Phased Array Feeds A new technology for wide-field radio astronomy

Similar documents
Phased Array Feeds A new technology for multi-beam radio astronomy

Phased Array Feeds & Primary Beams

Newsletter 4.4. Antenna Magus version 4.4 released! Array synthesis reflective ground plane addition. July 2013

Fundamentals of Radio Interferometry

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle

Smart Antennas in Radio Astronomy

ATCA Antenna Beam Patterns and Aperture Illumination

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Phased Array Feed Design. Stuart Hay 23 October 2009

Newsletter 5.4. New Antennas. The profiled horns. Antenna Magus Version 5.4 released! May 2015

Numerical Approach for the Analysis and Optimization of Phased Array Feed Systems

Phased Array Feed (PAF) Design for the LOVELL Antenna based on the Octagonal Ring Antenna (ORA) Array

ASKAP commissioning. Presentation to ATUC. CSIRO Astronomy & Space Science Dave McConnell ASKAP Commissioning & Early Science 14 November 2016

Antennas. Greg Taylor. University of New Mexico Spring Astronomy 423 at UNM Radio Astronomy

Introduction to Radio Astronomy!

Recent Developments in Measuring Signal and Noise in Phased Array Feeds at CSIRO

Memo 65 SKA Signal processing costs

Antennas & Receivers in Radio Astronomy

Practical Aspects of Focal Plane Array Testing

Towards SKA Multi-beam concepts and technology

Delay calibration of the phased array feed using observations of the South celestial pole

Array noise temperature measurements at the Parkes PAF Test-bed Facility

Newsletter 2.0. Antenna Magus version 2.0 released! New Array synthesis tool. April 2010

Phased Array Feeds for the SKA. WP2.2.3 PAFSKA Consortium CSIRO ASTRON DRAO NRAO BYU OdP Nancay Cornell U Manchester

Introduction to Radio Astronomy

Observational Astronomy

LE/ESSE Payload Design

SCATTERING POLARIMETRY PART 1. Dr. A. Bhattacharya (Slide courtesy Prof. E. Pottier and Prof. L. Ferro-Famil)

Phased Array Antennas

OPTICS OF SINGLE BEAM, DUAL BEAM & ARRAY RECEIVERS ON LARGE TELESCOPES J A M E S W L A M B, C A L T E C H

Final Feed Selection Study For the Multi Beam Array System

Radio Astronomy: SKA-Era Interferometry and Other Challenges. Dr Jasper Horrell, SKA SA (and Dr Oleg Smirnov, Rhodes and SKA SA)

ADVANCED 14/12 AND 30/20 GHz MULTIPLE BEAM ANTENNA TECHNOLOGY FOR COMMUNICATIONS SATELLITES

ANTENNA INTRODUCTION / BASICS

November SKA Low Frequency Aperture Array. Andrew Faulkner

Introduction to Interferometry. Michelson Interferometer. Fourier Transforms. Optics: holes in a mask. Two ways of understanding interferometry

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Novel Multi-Beam Radiometers for Accurate Ocean Surveillance

Aperture antennas. Andrés García, Francico José Cano, Alfonso Muñoz. (Technical University of Madrid, UPM)

Submillimeter (continued)

NUMERICAL OPTIMIZATION OF A SATELLITE SHF NULLING MULTIPLE BEAM ANTENNA

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection

May AA Communications. Portugal

ANTENNA INTRODUCTION / BASICS

Antenna Design: Simulation and Methods

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

Interferometry I Parkes Radio School Jamie Stevens ATCA Senior Systems Scientist

Aperture antennas. Ahmed FACHAR, Universidad Politécnica de Madrid (Technical University of Madrid, UPM)

essential requirements is to achieve very high cross-polarization discrimination over a

The Australian SKA Pathfinder Project. ASKAP Digital Signal Processing Systems System Description & Overview of Industry Opportunities

SKA station cost comparison

Interference Mitigation Using a Multiple Feed Array for Radio Astronomy

CIRCULAR DUAL-POLARISED WIDEBAND ARRAYS FOR DIRECTION FINDING

Adaptive Antennas. Randy L. Haupt

Characteristics of Smooth-Walled Spline-Profile Horns for Tightly Packed Feed-Array of RATAN-600 Radio Telescope

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 8: Reflector antennas

Multi-octave radio frequency systems: Developments of antenna technology in radio astronomy and imaging systems

Wideband Horn Antennas. John Kot, Christophe Granet BAE Systems Australia Ltd

Why Single Dish? Why Single Dish? Darrel Emerson NRAO Tucson

Sideband Smear: Sideband Separation with the ALMA 2SB and DSB Total Power Receivers

Wide-Band Imaging. Outline : CASS Radio Astronomy School Sept 2012 Narrabri, NSW, Australia. - What is wideband imaging?

Introduction to Imaging in CASA

Exercise 1-3. Radar Antennas EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION OF FUNDAMENTALS. Antenna types

Newsletter 2.3. Antenna Magus version 2.3 released! New antennas in Version 2.3. Potter horn. Circularly polarised rectangular-biquad antenna

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Introduction to Radio Astronomy. Richard Porcas Max-Planck-Institut fuer Radioastronomie, Bonn

KULLIYYAH OF ENGINEERING

SKA1 low Baseline Design: Lowest Frequency Aspects & EoR Science

Newsletter 3.1. Antenna Magus version 3.1 released! New antennas in the database. Square pin-fed septum horn. July 2011

Chapter 1 - Antennas

EC ANTENNA AND WAVE PROPAGATION

Continuous Arrays Page 1. Continuous Arrays. 1 One-dimensional Continuous Arrays. Figure 1: Continuous array N 1 AF = I m e jkz cos θ (1) m=0

Random Phase Antenna Combining for SETI SETICon03

Some Notes on Beamforming.

Antenna and Analog Beamformer

Antennas and Propagation. Chapter 1: Introduction

What does reciprocity mean

Richard Dodson 1/28/2014 NARIT-KASI Winter School

CHAPTER 8 ANTENNAS 1

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING

Towards a Polarimetric SAR Processor for Airborne Sensor

Notes 21 Introduction to Antennas

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT

W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ W1GHZ

Plan for Imaging Algorithm Research and Development

A Crash Course in Radio Astronomy and Interferometry: 1. Basic Radio/mm Astronomy

Reflectors vs. Refractors

Chalmers Publication Library

A Compact Dual-Polarized Antenna for Base Station Application

Focal Plane Arrays & SKA

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNIACTION ENGINEERING QUESTION BANK

Very Long Baseline Interferometry

Non-Ideal Quiet Zone Effects on Compact Range Measurements

Why Single Dish? Darrel Emerson NRAO Tucson. NAIC-NRAO School on Single-Dish Radio Astronomy. Green Bank, August 2003.

Antenna Technology Bootcamp. NTA Show 2017 Denver, CO

Technology Drivers, SKA Pathfinders P. Dewdney

More Radio Astronomy

Transcription:

Phased Array Feeds A new technology for wide-field radio astronomy Aidan Hotan ASKAP Project Scientist 29 th September 2017 CSIRO ASTRONOMY AND SPACE SCIENCE

Outline Review of radio astronomy concepts Single antenna beam pattern (diffraction limit) Dish antenna feeds, illumination and primary beam shape Short history of phased arrays in radio astronomy The use of phased arrays as dish antenna feeds Forming electronic beams on ASKAP Beam-forming in theory and practice Optimising beams for science 2 2017 Radio School Phased Array Feeds Aidan Hotan

Single dish antennas - the diffraction limit The spatial resolution that can be achieved by an imaging system is governed by the size of the light-gathering aperture This limit is rarely approached at optical wavelengths, but in radio astronomy it is typically what defines the primary beam of a telescope The Airy pattern associated with diffraction due to a circular aperture is also the sensitivity profile (beam) of a uniformlyilluminated parabolic reflector There is an inverse relationship between aperture size and the diameter of the diffraction pattern Large antennas have lots of gain but also a small field of view 3 2017 Radio School Phased Array Feeds Aidan Hotan

Radio telescope receivers Radio telescopes usually have a single feed horn at their focus This lets the telescope receive signals incident along the optical axis A feed horn is itself an antenna It is designed to efficiently couple free-space radiation into a waveguide It will impose its own response pattern on the telescope (illumination) Feed horns are typically less sensitive to radiation coming from the edges of the dish, compared to the centre Uniform illumination requires an infinitely sharp cut-off, which is unphysical In practice we must balance efficiency against spill-over and side-lobe levels 4 2017 Radio School Phased Array Feeds Aidan Hotan

Field of view of the feed horn Physical reflector size Feed Dish Uniform illumination (Ideal) Tapered illumination (Realistic) 5 2017 Radio School Phased Array Feeds Aidan Hotan

Gaussian primary beam approximation We often approximate the illumination pattern as a 2D Gaussian Neglecting aperture blockage, reflections from support struts, etc. The (voltage) beam of a radio telescope is the 2D Fourier transform of its illumination pattern The Fourier transform of a Gaussian is another Gaussian, so tapered illumination acts to suppress side-lobes It is common to assume a Gaussian shape for primary beam correction when making images. Keep this in mind as a starting point! See http://www.cv.nrao.edu/course/astr534/2dapertures.html for a discussion of the theory behind all this 6 2017 Radio School Phased Array Feeds Aidan Hotan

Multi-beam feeds on dish antennas Survey speed (how quickly we can image a given area of sky to a given sensitivity level) can be improved using multiple primary beams simultaneously 7 2017 Radio School Phased Array Feeds Aidan Hotan

Best of both worlds: multi-beam arrays The next logical step imaging with an array of multi-beam antennas. Good spatial resolution and increased field of view! Correlate signals from the same beams on different antennas (or more, if signal processing power allows!) Mosaic these simultaneous beams using standard techniques, or jointly deconvolve all the visibilities (Naomi s talk yesterday) Physical multi-feed systems are cumbersome and expensive Building multi-beam feeds for small antennas required new technology One solution is the Phased Array Feed (PAF) Also known as a Focal Plane Array (FPA) 8 2017 Radio School Phased Array Feeds Aidan Hotan

Quick history lesson - phased arrays Reflecting antennas give good directional gain, but this can also be achieved by combining signals from several dipoles This is not quite the same as interferometry, phased arrays work additively, not multiplicatively Phased arrays were used at the very beginning of radio astronomy Jansky s famous merry go round is an example of a Bruce antenna (a class of dipole array) and was used to discover radio emission from the Milky Way Jansky s antenna at Bell Labs in 1932, operating at 20.5 MHz As mentioned by Aaron yesterday! 9 2017 Radio School Phased Array Feeds Aidan Hotan

Images from Broadcast Belgium www.broadcast.be Phased arrays in communications Bruce antennas (and Curtain arrays in general) are typically hardwired and fed from a single input, with mechanical steering More flexible phased arrays have independently-fed elements that can be added with different phases This allows the antenna primary beam to be steered electronically (by changing the relative phases between elements) 10 2017 Radio School Phased Array Feeds Aidan Hotan

Aperture arrays in radio astronomy In modern jargon, a phased array that receives radiation directly from the sky is known as an aperture array Because the elements themselves form the aperture of the telescope LOFAR in the Netherlands and the MWA in Western Australia are both aperture array telescopes Aperture arrays will also form the low-frequency part of the SKA 11 2017 Radio School Phased Array Feeds Aidan Hotan

Phased array feeds in radio astronomy Phased arrays can also be used at the focal plane of a parabolic antenna, in place of a traditional feed horn Ideally, we need to Nyquist sample the E-M field in the focal plane 12 2017 Radio School Phased Array Feeds Aidan Hotan

ASKAP s chequerboard PAF 2D (dual polarisation) array of bow tie dipoles on a square grid Elements are spaced by 90 mm Broad frequency coverage, from 700 MHz to 1800 MHz Complete sampling of the wavefront in the focal plane 188 individual amplifiers, each with their own complex gain 13 2017 Radio School Phased Array Feeds Aidan Hotan

What does a PAF see? 14 2017 Radio School Phased Array Feeds Aidan Hotan

Forming beams with a phased array feed Beams can be formed using physical methods delays between elements introduced by lengths of cable This tends to be simple and cost effective, but difficult to change MWA uses this approach Beams can also be formed digitally using signal processors This is highly flexible (weights can be updated at any time to form arbitrary beams) but also computationally expensive ASKAP uses this approach Either way, we must include a beam-former in the signal path 15 2017 Radio School Phased Array Feeds Aidan Hotan

Beam-formers and bandwidth Just like correlation, beam-forming is best done over a relatively narrow bandwidth (the Airy pattern is a function of frequency) Need frequency-dependent weights to maintain efficiency across the band For ASKAP, we independently form beams on 1 MHz channels If we had infinite computing power, no beam-former would be necessary. We could compute interferometer visibilities across all combinations of PAF elements from all antennas This would be ideal for optimising UV coverage, RFI rejection, etc. 16 2017 Radio School Phased Array Feeds Aidan Hotan

Forming beams a hardware perspective Amplifiers are connected to the inside corners of each dipole antenna A single conductive patch contributes to several elements The signal from each element is digitally sampled Samples from each port are multiplied by their own complex weight Weighted voltages are summed to a single number This is done for each time sample, frequency channel and beam Beam Output w 1 * w 2 * w 3 * 17 2017 Radio School Phased Array Feeds Aidan Hotan

Forming multiple simultaneous beams Because we have ample photons at radio wavelengths, we can make many copies of the signal from each array element Ron explained this on Monday Each set of copies can be combined using its own set of weights We can steer several beams in different directions simultaneously The field of view is now limited by Coma distortion off-axis, an intrinsic property of any parabolic reflector PAF beams can be closely packed on the sky Once beams start to overlap, we reach a point of diminishing returns 18 2017 Radio School Phased Array Feeds Aidan Hotan

Polarisation of PAF elements ASKAP PAF elements are linearly polarised. Half of the 188 elements are aligned in X, the other half in Y Beams can be formed using any combination of elements, including opposite polarisations Vertical Polarisation Horizontal Polarisation 19 2017 Radio School Phased Array Feeds Aidan Hotan

Forming beams a conceptual perspective Each PAF element has its own view of the sky (beam) via the reflector We can design a set of beams that suit our needs by combining the beams of the elements Any formed beam is a linear combination of single port beams If we can model the desired beam properties, we can obtain weights by fitting for the closest match Holography of 94 PAF elements from one polarisation. Image by Sarah Hegarty 20 2017 Radio School Phased Array Feeds Aidan Hotan

Practical considerations when forming beams PAFs typically use an adaptive beam-forming approach Beams are formed in response to measured parameters Much of what defines a beam is the path length between elements However, each amplifier has its own complex gain In particular, the phase of each amplifier is randomly distributed This means that beam weights are unique to an individual PAF Each element emits thermal radiation that is received by its neighbours Adjacent elements do not receive completely independent signals Beam-forming algorithms have been extensively researched, but usually with other applications in mind. Astronomers are busy catching up! 21 2017 Radio School Phased Array Feeds Aidan Hotan

Maximum sensitivity beam-forming In general, the output of a beam-former can be expressed as: Beam k output at time i y k i = w k T x[i] Weight vector for beam k Applebaum (1976) derived a simple expression for the weights that determine the maximum sensitivity beam: w k = R n 1 v k PAF element outputs at time i Noise covariance matrix Steering vector (response of PAF elements to a point source in the direction of beam k) 22 2017 Radio School Phased Array Feeds Aidan Hotan

PAF element correlations the ACM The beam-former must also compute the Array Covariance Matrix This is expensive, only done for a subset of time Can always see correlation between nearby ports (even of different polarisations) ACM structure is mostly due to PAF s physical geometry 23 2017 Radio School Phased Array Feeds Aidan Hotan

Maximum sensitivity beamforming In general, the output of a beamformer can be expressed as: Beam k output at time i y k i = w k T x[i] Weight vector for beam k Applebaum (1976) derived a simple expression for the weights that define the maximum sensitivity beam: w k = R n 1 v k PAF element outputs at time i Noise covariance matrix (ACM with no strong sources in the field) Steering vector (response of PAF elements to a point source in the direction of interest for beam k) 24 2017 Radio School Phased Array Feeds Aidan Hotan

Obtaining a steering vector Can be done using single-dish ACM observations Recording ACMs while observing a strong source yields: Signal R s+n Noise The required steering vector is the Eigenvector of the difference corresponding to the dominant eigenvalue λ (see Landon et al. 2010): R s+n R n v = λv If you have an interferometer, you can also measure the steering vector directly by pointing a reference antenna at a strong source There may be other interesting ways to find this information! 25 2017 Radio School Phased Array Feeds Aidan Hotan

Single-dish beamforming on the Sun R n R s+n R s+n R n Our steering vector is the dominant Eigenvector of the difference matrix The Sun dominates the noise in the above example. This gives the weights high significance. Weaker sources are less effective To make offset beams, point the antenna off-axis when measuring the steering vector. Need one observation for each beam 26 2017 Radio School Phased Array Feeds Aidan Hotan

Maximum sensitivity beam weights X-polarisation Y-polarisation 27 2017 Radio School Phased Array Feeds Aidan Hotan

Amplitude Shape of maximum sensitivity beams Maximum sensitivity beam-forming does not constrain the shape of the beam, its symmetry, side-lobe levels, etc. Holography measurements can be used to study the beam shape Phase 28 2017 Radio School Phased Array Feeds Aidan Hotan

PAFs and antenna illumination Recall Alex s talk: a feed horn uses roughly 60% of the dish surface The illumination pattern of a horn is fixed by its design, but the illumination pattern of a PAF is determined by beam weights The maximum sensitivity algorithm tends to favour increased efficiency for a PAF (~75%) at the cost of higher side-lobes The PAF and its supports present a significant aperture blockage 4-fold symmetry can be seen in holography measurements as a result 29 2017 Radio School Phased Array Feeds Aidan Hotan

Offset maximum sensitivity beam shapes 3 4 5 1 0 2 6 7 8 Offset beams are elliptical, elongated radially Single polarisation beams are all slightly elliptical Shapes and locations can vary with antenna 30 2017 Radio School Phased Array Feeds Aidan Hotan

Tracking sources with offset beams With an Alt-Az mount the observed field rotates as we track Offset beams will be non-stationary on the sky Must either continuously update beam weights, or rotate antenna structure 31 2017 Radio School Phased Array Feeds Aidan Hotan

Dealing with PAF element failures The complexity of a PAF gives it flexibility, but can be challenging With many elements, the chance of one or more not working properly at any time is high The maximum sensitivity algorithm can give bad ports an unreasonably high weight Automatic error detection and correction will be necessary 32 2017 Radio School Phased Array Feeds Aidan Hotan

Other beam-forming methods Maximum sensitivity beam-forming uses the minimum number of observational constraints possible An observation of a noise field and one compact source per beam Additional constraints can be used to optimise beams for parameters other than sensitivity e.g. we could observe the reference source at several points around the desired half-power contour to optimise symmetry Some sensitivity penalty will be incurred and beam-forming takes more time Ultimately, knowledge of the PAF element patterns can be used to design a near-arbitrary primary beam This knowledge can come from electromagnetic models, observation, or both 33 2017 Radio School Phased Array Feeds Aidan Hotan

Arranging beams on the sky Diamond Square Spirograph 3 4 5 1 0 2 6 7 8 (with interleaving) Irregular Line 34 2017 Radio School Phased Array Feeds Aidan Hotan

Designing footprints for astronomy While electronic beam-forming allows for great flexibility, there are some important limitations: The total number of beams (and elements per beam) is limited by the signal processing power in the beam-former Beams cannot be placed too close together as they would sample the same field and provide decreasing benefit (information theory, not design flaw!) Large area surveys need footprints that tessellate and have Nyquist sampling Keep in mind that beam-forming is itself an approximation to the ideal case of a uniformly-sampled field of view With Nyquist-spaced elements, we have enough information to combine beamforming and synthesis imaging into one mathematical whole 35 2017 Radio School Phased Array Feeds Aidan Hotan

Summary As we have seen this week, interferometry makes use of limited spatial frequency information to reconstruct an image of the sky This process involves many assumptions, including: The system and the sky are unchanging between calibration intervals The primary beam and the synthesised beam shapes are well known PAFs increase the field of view of a radio telescope and grant some degree of control over its beams Adaptive beam-forming vs fixed physical feeds and structures We are still learning how to best use this technology More complex schemes may be possible in future: Learn how to optimise beams for science goals particularly polarimetry Null out the signal from RFI sources as they move across the sky (Aaron s talk) 36 2017 Radio School Phased Array Feeds Aidan Hotan

Thank you CSIRO Astronomy and Space Science Aidan Hotan ASKAP Project Scientist e aidan.hotan@csiro.au w www.atnf.csiro.au CSIRO ASTRONOMY AND SPACE SCIENCE