Lecture 8. Thin-Body MOSFET s Process II. Source/Drain Technologies Threshold Voltage Engineering

Similar documents
45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

FDSOI for Low Power System on Chip. M.HAOND STMicroelectronics, Crolles, France

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5

FinFET Devices and Technologies

Fully Depleted Devices

Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

FinFET vs. FD-SOI Key Advantages & Disadvantages

Drain. Drain. [Intel: bulk-si MOSFETs]

FinFET-based Design for Robust Nanoscale SRAM

SoC Technology in the Era of 3-D Tri-Gate Transistors for Low Power, High Performance, and High Density Applications

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Semiconductor TCAD Tools

DUAL MATERIAL PILE GATE APPROACH FOR LOW LEAKAGE FINFET. Sanjay S. Chopade 1*, Dinesh V. Padole 1

Performance Evaluation of MISISFET- TCAD Simulation

A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors

ADVANCED MATERIALS AND PROCESSES FOR NANOMETER-SCALE FINFETS

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm

DG-FINFET LOGIC DESIGN USING 32NM TECHNOLOGY

EECS130 Integrated Circuit Devices

Enabling Breakthroughs In Technology

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Performance Analysis of Vertical Slit Field Effect Transistor

32nm Technology and Beyond

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors.

Session 10: Solid State Physics MOSFET

Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP)

Reducing Transistor Variability For High Performance Low Power Chips

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

DESIGN OF A CHARGE PUMP-BASED BODY BIAS GENERATOR FOR FDSOI CIRCUITS A

Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

EECS130 Integrated Circuit Devices

III-V on Si for VLSI. 200 mm III-V on Si. Accelerating the next technology revolution. III-V nfet on 200 mm Si

III-V CMOS: Quo Vadis?

Nanoscale III-V CMOS

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET)

A novel GAAC FinFET transistor: device analysis, 3D TCAD simulation, and fabrication

Research Needs for Device Sciences Modeling and Simulation (May 6, 2005)

Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

Substrate Bias Effects on Drain Induced Barrier Lowering (DIBL) in Short Channel NMOS FETs

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

FD-SOI Technology. Bich-Yen Nguyen Soitec

Evaluation of STI degradation using temperature dependence of leakage current in parasitic STI MOSFET

Logic Technology Development, *QRE, ** TCAD Intel Corporation

CMOS Scaling and Variability

Challenges and Innovations in Nano CMOS Transistor Scaling

Low-Power VLSI. Seong-Ook Jung VLSI SYSTEM LAB, YONSEI University School of Electrical & Electronic Engineering

Characterization of Variability in Deeply-Scaled Fully Depleted SOI Devices

Integrated CMOS Tri-Gate Transistors: Paving the Way to Future Technology Generations

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS

High-Performance Si Nanowire FET with a Semi Gate-Around Structure Suitable for Integration

FinFETs have emerged as the solution to short channel

40nm Node CMOS Platform UX8

Practical Information

NAME: Last First Signature

Performance and Reliability of the sub-100nm FDSOI with High-K K and Metal Gate

Lecture 27 ANNOUNCEMENTS. Regular office hours will end on Monday 12/10 Special office hours will be posted on the EE105 website

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN

EE241 - Spring 2013 Advanced Digital Integrated Circuits. Announcements. Sign up for Piazza if you haven t already

UTBB FD-SOI: a Process/Design symbiosis for breakthrough energy-efficiency

CMOS Scaling Beyond FinFETs: Nanowires and TFETs

Double-Gate SOI Devices for Low-Power and High-Performance Applications

III-V CMOS: the key to sub-10 nm electronics?

Solid State Device Fundamentals

Alternatives to standard MOSFETs. What problems are we really trying to solve?

N-channel Junction-less Vertical Slit Field-Effect Transistor (VeSFET): Fabrication-based Feasibility Assessment

6. LDD Design Tradeoffs on Latch-Up and Degradation in SOI MOSFET

Resistive Bridging Defect Detection in Bulk, FDSOI and FinFET Technologies

Design of 45 nm Fully Depleted Double Gate SOI MOSFET

Advanced PDK and Technologies accessible through ASCENT

Design of Optimized Digital Logic Circuits Using FinFET

ISSN: [Soni* et al., 6(4): April, 2017] Impact Factor: 4.116

PERFORMANCE EVALUATION OF FD-SOI MOSFETS FOR DIFFERENT METAL GATE WORK FUNCTION

Experimentally reported sub-60mv/dec

Analog Performance of Scaled Bulk and SOI MOSFETs

Lecture #29. Moore s Law

Intel Technology Journal

A novel high performance 3 VDD-tolerant ESD detection circuit in advanced CMOS process

Electrical Characterization of a Second-gate in a Silicon-on-Insulator Transistor

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE

Measurement and modelling of specific behaviors in 28nm FD SOI UTBB MOSFETs of importance for analog / RF amplifiers

Fabrication and Electrical Properties of Local Damascene FinFET Cell Array in Sub-60nm Feature Sized DRAM

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

A BRIEF STUDY ON CHALLENGES OF MOSFET AND EVOLUTION OF FINFETS

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

Study of Pattern Area of Logic Circuit. with Tunneling Field-Effect Transistors

Power MOSFET Zheng Yang (ERF 3017,

Power FINFET, a Novel Superjunction Power MOSFET

Session 3: Solid State Devices. Silicon on Insulator

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

Bridging the Gap between Dreams and Nano-Scale Reality

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

4: Transistors Non idealities

Partially-insulated MOSFET (PiFET) and Its Application to DRAM Cell Transistor

Transcription:

Atom Probe Tomography for Dopants in FinFETs Lecture 8 A.K. Kambham (imec), VLSI-T 2012 Thin-Body MOSFET s Process II Source/Drain Technologies Threshold Voltage Engineering Reading: multiple research articles (reference list at the end of this lecture)

FinFET Source/Drain Doping Challenges: I. Fin Amorphization TCAD Simulation Results L. Pelaz, IEDM (2009) After the high energy implantation, Source/Drain regions are always amorphized. Requires annealing for S/D regrowth to prevent leakage and reliability issues. Source/Drain For <110> FinFETs, the (111) planes will eventually prevent the Si re-crystallization. R. Duffy, APL (2007) 2

FinFET Source/Drain Doping Challenges: II. Vertical Conformance TCAD Simulation Results Cross-sectional (left) and lateral (right) view of the B concentration in a FinFET implanted region with: L. Pelaz, IEDM (2009) Energy Dose Tilt a 0.5 10 15 10 o b 2 10 15 10 o c 0.5 5x10 15 10 o d 0.5 10 15 45 o 3 After 1100 o C Spike Annealing

Effective Channel Length (L eff ) Source Drain Gate Overlap Gate Underlap More reasonable (than L g ) parameter to optimize device performance with a certain gate pitch (i.e. technology node). 4

H=25nm H=25nm Impacts of Source/Drain Doping Conformance Conformal S/D Doping W=15nm L g =20nm L eff is always 30nm SOI FinFET w/ Uniform doping in S/D region Non-conformal S/D Doping W=15nm L g =20nm L eff starts from 30nm SOI FinFET w/ Gauss doping in S/D region Doping concentration (cm -3 ) Simulated SOI FinFET Performance 1.0E+20 10-3 1.3E+17 10 8.3E+13-4 -4.3E-12 10-5 -6.6E-15 V -1.0E-19 10-6 ds =0.7V Drain Current (A/um) 10-7 10-8 10-9 10-10 L gate = 20nm Normalized over W eff = 2*H fin + W fin W=1um Planar FinFET w/ Conformal S/D Dop. FinFET w/ Gaussian S/D Dop. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Gate Voltage (V) S/D doping conformance strongly affects FinFET s L eff and causing performance change. 5

Self-Regulatory Plasma Doping in FinFET s S/D Dense Fins High Aspect- Ratio Fins Y. Sasaki, IEDM (2008) 6

S/D Doping Optimizations for Improving FinFET Performance -20% -50% A multi-step implantation with different energies and ion species improves the vertical doping conformance. T. Yamashita, VLSI-T (2011) 7

In Situ-Doped S/D in FinFETs TCAD Simulation Results of S/D epi-regrowth after etching In Situ-doped Source Drain Simulation shows the final source/drain shape doesn t depend on the initial Si over etch depth. Courtesy of V. Moroz and M. Choi (Synopsys) (100) (111) Boron Doping Concentration (cm -3 ) 10 20 10 19 10 18 10 17 10 16 10 15 Retrograde Well ~ 3 nm/dec -20 0 20 Distance along Channel (nm) (011) Intel s TriGate FET s S/D 8

Impact of FinFET s Raised S/D Shape H. Kawasaki, IEDM (2009) 9

Why We Want Multiple V TH? 10

11

Back Biasing Tuning in UTBB SOI MOSFETs Body Bias 10-3 10-4 V b =2V V b =0V V b =-2V V ds =1.2V 10-5 Drain Current (A/um) 10-6 10-7 10-8 10-9 10-10 10-11 V ds =1.2V n-fdsoi L g =10um V ds =10mV n-fdsoi L eff =52nm T. Skotnicki, IEDM SC (2010) 10-12 -0.4 0.0 0.4 0.8 1.2-0.4 0.0 0.4 0.8 1.2 Gate Voltage (V) Gate Voltage (V) Reverse Back Biasing: V BG : NMOS(-), PMOS(+) V TH Forward Back Biasing: V BG : NMOS(+), PMOS(-) V TH 12

(Back Biasing) Body Coefficient V g Strong Reverse Bias Strong Forward Bias C ox 1 C ox 1 2 C BOX 2 C BOX Define coefficient r : //, //, so that V TH = r V BG V bg Forward Bias Reverse Bias Body Coefficient 0.5 0.4 0.3 0.2 Simulated t SOI =11nm t SOI =7nm t SOI =4nm t SOI =5nm Measured t BOX =5nm t BOX =11nm 0.1-3 -2-1 0 1 2 3 Back Bias (V) 13

UTBB SOI MOSFET s V TH Engineering T. Skotnicki, IEDM SC (2010) 14

Impact of Back Biasing on UTBB SOI MOSFET s Electrostatics Q. Liu, VLSI-T (2011) STMicroelectronics 28nm UTBB FDSOI MOSFETs DIBL (mv/v) N. Xu, VLSI-T (2012) RBB (or counter-type GP): better electrostatics FBB (or same-type GP): worse electrostatics 15

Electron Mobility (cm 2 /V.s) 500 400 300 200 100 Impact of Back Biasing on UTBB SOI MOSFET s Carrier Mobility UTBB s eff vs. E eff Reduction due to HKMG (First) Back Bias +2V +1.5V +1V 0V -1V -2V (100) Si Universal 0.1 1 Effective Field (MV/cm) still follows universal mobility curve However, what matters I ON is eff at a certain N inv. Electron Mobility (cm 2 /V.s) 500 400 300 200 100 UTBB s eff vs. N inv (100)/<110> n-fdsoi T=300K V b =2V V b =1.5V V b =1V V b =0V V b =-1V V b =-2V 10 12 10 13 Inversion Electron Concentration (cm -2 ) RBB (or counter-type GP): lower mobility FBB (or same-type GP): higher mobility 16

Back Biasing in Tri-Gate MOSFET TEM of Nanowire Tri-Gate FET BB-V th Tuning vs. W Fin BB-V th Tuning vs. H Fin Si Back Biasing will be ineffective to tune V TH when the back surface area is relatively small. Not an option for typical FinFETs. M. Saitoh, VLSI-T (2012) 17

FinFET s V TH Engineering C.-H. Lin, VLSI-T (2012) Normalized Drain Current (A/um) 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 HP: N fin =1e16, L g =14nm LP: N fin =1e18, L g =20nm N peak =1e19cm -3 N peak =3e18cm -3 N peak =2e18cm -3 N peak =1e18cm -3 0.0 0.2 0.4 0.6 Gate Voltage (V) The V TH tuning ability of channel doping is limited in FinFET, due to the shrink of Si volume as well as the superposition from PTS doping profile. Multiple gate length (L eff ) has to be used to tune V TH. 18

State-of-the-Art FinFET s SoC Intel s 20nm TriGate MOSFET NMOS: I off -I dsat Wordline R. Brain, VLSI-T (2013) Knobs: gate length (L g & L eff ) Doping (PTS, Fin ) C.-J. Jan, IEDM (2012) 19

Summary of FinFET and UTBB SOI MOSFET s V TH Engineering Assuming single gate metal (workfunction) for each type (N or P) of MOSFETs. I OFF (na/um) FinFET I OFF (na/um) UTBB SOI MOSFET 100 na SLVT Low Doping SLVT FBB + GP doping 10 na 1 na 100 pa 10 pa LVT Low Doping, Moderate L g RVT High Doping, Moderate L g HVT High Doping, Long L g I EFF LVT ZBB + GP doping RVT RBB + GP doping HVT RBB + GP doping, Long L g I EFF 20

FinFET Source/Drain References 1. L. Pelaz, L. Marques, M. Aboy, P. Lopez, I. Santos, R. Duffy, Atomistic Process Modeling Based on Kinetic Mone Carlo and Molecular Dynamics for Optimization of Advanced Devices, IEEE International Electron Device Meeting Tech. Dig., pp. 513-516, 2013. 2. R. Duffy, M.J.H. Van Dal, B.J. Pawlak, M. Kaiser, R.G.R. Weemaes et al., Solid Phase Epitaxy versus Random Nucleation and Growth in sub-20nm Wide Fin Field-Effect Transistors, AIP Applied Physics Letters, Vol.90, 241912, 2007. 3. Y. Sasaki, K. Okashita, K. Nakamoto, T. Kitaoka, B. Mizunoet al., Conformal Doping for FinFETs and Precise Controllable Shallow Doping for Planar FET Manufacturing by a Novel B2H6/Helium Self-Regulatory Plasma Doping Process, IEEE International Electron Device Meeting Tech. Dig., pp. 917-920, 2008. 4. T. Yamashita, V.S. Basker, T. Standaert, C.-C. Yeh, T. Yamamoto et al., Sub-25nm FinFET with Advanced Fin Formation and Short Channel Effect Engineering, Symposium on VLSI Technology Dig., pp.14-15, 2011. 5. M. Choi, V. Moroz, L. Smith, O. Penzin, 14nm FinFET Stress Engineering with Epitaxial SiGe Source/Drain, International SiGe Technology and Device Meeting Tech. Dig., 2012. 6. H. Kawasaki, V.S. Basker, T. Yamashita, C.-H. Lin, Y. Zhu et al., Challenges and Solutions of FinFET Integration in an SRAM Cell and a Logic Circuit for 22nm Node and Beyond, IEEE International Electron Device Meeting Tech. Dig., pp. 289-292, 2009. UTBB SOI V TH Tuning 7. T. Skotnicki, CMOS Technologies Trends, Scaling and Issues, IEEE International Electron Device Meeting Short Course, 2010. 21

References 8. Q. Liu, F. Monsieur, A. Kumar, T. Yamamoto, A. Yagishita et al., Impact of Back Bias on Ultra-Thin Body and BOX (UTBB) Devices, Symposium on VLSI Technology Dig., pp.160-161, 2011. 9. N. Xu, F. Andrieu, B. Ho, B.-Y. Nguyen, O. Weber et al., Impact of Back Biasing on Carrier Transport in Ultra-Thin-Body and BOX (UTBB) Fully Depleted SOI MOSFETs, Symposium on VLSI Technology Dig., pp.113-114, 2012. FinFET V TH Tuning 10. M. Saitoh, K. Ota, C. Tanaka, K. Uchida, T. Numata, 10nm-Diameter Tri-Gate Silicon Nanowire MOSFETs with Enhanced High-Field Transport and V TH Tunability through Thin BOX, Symposium on VLSI Technology Dig., pp.11-12, 2012. 11. C.-H. Lin, R. Kambhampati, R.J. Miler, T.B. Hook, A. Bryant et al., Channel Doping Impact on FinFETs for 22nm and Beyond, Symposium on VLSI Technology Dig., pp.15-16, 2012. 12. (Intel s Tri-Gate SoC) C.-H. Jan, U. Bhattacharya, R. Brian, S.-J. Choi, G. Gurello et al., A 22nm SoC Platform Technology Featuring3-DTri-GateandHigh-k/Metal Gate, Optimized for Ultra Low Power, High Performance and High Density SoC Applications, IEEE International Electron Device Meeting Tech. Dig., pp.44-47, 2012. 13. (Intel s Tri-Gate edram) R. Brian, A. Baran, N. Bisnik, H.-P. Chen, S.-J. Choi et al., A 22nm High Performance Embedded DRAM SoC Technology Featuring Tri-Gate Transistors and MIMCAP COB, Symposium on VLSI Technology Dig., pp.16-17, 2013. 22