TO-220AB IRF1404Z. Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

Similar documents
TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

AUTOMOTIVE MOSFET TO-220AB IRF P C = 25 C Maximum Power Dissipation 330 Linear Derating Factor

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF3808S IRF3808L HEXFET Power MOSFET

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

IRFR4105ZPbF IRFU4105ZPbF

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

TO-220AB. IRF3710ZPbF. 240 P C = 25 C Maximum Power Dissipation 160 Linear Derating Factor

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

V DSS R DS(on) max I D

IRFR540ZPbF IRFU540ZPbF

IRFP2907PbF. HEXFET Power MOSFET V DSS = 75V. R DS(on) = 4.5mΩ I D = 209A. Typical Applications. Benefits

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRLR3915PbF IRLU3915PbF

V DSS R DS(on) max I D

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET. HEXFET Power MOSFET Wiper Control

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

SMPS MOSFET. V DSS R DS(on) max I D

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

IRLR3110ZPbF IRLU3110ZPbF

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

l Advanced Process Technology TO-220AB IRF640NPbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

l Advanced Process Technology TO-220AB IRF630N

V DSS R DS(on) max I D

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

V DSS R DS(on) max (mw)

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

IRLS3034PbF IRLSL3034PbF

IRFR24N15DPbF IRFU24N15DPbF

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRFB260NPbF HEXFET Power MOSFET

IRL8113 IRL8113S IRL8113L

IRL3714Z IRL3714ZS IRL3714ZL

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRFR1018EPbF IRFU1018EPbF

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

IRFS4127PbF IRFSL4127PbF

IRFR3806PbF IRFU3806PbF

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

IRFR24N15D IRFU24N15D

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

SMPS MOSFET. V DSS R DS(on) max I D

IRF530NSPbF IRF530NLPbF

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRL3803VSPbF IRL3803VLPbF HEXFET Power MOSFET

IRFS3107PbF IRFSL3107PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

TO-220AB IRFB4310. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 14

SMPS MOSFET. V DSS R DS(on) max I D

IRL1404SPbF IRL1404LPbF

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS Rds(on) max I D

SMPS MOSFET. V DSS R DS(on) max (mω) I D

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

HEXFET Power MOSFET V DSS = 40V. R DS(on) = Ω I D = 130A

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

V DSS R DS(on) max Qg

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 500V 0.125Ω 170ns 34A

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

IRFS3004-7PPbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

SMPS MOSFET. V DSS R DS(on) max I D

Transcription:

Features l Advanced Process Technology l Ultra Low On-Resistance l 175 C Operating Temperature l Fast Switching l Repetitive Avalanche Allowed up to Tjmax Description This HEXFET Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175 C junction operating temperature, fast switching speed and improved repetitive avalanche rating.these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. Absolute Maximum Ratings HEXFET Power MOSFET V DSS = 40V R DS(on) = 3.7mΩ I D = 75A www.irf.com 1 G TO-220AB IRF1404Z D S D 2 Pak IRF1404ZS IRF1404Z IRF1404ZS IRF1404ZL TO-262 IRF1404ZL Parameter Max. Units I D @ T C = 25 C Continuous Drain Current, V GS @ 10V (Silicon Limited) 190 I D @ T C = C Continuous Drain Current, V GS @ 10V 130 A I D @ T C = 25 C Continuous Drain Current, V GS @ 10V (Package Limited) 75 I DM Pulsed Drain Current c 750 P D @T C = 25 C Power Dissipation 220 W Linear Derating Factor 1.5 W/ C V GS Gate-to-Source Voltage ± 20 V E AS (Thermally limited) Single Pulse Avalanche Energyd 320 mj E AS (Tested ) Single Pulse Avalanche Energy Tested Value h 480 I AR Avalanche Currentc See Fig.12a, 12b, 15, 16 A E AR Repetitive Avalanche Energy g mj T J Operating Junction and -55 to 175 T STG Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) 10 lbfyin (1.1Nym) Mounting Torque, 6-32 or M3 screw i Thermal Resistance PD - 94634B Parameter Typ. Max. Units R θjc Junction-to-Case 0.65 C/W R θcs Case-to-Sink, Flat Greased Surface i 0.50 R θja Junction-to-Ambient i 62 R θja Junction-to-Ambient (PCB Mount) j 40 10/12/11

IRF1404ZS_L Electrical Characteristics @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units V (BR)DSS Drain-to-Source Breakdown Voltage 40 V ΔV (BR)DSS /ΔT J Breakdown Voltage Temp. Coefficient 0.033 V/ C R DS(on) Static Drain-to-Source On-Resistance 2.7 3.7 mω V GS(th) Gate Threshold Voltage 2.0 4.0 V V DS = V GS, I D = 250μA gfs Forward Transconductance 170 V V DS = 25V, I D = 75A I DSS Drain-to-Source Leakage Current 20 μa V DS = 40V, V GS = 0V 250 V DS = 40V, V GS = 0V, T J = 125 C I GSS Gate-to-Source Forward Leakage 200 na V GS = 20V Gate-to-Source Reverse Leakage -200 V GS = -20V Q g Total Gate Charge 150 I D = 75A Q gs Gate-to-Source Charge 31 nc V DS = 32V Q gd Gate-to-Drain ("Miller") Charge 42 V GS = 10V e t d(on) Turn-On Delay Time 18 V DD = 20V t r Rise Time 110 I D = 75A t d(off) Turn-Off Delay Time 36 ns R G = 3.0 Ω t f Fall Time 58 V GS = 10V e L D Internal Drain Inductance 4.5 Between lead, nh 6mm (0.25in.) L S Internal Source Inductance 7.5 from package and center of die contact C iss Input Capacitance 4340 V GS = 0V C oss Output Capacitance 1030 V DS = 25V C rss Reverse Transfer Capacitance 550 pf ƒ = 1.0MHz C oss Output Capacitance 3300 V GS = 0V, V DS = 1.0V, ƒ = 1.0MHz C oss Output Capacitance 920 V GS = 0V, V DS = 32V, ƒ = 1.0MHz C oss eff. Effective Output Capacitance 1350 V GS = 0V, V DS = 0V to 32V f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 75 MOSFET symbol (Body Diode) A showing the I SM Pulsed Source Current 750 integral reverse (Body Diode)Ãc V SD Diode Forward Voltage 1.3 V t rr Reverse Recovery Time 28 42 ns Q rr Reverse Recovery Charge 34 51 nc Conditions V GS = 0V, I D = 250μA Reference to 25 C, I D = 1mA V GS = 10V, I D = 75A e p-n junction diode. T J = 25 C, I S = 75A, V GS = 0V e T J = 25 C, I F = 75A, V DD = 20V di/dt = A/μs e t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LSLD) 2 www.irf.com

I D, Drain-to-Source Current ( A) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) Gfs, Forward Transconductance (S) IRF1404ZS_L 0 V GS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 0 V GS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 1 4.5V 20μs PULSE WIDTH Tj = 25 C 0.1 0.1 1 10 V DS, Drain-to-Source Voltage (V) 4.5V 20μs PULSE WIDTH Tj = 175 C 10 0.1 1 10 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 0 200 T J = 25 C T J = 175 C 160 T J = 175 C 120 T J = 25 C 10 80 V DS = 15V 20μs PULSE WIDTH 1 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 V GS, Gate-to-Source Voltage (V) 40 0 V DS = 15V 20μs PULSE WIDTH 0 40 80 120 160 I D, Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3

I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) C, Capacitance (pf) V GS, Gate-to-Source Voltage (V) IRF1404ZS_L 8000 6000 V GS = 0V, f = 1 MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd 20 16 I D = 75A V DS = 32V VDS= 20V Ciss 12 4000 8 2000 Coss 4 Crss 0 1 10 V DS, Drain-to-Source Voltage (V) 0 0 40 80 120 160 Q G Total Gate Charge (nc) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 0.0 00 OPERATION IN THIS AREA LIMITED BY R DS (on).0 T J = 175 C 0 10.0 T J = 25 C μsec 1.0 V GS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 V SD, Source-toDrain Voltage (V) 10 1 Tc = 25 C Tj = 175 C Single Pulse 1msec 10msec 0 1 10 0 V DS, Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I D, Drain Current (A) R DS(on), Drain-to-Source On Resistance (Normalized) IRF1404ZS_L 200 160 LIMITED BY PACKAGE 2.0 I D = 75A V GS = 10V 120 1.5 80 1.0 40 0 25 50 75 125 150 175 T C, Case Temperature ( C) 0.5-60 -40-20 0 20 40 60 80 120 140 160 180 T J, Junction Temperature ( C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 1 D = 0.50 0.1 0.01 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thjc ) 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 1E-006 1E-005 0.0001 0.001 0.01 0.1 t 1, Rectangular Pulse Duration (sec) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc Tc Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5

V GS(th) Gate threshold Voltage (V) E AS, Single Pulse Avalanche Energy (mj) IRF1404ZS_L V DS L 15V DRIVER 600 500 TOP BOTTOM I D 31A 53A 75A 400 R G 20V V GS tp D.U.T IAS 0.01Ω - V DD A 300 Fig 12a. Unclamped Inductive Test Circuit 200 tp V (BR)DSS 0 25 50 75 125 150 175 Starting T J, Junction Temperature ( C) I AS Fig 12b. Unclamped Inductive Waveforms Q G Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V Q GS Q GD 4.0 V G Current Regulator Same Type as D.U.T. Charge Fig 13a. Basic Gate Charge Waveform 3.0 2.0 I D = 250μA 50KΩ 12V.2μF.3μF V GS D.U.T. V - DS 1.0-75 -50-25 0 25 50 75 125 150 175 3mA T J, Temperature ( C ) I G I D Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com

Avalanche Current (A) E AR, Avalanche Energy (mj) IRF1404ZS_L 00 0 Duty Cycle = Single Pulse 0.01 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Δ Tj = 25 C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 10 0.05 0.10 1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 400 300 200 0 TOP Single Pulse BOTTOM 10% Duty Cycle I D = 75A 25 50 75 125 150 175 Starting T J, Junction Temperature ( C) Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-5 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long ast jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25 C in Figure 15, 16). t av = Average time in avalanche. D = Duty cycle in avalanche = t av f Z thjc (D, t av ) = Transient thermal resistance, see figure 11) P D (ave) = 1/2 ( 1.3 BV I av ) = DT/ Z thjc Fig 16. Maximum Avalanche Energy I av = 2DT/ [1.3 BV Z th ] Vs. Temperature E AS (AR) = P D (ave) t av www.irf.com 7

IRF1404ZS_L - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =10V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs V DS R D R G V GS D.U.T. - V DD 10V Pulse Width 1 µs Duty Factor 0.1 % Fig 18a. Switching Time Test Circuit V DS 90% 10% V GS t d(on) t r t d(off) t f Fig 18b. Switching Time Waveforms 8 www.irf.com

IRF1404ZS_L TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) - A - 4.69 (.185) 4.20 (.165) - B - 1.32 (.052) 1.22 (.048) 15.24 (.600) 14.84 (.584) 4 6.47 (.255) 6.10 (.240) 1 2 3 1.15 (.045) MIN LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 1.15 (.045) 2.54 (.) 2X NOTES: 3X 0.93 (.037) 0.69 (.027) 0.36 (.014) M B A M 3X 2.92 (.115) 2.64 (.104) 0.55 (.022) 0.46 (.018) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C For GB Production EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO PART NUMBER LOT CODE DATE CODE Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9

IRF1404ZS_L D 2 Pak Package Outline Dimensions are shown in millimeters (inches) D 2 Pak Part Marking Information THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE F530S PART NUMBER DATE CODE YEAR 0 = 2000 WEEK 02 LINE L For GB Production THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO F530S PART NUMBER LOT CODE DATE CODE Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com

IRF1404ZS_L TO-262 Package Outline Dimensions are shown in millimeters (inches) IGBT 1- GATE 2- COLLEC- TOR TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 INTERNATIONAL ASSEMBLED ON WW 19, 1997 RECTIFIER IN THE ASSEMBLY LINE "C" LOGO ASSEMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C Notes: 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1404z.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 11

IRF1404ZS_L D 2 Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION TRL 1.85 (.073) 1.65 (.065) 10.90 (.429) 10.70 (.421) 11.60 (.457) 11.40 (.449) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by T Jmax, starting T J = 25 C, L = 0.11mH R G = 25Ω, I AS = 75A, V GS =10V. Part not recommended for use above this value. ƒ Pulse width 1.0ms; duty cycle 2%. C oss eff. is a fixed capacitance that gives the same charging time as C oss while V DS is rising from 0 to 80% V DSS. Limited by T Jmax, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. % tested to this value in production. This is only applied to TO-220AB pakcage. ˆ This is applied to D 2 Pak, when mounted on 1" square PCB (FR- 4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2011 12 www.irf.com