Visual Phasing of Chromosome 1

Similar documents
Advanced Autosomal DNA Techniques used in Genetic Genealogy

Getting the Most Out of Your DNA Matches

Walter Steets Houston Genealogical Forum DNA Interest Group February 24, 2018

have to get on the phone or family members for the names of more distant relatives.

Walter Steets Houston Genealogical Forum DNA Interest Group January 6, 2018

Genealogical Research

DNA Testing. February 16, 2018

Tools: 23andMe.com website and test results; DNAAdoption handouts.

FAMILY HISTORY QUESTIONNAIRE

Introduction to Autosomal DNA Tools

[CLIENT] SmithDNA1701 DE January 2017

Using X-DNA for Genealogy Debbie Parker Wayne, CG, CGL SM

Walter Steets Houston Genealogical Forum DNA Interest Group April 7, 2018

Pizza and Who do you think you are?

GEDmatch Home Page The upper left corner of your home page has Information about you and links to lots of helpful information. Check them out!

DNA Testing What you need to know first

CAGGNI s DNA Special Interest Group

Walter Steets Houston Genealogical Forum DNA Interest Group January 27, 2018

Creating a Private and Unsearchable Ancestry Family Tree

Autosomal DNA. What is autosomal DNA? X-DNA

First Results: Intro to FamilyTreeDNA s Family Finder. Learn what to do with results of autosomal DNA testing with FamilyTreeDNA (FTDNA).

Genetic Genealogy. Rules and Tools. Baltimore County Genealogical Society March 25, 2018 Andrew Hochreiter

Using Autosomal DNA for Genealogy Debbie Parker Wayne, CG, CGL SM

TRACK 1: BEGINNING DNA RESEARCH presented by Andy Hochreiter

Learn what to do with results of autosomal DNA testing from AncestryDNA.

Tracking Your Roots With DNA

Genetic Genealogy Journey Why Is My Cousin Not on my DNA Match List? Debbie Parker Wayne, CG SM, CGL SM

How To Uncover Your Genealogy

Learn what to do with results of autosomal DNA testing from AncestryDNA. Tools: AncestryDNA results; ancestry.com, gedmatch.com and familytreedna.

DNA for Genealogy Librarians. Patricia Lee Hobbs, CG Local History & Genealogy Reference Associate Springfield-Greene County Library District

DNA Basics. OLLI: Genealogy 101 October 1, ~ Monique E. Rivera ~

Family Tree Maker vs. Family Echo

Walter Steets Houston Genealogical Forum DNA Interest Group November 18, 2017

Robert Warthen

DNA Solu)ons for Brick Walls And Adop)on

Make payable to MGCC for genealogy ONLY

Introduction to genealogy with EuGENEus!

DNA Basics, Y DNA Marker Tables, Ancestral Trees and Mutation Graphs: Definitions, Concepts, Understanding

Princess Margaret Cancer Centre Familial Breast and Ovarian Cancer Clinic. Family History Questionnaire

Tracing Your Roots. Virginia Shepherd Department of Teaching and Learning Vanderbilt University. January 19, 2018

Using Y-DNA for Genealogy Debbie Parker Wayne, CG, CGL SM

Walter Steets Houston Genealogical Forum DNA Interest Group May 5, 2018

Identifying Old Photographs. 8 March 2018

Autosomal-DNA. How does the nature of Jewish genealogy make autosomal DNA research more challenging?

DNAGedcom s GWorks Automation Utility using Ancestry.com Results

Métis Genealogical Centre of Canada Central Processing Office for Canadian Métis Council-IT

THE BASICS OF DNA TESTING. By Jill Garrison, Genealogy Coordinator Frankfort Community Public Library

Ancestor Detective Special Assignment Training Manual Quest for Treasures 2014 Family Activity Mapleton, Utah

DNA: UNLOCKING THE CODE

A Day Out With Your DNA

Richard Weiss - Director / Exec VP

Approaching and Connecting with Your DNA Matches

I will read certain parts of this presentation, but since there is limited time, I am hoping to read each part in its entirety at a later time.

For research to begin please forward the following information:

Your mtdna Full Sequence Results

HEREDITARY CANCER FAMILY HISTORY QUESTIONNAIRE

Finding Cousins Descendancy Research by ron ray eaglequestpro.com/share

Please complete the information in this packet and return it PRIOR to your appointment with the Familial Cancer Risk Assessment Center.

Below is a series of questions to get you started on your journey.

Welcome to Ancestry!

New Family Tree By Renee Zamora

DAR POLICY STATEMENT AND BACKGROUND Using DNA Evidence for DAR Applications

Genealogy Basics: Using WikiTree to Gather Information

Souhrada Family Reunion U.S.A. #36

Mitochondrial DNA (mtdna) JGSGO June 5, 2018

Recent Results from the Jackson Brigade DNA Project

Preserving Your Research Beyond Your Lifetime Using FamilySearch s Family Tree Application.

Using Autosomal DNA to Solve a Family Mystery

Appendix III - Analysis of Non-Paternal Events

APPLICATION FOR ENROLLMENT

Order of the Founders of North America Lineage Documentation Guidelines 09/18/2012 A. General Application requirements. 1. Application completeness

Meek DNA Project Group B Ancestral Signature

Your Family 101 Beginning Genealogical Research

Developing Conclusions About Different Modes of Inheritance

An Introduction. Your DNA. and Your Family Tree. (Mitochondrial DNA) Presentation by: 4/8/17 Page 1 of 10

Non-Paternity: Implications and Resolution

Ewing Surname Y-DNA Project Article 8

BETTER TOGETHER: MAKING YOUR CASE WITH DOCUMENTS AND DNA BCG-sponsored Webinar ( Patricia Lee Hobbs, CG

What to Expect When You re Clustering

Y-DNA Genetic Testing

How a DNA Project has produced discoveries in the Meates One- Name Study not possible with paper records alone

Getting the Most of Your DNA Test. Friends of Irish Research Richard Reid

Pedigree Charts. The family tree of genetics

Find JCD Project Date: Identification-DNA Process Updated:

Pedigree Reconstruction using Identity by Descent

SETTLERS OF LORAIN COUNTY, OHIO Application Deadline is June 1 of any given year

Maiden Names: Unlocking the mystery of the Mrs. Jim Lawson Professional Genealogist

Discovering Hard to Find Ancestry DNA Matches Page 1

Putting the genes into genealogy

! FTDNA! Ancestry. ! 23andMe. ! Medical Considera,ons. ! Iden,fying family medical history. ! Communica,ng with the medical community

IN THIS ISSUE: February From the Administrator Questions/News...1. George Varner of Missouri Direct Line...2

The Snohomish Tribe of Indians Application for Enrollment

Computer - aided Genealogy. Rob Drew

Using the FamilySearch Family Tree (23 March 2012)

Starting your Genealogical Journey Part 1 - Where to Start

IN THE MAORI LAND COURT OF NEW ZEALAND TAITOKERAU DISTRICT 9 TAITOKERAU MB 209 (9 TTK 209) A A

The Structure of DNA Let s take a closer look at how this looks under a microscope.

Use of DNA information in family research information for IOWFHS members

Primer on Human Pedigree Analysis:

DNA, A Genealogy Tool. The Search for an Expert Genealogist, Photos & Clues

Transcription:

Visual Phasing of Chromosome 1 If you have the possibility to test three full siblings, then the next great thing you could do with your DNA, is to try out the Visual Phasing technique developed by Kathy Johnston. It allows you to map the segments of your chromosomes to your four grandparents (without having your parents tested) by comparing the recombination points of the three siblings. However, to figure out which of your grandparents a segment belongs to, you will still need additional cousin testing on several of your lines. Ideally multiple 2 nd cousins on either side of your family, but more distant cousins have proved to be very valuable as well. I do not have full siblings, but luckily both my mother and father do. I have tested my mother and my maternal uncle a few years ago and when I first read about Visual Phasing on Blaine Bettinger s fantastic blog, I immediately knew what I was going to do next get a DNA test for my maternal aunt, too! After meticulously studying Blaine s instructions along with Ann Raymont s and rounding it all up by watching Lars Martin s video on YouTube (you will find the links below) I just couldn t wait to put my newly acquired skills into practice. To my knowledge only English blog posts about implementing this methodology exist out there and I feel that many other foreign genealogists are missing out on something important here. So therefore, I m going to explain the Visual Phasing of my mother s and her sibling s pairs of Chromosome 1 three times in Russian and in German with the idea of introducing this superb method to a wider public and in English as a reference. (That s how my idea for a multilingual blog on genetic genealogy was born.) Chromosome 1 is one of the two largest chromosomes and is usually not recommended for beginners. In my case, however, it turned out to have the cousin matches that I needed to complete the mapping. Your first step is to upload autosomal raw data files of the three siblings to GEDmatch (if you haven t done so already) and then use the One-to-One tool to compare the chromosomes of each sibling to each other. 1

I find it easier to do Visual Phasing using Excel, but you are free to choose whatever works best for you. Capture and copy the images of each chromosome comparison using the Windows Snipping Tool and paste them to Excel. Our next step is to identify all recombination events that have taken place on the chromosome pair of each sibling and assign them to a specific person involved in the crossing-over. After looking at the GEDmatch table and the comparison of the chromosome pairs above, we see for example, that my aunt and uncle didn t match each other on the first (red) bit of chromosome 1. It means that on both of their copies of the chromosome different DNA was received from different grandparents. Then we see that a recombination occurred as they began to share a half identical (yellow) segment, meaning that now on one of their chromosome copies, either maternal or paternal, the DNA was passed down from the same grandparent. Soon after, the next crossing-over occurred in one of the two as they now share a fully identical (green) segment, meaning that at that position on both the maternal and paternal copies of the chromosome the DNA came from the same two grandparents. Here we have all recombination points in the three chromosome pairs at a glance: 2

Now we need to make out the sibling involved in the crossing over. Here are the positions where a recombination occurred in my aunt s chromosome pair: By comparing my aunt vs. my uncle and then my aunt vs. my mother we see that a recombination has occurred at the same position in the beginning. Since my aunt is involved in both comparisons, this crossing-over will be assigned to her. And in this image, the recombination positions belong to my mother: At last the crossing-overs that occurred in my uncle: 3

For a better visualization, draw long vertical lines through all recombination points and label them. Don t panic if the lines do not align perfectly, just place the line somewhere in the middle. The fuzziness of the segments has already been addressed in a blog post by Jim Bartlett (link is below). Next step is to find out at what positions the crossing-overs occurred. One good way to do it is to use David Pike s utility Search for Shared DNA Segments in Two Raw Data Files. After you have uploaded two raw unzipped files, you get a neatly arranged list of shared segments with their starting and ending points. First a list of fully identical segments shared between two individuals, followed by the list of half identical segments. The other way to do it is to use the data provided by the One-to-One tool, even though it is a bit more complicated. Blaine Bettinger did an excellent job explaining it and I will just follow his instructions. By comparing my aunt and uncle via the One-to-One tool I get the following: 4

However, it only gives me the starting and endings points of their both half identical (yellow) segments. To figure out the starting and ending positions of the fully identical (green) segments, I need to check the full resolution box before the comparison. The chromosome will be expanded and the positions marked. Unfortunately, the size of the chromosome has become too large now to fit properly onto one page, so we need to scroll to the right to find all starting and ending points. The following image compares my aunt s and uncle s first fully identical segment to its version in full resolution. I will place the starting point of this fully identical segment at 30 and the ending point at 34. (We already learned that it is okay for the segment points to be a bit fuzzy.) 5

Let s add all starting and ending points of all segments now, rounding the millions up. And now the Visual Phasing can begin. 1) As you can see my mother and aunt share a fully identical segment between 115 and 156. Accordingly, neither one of them shares DNA with my uncle at that position. Therefore, we can already assign four colors to all their four grandparents - at this stage not knowing which color belongs to which grandparent, of course. What we do know is that pink and blue are complementary (either paternal or maternal) and so are purple and orange. 6

2) Now we can extend the segments to the next crossing-over points of each sibling. Well, in the case of my aunt we can t her segment lies between her two recombination points. My mother s segments on the other hand can be extended to the left until her crossingover at 17.5 and to the right until 183. My uncle s segment can be extended to the left until 94 and to his recombination point on the right at 207.5. 3) Look at the area between 17.5 and 55 my mother and aunt do not share any DNA here, so opposite colors will be assigned to my aunt. Furthermore, we can extend her segment to the left until her crossing-over point at 6. For the tiny region between 30 and 34 opposite colors will also be assigned to my uncle, since he doesn t share DNA with my mother at this position, but a fully identical segment with my aunt instead. 7

4) It looks like I m stuck, but not yet. I m still able to extend my aunt s segment to her crossing-over at 222, but I need to change one of her colors - at this point it doesn t matter which one as the colors aren t assigned to a specific grandparent yet. Why? Because in the region between 156 and 183 my aunt shares a half identical segment with her siblings, but a different one with each since they do not share any DNA at that position. 5) This allows me to fill out the area between 183-207.5 for my mother and then again 207.5-222 for my mother and uncle, because it s fully identical to my aunt s. Furthermore, I can extend my mother s segment to the right until 238 and my uncle s segment to the end. Now I m stuck. 8

Ideally you fill the chromosomes out entirely first and then turn to your matches and see whether they can help you separate your four ancestral lines. In my case, however, I need to start bringing my cousins in now. Among the people who agreed to take a DNA test for me is E.A., my mother s and her sibling s maternal first cousin. E.A. and the Haas siblings therefore share maternal grandparents - maternal grandmother Ottilia Arnhold and maternal grandfather Heinrich Antoni. Let s see whether E.A. can help to distinguish which of the Haas chromosome copies is maternal and which is paternal. 9

E.A. turned out to be an excellent match! Not only are we able to distinguish between the maternal and paternal chromosome copies now, thanks to E.A. we are also able to complete all three chromosome pairs of the Haas siblings! Purple and orange colors are maternal, because E.A. matches both my mother and aunt on the purple color from 119.5 to 157 (156 those fuzzy segments again) and then continues to match only my mother until 165.5, because my aunt switches to orange at 156 (157). Furthermore, E.A. matches all three siblings between 6 and 14.5 and we know already that my aunt has orange between 6 and 17.5 at that position. Therefore, orange will also be assigned to my mother and uncle from 6 to 17.5 and then extended to the left end. In addition, my uncle s segment will be extended to the right until his recombination point at 30. On their paternal copy at that region pink will be assigned to my mother and uncle. My aunt doesn t match her siblings on the tiny bit from the beginning to 6, so opposite colors will be assigned to her. 10

E.A. also matches all three Haas siblings between 67 and 94 and we already know that my mother has purple on her maternal copy of the chromosome at that region. My uncle will be assigned purple on his maternal copy of the chromosome as well and blue on the paternal one. In addition, his segment can be extended to the crossing-over on the left at 34. His chromosome pair is now completed! 11

E.A. matches my aunt at 238 to 244, but she doesn t match my uncle, who has orange at that region, so the color must be purple for my aunt. Furthermore, we can extend my aunt s segment to the left to her recombination point at 222 and assign the pink color to my aunt s paternal copy of the chromosome. 12

Opposite colors can be assigned to my mother from 238 to the end now, because she doesn t share any DNA with my aunt at that position. We have completed my mother s chromosome pair, too! We see that my aunt and uncle share a fully identical segment between 55 and 94, so blue and purple will also be assigned to my aunt at that area. Furthermore, we can extend her segment to her next recombination point at 106. 13

The tiny spot between 106 and 108 will be assigned blue and orange, because this region is fully identical to my uncle s. Now only one last segment between 108 and 115 needs to be filled out and we turn to E.A. for help again. E.A. shares a purple segment at that position with my mother, but no segments with the other two Haas siblings. Hence orange will be assigned to my aunt on her maternal and pink on her paternal copy (she only shares a half identical segment with my uncle there). And voila - we have completed all three chromosome pairs now! So now that we know that purple and orange are maternal and pink and blue are paternal, 2 nd cousins can prove themselves very useful. N.B. happily agreed to take a DNA test for me (she even joked that at least her saliva will travel to the U.S, while she herself never has). Her paternal grandmother Margaretha Arnhold and my mother s and her sibling s maternal grandmother Ottilia Arnhold were sisters. 14

So, it looks like the purple color belongs to the Arnhold line. N.B. matches my mom and aunt on their fully identical segment at 114.5-157 (115-156) and continues to match my mother to 165.5, while my aunt switches to the complementary color at that region. Thus, orange can be assigned to Antoni, the maternal grandfather s line. With regards to the Haas siblings paternal side, everything is a lot more complicated. My mother s father grew up in an orphanage after being sent there as a toddler following his parents death and didn t know anything about his biological relatives - not even the name of his mother. All he was told later was that the rest of his family emigrated to Canada and the United States at around the time of his birth. No names, no places. Who would have thought that a century later drops of saliva would be able to provide new information? One of our family s most interesting matches is the now deceased W. Schlegel, who agreed to test for his niece a few years ago while she was researching their Volga German ancestry. W. Schlegel s ancestors emigrated to Canada from Pobochnoye, a Lutheran Volga German village, and I immediately connected him to my grandfather. Pobochnoye was the mother colony of my grandfather s birthplace (my maternal grandmother was from an entirely different part of the Volga river area and her portion of the family tree is well researched). What made W. Schlegel even more special was that he was a match on my maternal grandfather s mother s side. Yes, my unknown great-grandmother. So how can I be so sure? It s because W. Schlegel matched both my mother and my aunt on the X-Chromosome! The X-Chromosome my grandfather passed down to his daughters was inherited from his mother. (On W. Schlegel s part, the X- Chromosome doesn t come from his Schlegel side, but from his maternal Wagner side.) Therefore, after comparing the segments W. Schlegel and the Haas siblings have in common, I can map DNA segments to their paternal grandmother (and by process of elimination to their paternal grandfather as well). 15

W. Schlegel matches my mother and aunt between 144 and 180 and shares no DNA with my uncle. Therefore, we can assign the pink color to their paternal grandmother - my maternal grandfather s unknown mother. Accordingly, the complementary paternal color blue will be assigned to the Haas line. We are done! Conclusions: Sometimes it is not possible to complete an entire chromosome by logic only, because multiple outcomes are possible. However, bringing in other family members still allows you to move forward. Visual Phasing can help you enormously in your research by providing valuable 16

information about your ancestral composition, especially if you hit a brick wall due to adoption or lack of documentation. Later this year I also plan to test my paternal aunts or uncles (my father has already tested) meaning that at some point in the future I will theoretically be able to assign the segments of my own chromosomes to all my 8 great-grandparents! Knowing which segments, I inherited from which of my ancestors, will help me to arrange my matches more accurately or sort them into new groups, which in turn may one day be the key to solving the mystery of our family. Or yours. Sources used and further reading: This great technique allows you to prove a theory about a certain ancestral connection or dismiss it. Let s imagine I had a cousin match with a large segment on chromosome 1 and a Haas ancestor in her tree. Naturally, I would be tempted to connect her immediately to my grandfather s paternal side. However, after visually phasing my mother s chromosome and learning that her paternal copy of chromosome 1 comes largely from her father s mother s side - thus shrinking my chances to have inherited a Haas segment to a minimum - I would now proceed more cautiously, considering the possibility of a different connection more openmindedly. http://thegeneticgenealogist.com/wp-content/uploads/2016/11/visual-phasing-bettinger.pdf https://dnasleuth.wordpress.com/2016/05/13/chromosome-mapping-with-siblings-part-1/ https://dnasleuth.wordpress.com/2016/06/01/chromosome-mapping-with-siblings-part-2/ https://www.youtube.com/watch?v=neb4oflwjha&feature=youtu.be https://dnagenealogy.tumblr.com/post/137722603308/the-use-of-crossover-lines-amongsiblings-to http://www.jmhartley.com/hblog/?p=3046 https://genealogylady.net/2017/05/02/down-the-dna-rabbit-hole-visual-phasing-with-twosiblings/ https://segmentology.org/2015/05/30/fuzzy-data-fuzzy-segments-no-worry/ 17