Factor (SFF) Transceiver for Fast Ethernet, with LC Connector. Data Sheet. Features. Description.

AFBR-59E4APZ-LH. Multimode Small Form-Factor (SFF) Transceiver for Fast Ethernet, with LC Connector. Data Sheet. Features. Description.

AFBR-59E4APZ. Data Sheet. Multimode Small Form Factor (SFF) Transceiver for Fast Ethernet and FDDI, with LC Connector. Description.

RoHS compliant 1310 nm multi-mode Transceiver (2 km) 1x9, SC Duplex Connector, 5.0 V 155 Mbps ATM/ Fast Ethernet

5103ATZ/-5103PZ/-5103PEZ

1300nm Fast Ethernet Transceiverin1x9SC Duplex Package

RoHS compliant 1310 nm Single-mode Transceiver (L1.1) 1x9, ST Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet.

RoHS compliant 1310 nm Single-mode Transceiver (S1.1, 19dB margin) 1x9, SC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

PARAMETER SYMBOL MIN MAX UNITS NOTE

Data Sheet. Description. Features. Transmitter. Applications. Receiver. Package

HFBR-5963LZ/ALZ. Data Sheet. Multimode Small Form Factor Transceivers for ATM, FDDI, Fast Ethernet, and SONET OC-3/SDH STM-1 with LC Connector

*ST is a registered trademark of AT&T Lightguide Cable Connectors.

RoHS Compliant 1310 nm Single-mode Transceiver (L1.1) 2 5, LC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

1550 nm Single-mode Transceiver (80km) 1 9, SC Duplex Connector, 3.3 V 622 Mbps ATM/SONET OC-12/SDH STM-4

Features. Ordering Information

RoHS compliant 1310 nm Single-mode Transceiver (10km) 1 9, ST Duplex Connector, 3.3 V/5V Gbd Fiber Channel/1.25 Gigabit Ethernet

PARAMETER SYMBOL MIN MAX UNITS NOTE

AFBR-59F2Z Data Sheet Description Features Applications Transmitter Receiver Package

RoHS compliant 850 nm Multi-mode Transceiver (1000BASE-SX) 1 9, SC Duplex Connector, 3.3 V/5V Gbd Fiber Channel/1.25 Gigabit Ethernet

Features. Applications

Features. Description. PART NUMBER TX RX VOLTAGE TEMPERATURE KSB2-A3S-PC-N nm 1310 nm 3.3 V 0 C to 70 C

155Mbps 1x9 SC/ST Duplex Optical Transceiver Module for Fast Ethernet, ATM, SONET/SDH STM-1/OC-3

RoHS compliant 1310 nm Single-mode Transceiver (1000BASE-LX) 2 5, LC Duplex Connector, 3.3 V Gbd Fiber Channel/1.25 Gigabit Ethernet

V23818-C8-V10. Small Form Factor Multimode 1300 nm LED Ethernet/Fast Ethernet/FDDI/ATM 155/194 MBd Transceiver. Preliminary. Dimensions in inches (mm)

RoHS compliant 850 nm Multi-mode Transceiver (1000BASE-SX) 2 5, LC Duplex Connector, 3.3 V Gbd Fiber Channel/1.25 Gigabit Ethernet

PART NUMBER TX RX VOLTAGE TEMPERATURE. LSB2-A3M-PC-N nm 1310 nm 3.3 V 0 C to 70 C LSB2-A3M-PI-N nm 1310 nm 3.

DESCRIPTION. These transceivers also support 10 Base Fx 1300 nm with DC-free Single power supply (3.3 V)

12 Megabaud Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and 200 μm HCS. Features. Applications

AFBR-5972Z Compact 650nm Transceiver with Compact Versatile-Link connector for Fast Ethernet over POF. Features. Applications

Data Sheet AFBR-2419MZ. 50 MBd Miniature Link Fiber Optic Receiver. Description. Features. Applications. AFBR-24x9xZ Available Part Numbers

VOLTAGE TEMPERATURE LD TYPE

AFBR-5972EZ, AFBR-5972BZ Compact 650nm Transceiver with Compact Versatile Link Connector for Fast Ethernet over POF. Features.

Fast Ethernet SFP Multimode Transceivers

Data Sheet AFBR-2418MZ. DC-50MBd Miniature Link Fiber Optic Receiver. Description. Features. Applications. AFBR-24x8xZ Available Part Numbers

DTR-xxx-3.3-SM-T. 3.3 Volt Single Mode Transceivers (1x9 pin-out) ! Single +3.3 V supply & LV-PECL data interface. ! Eye Safe (Class I Laser Safety)

Data Sheet HFBR-1506AFZ/HFBR-2506AFZ. Full Metal Fiber Optic SMA Transmitters and Receivers for 16 MBd SERCOS Applications. Description.

Features. PART NUMBER TX RX IN/OUT SD Burst Control RX 1550nm Input TEMPERATURE LD TYPE

Data Sheet. HFBR-1506AMZ/HFBR-2506AMZ Fiber Optic SMA Transmitters and Receivers for 16 MBd SERCOS Applications. Description. Features.


RoHS Compliant TX-1310/RX-1550 nm Single-mode Bi-directional 2

Data Sheet. AFBR-S10TR001Z Compact 650 nm Analog Transceiver with Compact Versatile-Link Connector for Sensing Over POF. Description.

155 Mb/s ATM Multi-mode Transceiver

The HFBR-1604 is a selected version of the HFBR-1602, with power specified to meet the

DTR-xxx-LC & DTR-xxx-LS. 3.3 Volt 2x5 LC connector OC-3 & OC-12 LED Transceivers. Parameter Symbol Minimum Maximum Units Storage Temperature T st

ACE PLUS CORP. Features. Ordering Information

1.25 Gigabit Ethernet-Multimode Transceiver

TRS-3050G / TRS-3050TG / TRS-3050FG / TRS-3050AG / TRS-3050ATG / TRS-3050AFG. 3.3V / 1310 nm / 155 Mbps RoHS Compliant Optical Single-Mode Transceiver

FIBER105.TIF OUTLINE DIMENSIONS in inches (mm) .176 (4.47).165 (4.19) .500 MIN (12.7) FIBER203.DIM. Pinout 1. Capacitor 2. VÙÙ 3.

Data Sheet. AFBR-1150L / AFBR-2150L Fiber Optic Transmitter and Receiver for 150 Mbit/s MOST. Features. Description. Applications.

TRS-5020G / TRS-5020TG / TRS-5020FG / TRS-5020CG / TRS-5020CTG / TRS-5020CFG. 5V / 1310 nm / 622 Mbps RoHS Compliant Optical Single-Mode Transceiver

HFD Mbit Direct Coupled Receiver

AFBR-59F3Z Compact 650 nm Transceiver for 1 Gbps Data communication MLCC (Multilevel Coset Coded) over POF (Polymer Optical Fiber) Features

V23818-C8-V15 -RADIANTECH- Fiber Optic Small Form Factor VF-45 TM 2x5 Transceiver for 1300nm Multimode Fast Ethernet

Gigabit Ethernet 850nm Multimode SFP Transceivers With Digital Diagnostics

HFD3029. Schmitt Input, Non-Inverting TTL Output Receiver

OC-12/STM-4 SFP Multimode Transceivers with Digital Diagnostics

Multi-rate Gigabit Ethernet & Fibre Channel SFP Transceivers with Digital Diagnostics

Product Specification 1x9 Transceiver with Duplex SC Receptacle Single Mode 1310 nm 21 km SONET OC-3/SDH STM-1 V23836-C18-C63 V23836-C18-C363

SFF-3Gx-TX2 Rugged Gb/s Dual Channel SFF Transmitter Dual Channel Fiber Transmitter

155Mbps ATM-Multimode Transceiver

AFBR-1555ARZ, AFBR-2555ARZ (SMA Tx/Rx for SERCOS)

RoHS compliant 1310 nm Multi-mode Transceiver (2km) Small Form Pluggable (SFP), 3.3V 155 Mbps ATM/125 Mbps Fast Ethernet. Features.

RoHS Compliant 1310 nm Multi-mode Transceiver 2 5, LC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

DC-5 MBd RedLink Transmitter and Receiver Pair

PART NUMBER INPUT/OUTPUT SIGNAL DETECT VOLTAGE TEMPERATURE

Data Sheet. HFBR-0300Z Series HFBR-1312TZ Transmitter HFBR-2316TZ Receiver nm Fiber Optic Transmitter and Receiver. Features.

850 nm VCSEL Laser for Multimode Fiber at 1.25 GBaud

10G SFP+ CWDM 20km Transceiver Hot Pluggable, Duplex LC, +3.3V, 1270~1350nm CWDM DFB, DDMI PSFP-2C41SF-XX

10G CWDM SFP+ 40km ER Transceiver Hot Pluggable, Duplex LC, +3.3V, 1470~1610nm CWDM EML, DDMI PSFP10-1C41SF-XX

SFP Dual LC 1.25G SMF 20Km 1310nm Transceiver. Features. Applications. Ordering Information APPLIED OPTOELECTRONICS, INC.

I0AOM nm Single-mode Transceiver, (1000Base-LX) Small Form Pluggable (SFP), 3.3V Gbd Fiber Channel/1.25 Gigabit Ethernet.

Very Long Haul Gigabit Ethernet SFP Transceivers with Digital Diagnostics

PART NUMBER WAVELENGTH INPUT/OUTPUT SIGNAL DETECT VOLTAGE TEMPERATURE

Multi-mode 1.25Gbps 780/850 Bi-Directional Single Fiber SFP Optical Transceiver

RoHS compliant 850 nm Multi-mode Transceiver Gigabit Interface Converter (GBIC), 3.3V/5V Gbd Fiber Channel/1.25 Gigabit Ethernet.

RJ-3G-RX2 Rugged RJ Size Fiber Optic Dual Receiver Fiber Optic Dual Receiver

Product Specification OC-12 SR-1/STM I-4 or OC-12 IR-1/STM S-4.1 2x5 SFF Transceiver FTLF1322F2xTR

FM10DHIR FM10DHNR FM10DVIR FM10DVNR DC 10 RedLink Fiber Optic Receiver Preliminary Data Sheet

RJ-155M-FX-DPLX Rugged RJ Size 100Mb/s to 155Mb/s Fiber Optic Transceiver

FR10DxxR. DC-10 RedLink Fiber Optic Receiver Datasheet DESCRIPTION FEATURES AVAILABLE OPTIONS APPLICATIONS

PART NUMBER INPUT/OUTPUT SIGNAL DETECT VOLTAGE TEMPERATURE

Application Note 1065

FR50MxxR. DC-50 RedLink Fiber Optic Receiver Datasheet DESCRIPTION FEATURES AVAILABLE OPTIONS APPLICATIONS

DTR-xxx-SM-LC & DTR-xxx-SM-LS. 3.3 Volt 2x5 LC connector OC-3 & OC-12 Single Mode Transceivers

RoHS Compliant 2x5 Small Form Factor Transceiver for Gigabit Ethernet

TR1-M4-2023M 1X9 Dual Fiber Fast Ethernet 100 Mb / s 1310 nm Tx / Rx

SANway Optoelectronics technology Corporation Tel: Fax: Website :

Transcription:

HFBR-1119TZ Transmitter HFBR-2119TZ Receiver Fiber Optic Transmitter and Receiver Data Links for 266 MBd Data Sheet Description The HFBR-1119TZ/-2119TZ series of data links are high-performance, cost-efficient, transmitter and receiver modules for serial optical data communication applications specified at 266 MBd for Fibre Channel applications or for general-purpose fiber optic data link transmission. These modules are designed for 50 or 62.5 µm core multimode optical fiber and operate at a nominal wavelength of 1300 nm. They incorporate our highperformance, reliable, long-wavelength, optical devices and proven circuit technology to give long life and consistent performance. Transmitter The transmitter utilizes a 1300 nm surface-emitting InGaAsP LED, packaged in an optical subassembly. The LED is dc-coupled to a custom IC which converts differential-input, PECL logic signals, ECL-referenced (shifted) to a +5 V power supply, into an analog LED drive current. Features Full compliance with the optical performance requirements of the fibre channel physical layer Other versions available for: FDDI ATM Compact 16-pin DIP package with plastic ST* connector Wave solder and aqueous wash process compatible package Manufactured in an ISO 9001 certified facility Applications Fibre channel interfaces Multimode fiber optic links up to 266 MBd at 1500 m General purpose, point-to-point data communications Replaces DLT/R1040-ST2 model transmitters and receivers Receiver The receiver utilizes an InGaAs PIN photodiode coupled to a custom silicon transimpedance preamplifier IC. The PIN-preamplifier combination is ac-coupled to a custom quantizer IC which provides the final pulse shaping for the logic output and the Signal Detect function. Both the Data and Signal Detect Outputs are differential. Also, both Data and Signal Detect Outputs are PECL compatible, ECL-referenced (shifted) to a +5 V power supply. Package The overall package concept for the Data Links consists of the following basic elements: two optical subassemblies, two electrical subassemblies, and the outer housings as illustrated in Figure 1. *ST is a registered trademark of AT&T Lightguide Cable Connectors.

DIFFERENTIAL DATA IN DIFFERENTIAL SIGNAL DETECT OUT DIFFERENTIAL DATA IN V BB RECEIVER QUANTIZER IC ELECTRICAL SUBASSEMBLIES TRANSMITTER DRIVER IC PREAMP IC PIN PHOTODIODE OPTICAL SUBASSEMBLIES LED SIMPLEX ST RECEPTACLE The package outline drawing and pinout are shown in Figures 2 and 3. The details of this package outline and pinout are compatible with other data-link modules from other vendors. The optical subassemblies consist of a transmitter subassembly in which the LED resides and a receiver subassembly housing the PIN-preamplifier combination. TOP VIEW Figure 1. Transmitter and receiver block diagram. The electrical subassemblies consist of a multi-layer printed circuit board on which the IC chips and various surface-mounted, passive circuit elements are attached. THREADS 3/8 32 UNEF-2A HFBR-111X/211XT DATE CODE (YYWW) SINGAPORE 8.31 12.19 MAX. 41 MAX. 5.05 5.0 7.01 0.9 9.8 MAX. 3 2.45 19.72 NOTES: 1. MATERIAL ALLOY 194 1/2H 0.38 THK FINISH MATTE TIN PLATE 7.6 µm MIN. 2. MATERIAL PHOSPHOR BRONZE WITH 120 MICROINCHES TIN LEAD (90/10) OVER 50 MICROINCHES NICKEL. 3. UNITS = mm 12 17.78 (7 x 2.54) 8 x 7.62 HOUSING PINS 0.38 x 0.5 mm NOTE 1 PCB PINS DIA. 0.46 mm NOTE 2 Figure 2. Package outline drawing. 2

8 OPTICAL PORT NC 9 8 NC GND 10 7 NO PIN V CC 11 6 GND V CC 12 5 GND GND 13 4 GND DATA 14 3 GND DATA 15 2 V BB NC 16 1 NC TRANSMITTER OPTICAL PORT NC 9 8 NC NO PIN 10 7 GND GND 11 6 V CC GND 12 5 V CC GND 13 4 V CC SD 14 3 DATA SD 15 2 DATA NO PIN 16 1 NC RECEIVER OPTICAL POWER BUDGET db 7 6 5 4 3 2 1 62.5/125 µm 50/125 µm 0 0 0.5 1 1.5 2 FIBER OPTIC CABLE LENGTH km Figure 4. Optical power budget at BOL vs. fiber optic cable length. Figure 3. Pinout drawing. Each transmitter and receiver package includes an internal shield for the electrical subassembly to ensure low EMI emissions and high immunity to external EMI fields. The outer housing, including the ST* port, is molded of filled, nonconductive plastic to provide mechanical strength and electrical isolation. For other port styles, please contact your Avago Sales Representative. Each data-link module is attached to a printed circuit board via the 16-pin DIP interface. Pins 8 and 9 provide mechanical strength for these plastic-port devices and will provide port-ground for forthcoming metal-port modules. Application Information The Applications Engineering group of the Fiber Optics Product Division is available to assist you with the technical understanding and design tradeoffs associated with these transmitter and receiver modules. You can contact them through your Avago sales representative. The following information is provided to answer some of the most common questions about the use of these parts. Transmitter and Receiver Optical Power Budget versus Link Length The Optical Power Budget (OPB) is the available optical power for a fiber-optic link to accommodate fiber cable losses plus losses due to in-line connectors, splices, optical switches, and to provide margin for link aging and unplanned losses due to cable plant reconfiguration or repair. Figure 4 illustrates the predicted OPB associated with the transmitter and receiver specified in this data sheet at the Beginning of Life (BOL). This curve represents the attenuation and chromatic plus modal dispersion losses associated with 62.5/125 µm and 50/125 µm fiber cables only. The area under the curve represents the remaining OPB at any link length, which is available for overcoming non-fiber cable related losses. Avago LED technology has produced 1300 nm LED devices with lower aging characteristics than normally associated with these technologies in the industry. The industry convention is 1.5 db aging for 1300 nm LEDs; however, Avago 1300 nm LEDs will experience less than 1 db of aging over normal commercial equipment mission-life periods. Contact your Avago sales representative for additional details. Figure 4 was generated with an Avago fiber-optic link model containing the current industry conventions for fiber cable specifications and Fibre Channel optical parameters. These parameters are reflected in the guaranteed performance of the transmitter and receiver specifications in this data sheet. This same model has been used extensively in the ANSI and IEEE committees, including the ANSI X3T9.5 committee, to establish the optical performance requirements for various fiber-optic interface standards. The cable parameters used come from the ISO/IEC JTC1/ SC 25/WG3 Generic Cabling for Customer Premises per DIS 11801 document and the EIA/TIA-568-A Commercial Building Telecommunications Cabling Standard per SP-2840. *ST is a registered trademark of AT&T Lightguide Cable Connectors. 3

Transmitter and Receiver Signaling Rate Range and BER Performance For purposes of definition, the symbol rate (Baud), also called signaling rate, is the reciprocal of the symbol time. Data rate (bits/ sec) is the symbol rate divided by the encoding factor used to encode the data (symbols/bit). The specifications in this data sheet have all been measured using the standard Fibre Channel symbol rate of 266 MBd. The data link modules can be used for other applications at signaling rates different than specified in this data sheet. Depending on the actual signaling rate, there may be some differences in optical power budget. This is primarily caused by a change in receiver sensitivity. These data link modules can also be used for applications which require different bit-error-ratio (BER) performance. Figure 5 illustrates the typical trade-off between link BER and the receiver input optical power level. Data Link Jitter Performance The Avago 1300 nm data link modules are designed to operate per the system jitter allocations stated in FC-PH Annex A.4.3 and A.4.4. The 1300 nm transmitter will tolerate the worst-case input electrical jitter allowed, without violating the worst-case output optical jitter requirements. The 1300 nm receiver will tolerate the worst-case input optical jitter allowed without violating the worst-case output electrical jitter allowed. BIT ERROR RATIO 1 x 10-2 1 x 10-3 1 x 10-4 1 x 10-5 CENTER OF SYMBOL 1 x 10-6 1 x 10-7 1 x 10-8 1 x 10-9 1 x 10-10 1 x 10-11 1 x 10-12 -6-4 -2 0 2 RELATIVE INPUT OPTICAL POWER db CONDITIONS: 1. 266 MBd 2. PRBS 2 7-1 3. T A = 25 C 4. V CC = 5 Vdc 5. INPUT OPTICAL RISE/FALL TIMES = 1.0/1.9 ns Figure 5. HFBR-1119TZ/2119TZ bit-error-ratio vs. relative receiver input optical power. The jitter specifications stated in the following transmitter and receiver specification tables are derived from the values in FC-PH Annex A.4.3 and A.4.4. They represent the worst-case jitter contribution that the transmitter and receiver are allowed to make to the overall system jitter without violating the allowed allocation. In practice, the typical jitter contribution of the Avago data link modules is well below the maximum allowed amounts. Recommended Handling Precautions It is advised that normal static precautions be taken in the handling and assembly of these data link modules to prevent damage which may be induced by electrostatic discharge (ESD). The HFBR- 1119TZ/-2119TZ series meets MIL- STD-883C Method 3015.4 Class 2. Care should be taken to avoid shorting the receiver Data or Signal Detect Outputs directly to ground without proper currentlimiting impedance. Solder and Wash Process Compatibility The transmitter and receiver are delivered with protective process caps covering the individual ST* ports. These process caps protect the optical subassemblies during wave solder and aqueous wash processing and act as dust covers during shipping. These data link modules are compatible with either industry standard wave- or hand-solder processes. Shipping Container The data link modules are packaged in a shipping container designed to protect it from mechanical and ESD damage during shipment or storage. Board Layout Interface Circuit and Layout Guidelines It is important to take care in the layout of your circuit board to achieve optimum performance from these data link modules. Figure 6 provides a good example of a power supply filter circuit that works well with these parts. Also, suggested signal terminations for the Data, Data-bar, Signal Detect and Signal Detect-bar lines are shown. Use of a multilayer, ground-plane printed circuit board will provide good high-frequency circuit performance with a low inductance ground return path. See additional recommendations noted in the interface schematic shown in Figure 6. 4

* * Tx Rx +5 Vdc GND A L2 1 C2 0.1 * 9 NC 10 GND 11 V CC 12 V CC 13 GND NC 8 NO 7 PIN GND 6 GND 5 GND 4 * 9 NC 10 NO PIN 11 GND 12 GND 13 GND NC 8 GND 7 V CC 6 V CC 5 V CC 4 C1 0.1 L1 1 C7 10 (OPTIONAL) C3 0.1 C4 10 A DATA 14 D GND 3 14 SD D 3 DATA DATA R3 R2 R4 R1 82 82 130 130 C5 0.1 15 D 16 NC V BB 2 NC 1 15 SD 16 NO PIN D 2 NC 1 C6 0.1 R9 82 R11 82 R7 82 R5 82 R8 130 R6 130 DATA SD TERMINATE D, D AT Tx INPUTS TOP VIEWS R10 130 R12 130 SD TERMINATE D, D, SD, SD AT INPUTS OF FOLLOW-ON DEVICES NOTES: 1. RESISTANCE IS IN OHMS. CAPACITANCE IS IN MICROFARADS. INDUCTANCE IS IN MICROHENRIES. 2. TERMINATE TRANSMITTER INPUT DATA AND DATA-BAR AT THE TRANSMITTER INPUT PINS. TERMINATE THE RECEIVER OUTPUT DATA, DATA-BAR, AND SIGNAL DETECT-BAR AT THE FOLLOW-ON DEVICE INPUT PINS. FOR LOWER POWER DISSIPATION IN THE SIGNAL DETECT TERMINATION CIRCUITRY WITH SMALL COMPROMISE TO THE SIGNAL QUALITY, EACH SIGNAL DETECT OUTPUT CAN BE LOADED WITH 510 OHMS TO GROUND INSTEAD OF THE TWO RESISTOR, SPLIT-LOAD PECL TERMINATION SHOWN IN THIS SCHEMATIC. 3. MAKE DIFFERENTIAL SIGNAL PATHS SHORT AND OF SAME LENGTH WITH EQUAL TERMINATION IMPEDANCE. 4. SIGNAL TRACES SHOULD BE 50 OHMS MICROSTRIP OR STRIPLINE TRANSMISSION LINES. USE MULTILAYER, GROUND-PLANE PRINTED CIRCUIT BOARD FOR BEST HIGH- FREQUENCY PERFORMANCE. 5. USE HIGH-FREQUENCY, MONOLITHIC CERAMIC BYPASS CAPACITORS AND LOW SERIES DC RESISTANCE INDUCTORS. RECOMMEND USE OF SURFACE-MOUNT COIL INDUCTORS AND CAPACITORS. IN LOW NOISE POWER SUPPLY SYSTEMS, FERRITE BEAD INDUCTORS CAN BE SUBSTITUTED FOR COIL INDUCTORS. LOCATE POWER SUPPLY FILTER COMPONENTS CLOSE TO THEIR RESPECTIVE POWER SUPPLY PINS. C7 IS AN OPTIONAL BYPASS CAPACITOR FOR IMPROVED, LOW-FREQUENCY NOISE POWER SUPPLY FILTER PERFORMANCE. 6. DEVICE GROUND PINS SHOULD BE DIRECTLY AND INDIVIDUALLY CONNECTED TO GROUND. 7. CAUTION: DO NOT DIRECTLY CONNECT THE FIBER-OPTIC MODULE PECL OUTPUTS (DATA, DATA-BAR, SIGNAL DETECT, SIGNAL DETECT-BAR, V BB) TO GROUND WITHOUT PROPER CURRENT LIMITING IMPEDANCE. 8. (*) OPTIONAL METAL ST OPTICAL PORT TRANSMITTER AND RECEIVER MODULES WILL HAVE PINS 8 AND 9 ELECTRICALLY CONNECTED TO THE METAL PORT ONLY AND NOT CONNECTED TO THE INTERNAL SIGNAL GROUND. Figure 6. Recommended interface circuitry and power supply filter circuits. 5

Board Layout Hole Pattern The Avago transmitter and receiver hole pattern is compatible with other data link modules from other vendors. The drawing shown in Figure 7 can be used as a guide in the mechanical layout of your circuit board. (16X) ø 0.8 ± 0.1.032 ±.004 Ø 0.000 M A A 17.78.700 (7X) 2.54.100 7.62.300 TOP VIEW UNITS = mm/inch Figure 7. Recommended board layout hole pattern. 6

Regulatory Compliance These data link modules are intended to enable commercial system designers to develop equipment that complies with the various international regulations governing certification of Information Technology Equipment. Additional information is available from your Avago sales representative. All HFBR-1119TZ LED transmitters are classified as IEC-825-1 Accessible Emission Limit (AEL) Class 1 based upon the current proposed draft scheduled to go into effect on January 1, 1997. AEL Class 1 LED devices are considered eye safe. See Application Note 1094, LED Device Classifications with Respect to AEL Values as Defined in the IEC 825-1 Standard and the European EN60825-1 Directive. The material used for the housing in the HFBR-1119TZ/-2119TZ series is Ultem 2100 (GE). Ultem 2100 is recognized for a UL flammability rating of 94V-0 (UL File Number E121562) and the CSA (Canadian Standards Association) equivalent (File Number LS88480). λc TRANSMITTER OUTPUT OPTICAL SPECTRAL WIDTH (FWHM) nm Figure 8. Typical transmitter output optical spectral width (FWHM) vs. transmitter output optical center wavelength and rise/fall times. RELATIVE INPUT OPTICAL POWER db 5 4 3 2 1 220 200 180 160 140 120 100 80 TRANSMITTER OUTPUT OPTICAL RISE TIMES ns 60 1280 1300 1320 1340 1360 1380 λc TRANSMITTER OUTPUT OPTICAL CENTER WAVELENGTH nm 0-1.5-1 -0.5 0 0.5 1 1.5 EYE SAMPLING TIME POSITION ns t r = 1.8 ns t r = 1.9 ns t r = 2.0 ns t r = 2.1 ns t r = 2.2 ns HFBR-1119TZ TYPICAL TRANSMITTER TEST RESULTS OF λc, λ AND t r ARE CORRELATED AND COMPLY WITH THE ALLOWED SPECTRAL WIDTH AS A FUNCTION OF CENTER WAVELENGTH FOR VARIOUS RISE AND FALL TIMES. CONDITIONS: 1. T A = 25 C 2. V CC = 5 Vdc 3. INPUT OPTICAL RISE/FALL TIMES = 1.0/1.9 ns 4. INPUT OPTICAL POWER IS NORMALIZED TO CENTER OF DATA SYMBOL 5. NOTES 11 AND 12 APPLY Figure 9. HFBR-2119TZ receiver relative input optical power vs. eye sampling time position. 7

HFBR-1119TZ Transmitter Pin-Out Table Pin Symbol Functional Description Reference 1 NC No internal connect, used for mechanical strength only 2 V BB V BB Bias output 3 GND Ground Note 3 4 GND Ground Note 3 5 GND Ground Note 3 6 GND Ground Note 3 7 OMIT No pin 8 NC No internal connect, used for mechanical strength only Note 5 9 NC No internal connect, used for mechanical strength only Note 5 10 GND Ground Note 3 11 V CC Common supply voltage Note 1 12 V CC Common supply voltage Note 1 13 GND Ground Note 3 14 DATA Data input Note 4 15 DATA Inverted Data input Note 4 16 NC No internal connect, used for mechanical strength only HFBR-2119TZ Receiver Pin-Out Table Pin Symbol Functional Description Reference 1 NC No internal connect, used for mechanical strength only 2 DATA Inverted Data input Note 4 3 DATA Data input Note 4 4 V CC Common supply voltage Note 1 5 V CC Common supply voltage Note 1 6 V CC Common supply voltage Note 1 7 GND Ground Note 3 8 NC No internal connect, used for mechanical strength only Note 5 9 NC No internal connect, used for mechanical strength only Note 5 10 OMIT No pin 11 GND Ground Note 3 12 GND Ground Note 3 13 GND Ground Note 3 14 SD Signal Detect Note 2, 4 15 SD Inverted Signal Detect Note 2, 4 16 OMIT No pin Notes: 1. Voltages on V CC must be from the same power supply (they are connected together internally). 2. Signal Detect is a logic signal that indicates the presence or absence of an input optical signal. A logic-high, V OH, on Signal Detect indicates presence of an input optical signal. A logic-low, V OL, on Signal Detect indicates an absence of input optical signal. 3. All GNDs are connected together internally and to the internal shield. 4. DATA, DATA, SD, SD are open-emitter output circuits. 5. On metal-port modules, these pins are redefined as Port Connection. 8

Specifications Absolute Maximum Ratings Parameter Symbol Min. Typ. Max. Unit Reference Storage Temperature T S -40 100 C Lead Soldering Temperature T SOLD 260 C Lead Soldering Time t SOLD 10 sec. Supply Voltage V CC -0.5 7.0 V Data Input Voltage V I -0.5 V CC V Differential Input Voltage V D 1.4 V Note 1 Output Current I O 50 ma Note 2 Recommended Operating Conditions Parameter Symbol Min. Typ. Max. Unit Reference Ambient Operating Temperature T A 0 70 C Supply Voltage V CC 4.5 5.5 V Data Input Voltage Low V IL - V CC -1.810-1.475 V Data Input Voltage High V IH - V CC -1.165-0.880 V Data and Signal Detect Output Load R L 50 Ω Note 3 HFBR-1119TZ Transmitter Electrical Characteristics (T A = 0 C to 70 C, V CC 4.5 V to 5.5 V) Parameter Symbol Min. Typ. Max. Unit Reference Supply Current I CC 165 185 ma Note 4 Power Dissipation P DISS 0.86 1.1 W Note 16 Threshold Voltage V BB - V CC -1.42-1.3-1.24 V Note 21 Data Input Current Low I IL -350 0 µa Data Input Current High I IH 14 350 µa HFBR-2119TZ Receiver Electrical Characteristics (T A = 0 C to 70 C, V CC = 4.5 V to 5.5 V) Parameter Symbol Min. Typ. Max. Unit Reference Supply Current I CC 100 165 ma Note 15 Power Dissipation P DISS 0.3 0.5 W Note 16 Data Output Voltage Low V OL - V CC -1.840-1.620 V Note 17 Data Output Voltage High V OH - V CC -1.045-0.880 V Note 17 Data Output Rise Time t r 0.35 2.2 ns Note 18 Data Output Fall Time t f 0.35 2.2 ns Note 18 Signal Detect Output V OL - V CC -1.840-1.620 V Note 17 Voltage Low (De-asserted) Signal Detect Output V OH - V CC -1.045-0.880 V Note 17 Voltage High (Asserted) Signal Detect Output Rise Time t r 0.35 2.2 ns Note 18 Signal Detect Output Fall Time t f 0.35 2.2 ns Note 18 Signal Detect Assert Time (off to on) t SDA 0 55 100 µs Note 19 Sighal Detect De-assert Time (on to off) t SDD 0 110 350 µs Note 20 9

HFBR-1119TZ Transmitter Optical Characteristics (T A = 0 C to 70 C, V CC = 4.5 V to 5.5 V) Parameter Symbol Min. Typ. Max. Unit Reference Output Optical Power P O, BOL -19-14 dbm Note 5 62.5/125 µm, NA = 0.275 Fiber P O, EOL -20-14 avg. Output Optical Power P O, BOL -22.5-14 dbm Note 5 50/125 µm, NA = 0.20 Fiber avg. Optical Extinction Ratio 0.03 % db Note 6-35 Center Wavelength λ C 1280 1308 1380 nm Note 7 Figure 8 Spectral Width FWHM λ 137 nm Note 7 Figure 8 Optical Rise Time t r 0.6 2.0 ns Note 8 Figure 8 Optical Fall Time t f 0.6 2.2 ns Note 8 Figure 8 Deterministic Jitter Contributed by DJ C 0.08 ns rms Note 9 the Transmitter 0.30 ns p-p Random Jitter Contributed by the RJ C 0.03 ns p-p Note 10 Transmitter 0.11 ns p-p HFBR-2119TZ Receiver Optical Characteristics (T A = 0 C to 70 C, V CC = 4.5 V to 5.5 V) Parameter Symbol Min. Typ. Max Unit Reference Input Optical Power P IN Min. (W) -26 dbm Note 11 Minimum at Window Edge avg. Figure 9 Input Optical Power P IN Min. (C) -28 dbm Note 12 Minimum at Eye Center avg. Figure 9 Input Optical Power Maximum P IN Max. -14 dbm Note 11 avg. Operating Wavelength λ 1270 1380 nm Signal Detect Asserted P A P D +1.5 db -27 dbm Note 13, 19 avg. Signal Detect De-asserted P D -45 dbm Note 14, 20 avg. Signal Detect Hysteresis P A -P D 1.5 2.4 db Deterministic Jitter Contributed DJ C 0.24 ns rms Note 9, 11 by the Receiver 0.90 ns p-p Random Jitter Contributed by RJ C 0.26 ns rms Note 10, 11 the Receiver 0.97 ns p-p 10

Notes: 1. This is the maximum voltage that can be applied across the Differential Transmitter Data Inputs to prevent damage to the input ESD protection circuit. 2. When component testing these products, do not short the receiver Data or Signal Detect outputs directly to ground to avoid damage to the part. 3. The outputs are terminated with 50 Ω connected to V CC - 2 V. 4. The power supply current needed to operate the transmitter is provided to differential ECL circuitry. This circuitry maintains a nearly constant current flow from the power supply. Constant current operation helps to prevent unwanted electrical noise from being generated and conducted or emitted to neighboring circuitry. 5. These optical power values are measured as follows: The Beginning of Life (BOL) to the End of Life (EOL) optical power degradation is typically 1.5 db per the industry convention for long wavelength LEDs. The actual degradation observed in Avago Technologies s 1300 nm LED products is < 1dB, as specified in this data sheet. Over the specified operating voltage and temperature ranges. With 25 MBd (12.5 MHz square-wave), input signal. At the end of one meter of noted optical fiber with cladding modes removed. The average power value can be converted to a peak power value by adding 3 db. Higher output optical power transmitters are available on special request. 6. The Extinction Ratio is a measure of the modulation depth of the optical signal. The data 0 output optical power is compared to the data 1 peak output optical power and expressed as a percentage. With the transmitter driven by a 12.5 MHz square-wave signal, the average optical power is measured. The data 1 peak power is then calculated by adding 3 db to the measured average optical power. The data 0 output optical power is found by measuring the optical power when the transmitter is driven by a logic 0 input. The extinction ratio is the ratio of the optical power at the 0 level compared to the optical power at the 1 level expressed as a percentage or in decibels. 7. This parameter complies with the requirements for the tradeoffs between center wave length, spectral width, and rise/fall times shown in Figure 8. 8. The optical rise and fall times are measured from 10% to 90% when the transmitter is driven by a 25 MBd (12.5 MHz squarewave) input signal. This parameter complies with the requirements for the tradeoffs between center wavelength, spectral width, and rise/fall times shown in Figure 8. 9. Deterministic Jitter is defined as the combination of Duty Cycle Distortion and Data Dependent Jitter. Deterministic Jitter is measured with a test pattern consisting of repeating K28.5 (00111110101100000101) data bytes and evaluated per the method in FC-PH Annex A.4.3. 10. Random Jitter is specified with a sequence of K28.7 (square wave of alternating 5 ones and 5 zeros) data bytes and, for the receiver, evaluated at a Bit- Error-Ratio (BER) of 1 x 10-12 per the method in FC-PH Annex A.4.4. 11. This specification is intended to indicate the performance of the receiver when Input Optical Power signal characteristics are present per the following definitions. The Input Optical Power dynamic range from the minimum level (with a window time-width) to the maximum level is the range over which the receiver is guaranteed to provide output data with a Bit-Error-Ratio (BER) better than or equal to 1 x 10-12. At the Beginning of Life (BOL). Over the specified operation temperature and voltage ranges. Input symbol pattern is a 266 MBd, 2 7-1 pseudo-random bit stream data pattern. Receiver data window time-width is ± 0.94 ns or greater and centered at mid-symbol. This data window time width is calculated to simulate the effect of worst-case input jitter per FC- PH Annex J and clock recovery sampling position in order to insure good operation with the various FC-0 receiver circuits. The maximum total jitter added by the receiver and the maximum total jitter presented to the clock recovery circuit comply with the maximum limits listed in Annex J, but the allocations of the Rx added jitter between deterministic jitter and random jitter are different than in Annex J. 12. All conditions of Note 11 apply except that the measurement is made at the center of the symbol with no window time-width. 13. This value is measured during the transition from low to high levels of input optical power. 14. This value is measured during the transition from high to low levels of input optical power. 15. These values are measured with the outputs terminated into 50 Ω connected to V CC - 2 V and an input optical power level of -14 dbm average. 16. The power dissipation value is the power dissipated in the transmitter or the receiver itself. Power dissipation is calculated as the sum of the products of supply voltage and supply current, minus the sum of the products of the output voltages and currents. 17. These values are measured with respect to V CC with the output terminated into 50 Ω connected to V CC - 2 V. 18. The output rise and fall times are measured between 20% and 80% levels with the output connected to V CC - 2 V through 50 Ω. 19. The Signal Detect output shall be asserted, logic-high (V OH ), within 100 µs after a step increase of the Input Optical Power. 20. Signal Detect output shall be de-asserted, logic-low (V OL ), within 350 µs after a step decrease in the Input Optical Power. 21. This value is measured with an output load R L = 10 kω. 11

For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright 2006 Avago Technologies Limited. All rights reserved. AV01-0153EN May 14, 2006