V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

Similar documents
V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

IRF7821PbF. HEXFET Power MOSFET

IRF9910PbF HEXFET Power MOSFET R DS(on) max

IRFR3709ZPbF IRFU3709ZPbF

IRF3709ZCS IRF3709ZCL

IRLR8721PbF IRLU8721PbF

IRLR3717 IRLU3717 HEXFET Power MOSFET

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

IRL3714Z IRL3714ZS IRL3714ZL

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

V DSS R DS(on) max Qg

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

IRF6602/IRF6602TR1 HEXFET Power MOSFET

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

IRL8113 IRL8113S IRL8113L

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

V DSS R DS(on) max Qg

IRL3714ZPbF IRL3714ZSPbF IRL3714ZLPbF

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

IRLR8726PbF IRLU8726PbF

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

IRF6646 DirectFET Power MOSFET

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC

Direct Drive at High V GS. IRF9388PbF SO8 Tube/Bulk 95 IRF9388TRPbF SO8 Tape and Reel 4000

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

V DSS R DS(on) max I D 80V GS = 10V 3.6A

V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

IRFR3806PbF IRFU3806PbF

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

Absolute Maximum Ratings Parameter Symbol IRF7809A V Units Drain-Source Voltage V DS. 30 V Gate-Source Voltage V GS = 25 C I D

V DSS R DS(on) max (mw)

IRFR24N15DPbF IRFU24N15DPbF

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRLS3034PbF IRLSL3034PbF

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max I D

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

IRFS4127PbF IRFSL4127PbF

IRFR1018EPbF IRFU1018EPbF

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

V DSS R DS(on) max (mω)

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

SMPS MOSFET. V DSS R DS(on) max I D

IRFR4105ZPbF IRFU4105ZPbF

FASTIRFET IRFHE4250DPbF

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

V DSS R DS(on) max Qg 30V GS = 10V 20nC

IRLR3915PbF IRLU3915PbF

IRFS3004-7PPbF HEXFET Power MOSFET

IRFR540ZPbF IRFU540ZPbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

5.0V 5.0V. 20µs PULSE WIDTH Tj = 25 C. Tj = 150 C. V DS, Drain-to-Source Voltage (V) T J = 150 C 1.5. V GS, Gate-to-Source Voltage (V)

IRFR24N15D IRFU24N15D

IRFB260NPbF HEXFET Power MOSFET

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

SMPS MOSFET. V DSS R DS(on) max (mω) I D

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

P C = 100 C Power Dissipation Linear Derating Factor

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

Industry-standard pinout SO-8 Package Multi-Vendor Compatibility Compatible with Existing Surface Mount Techniques

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

IRF2204SPbF IRF2204LPbF HEXFET Power MOSFET

IRF3808S IRF3808L HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

SMPS MOSFET. V DSS Rds(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

Lower Conduction Losses

Transcription:

Applications Dual SO-8 MOSFET for POL converters in desktop, servers, graphics cards, game consoles and set-top box PD - 95858A IRF895 HEXFET Power MOSFET V DSS R DS(on) max I D 20V 8.3m:@V GS = V 8.9A S 8 D G 2 7 D Benefits l Ultra-Low Gate Impedance l Very Low R DS(on) l Fully Characterized Avalanche Voltage and Current S2 G2 3 6 4 5 Top View D2 D2 SO-8 Absolute Maximum Ratings Parameter Max. Units V DS Drain-to-Source Voltage 20 V V GS Gate-to-Source Voltage ± 20 I D @ T A = 25 C Continuous Drain Current, V GS @ V 8.9 I D @ T A = 70 C Continuous Drain Current, V GS @ V 7. A I DM Pulsed Drain Current c 7 P D @T A = 25 C Power Dissipation 2.0 W P D @T A = 70 C Power Dissipation Linear Derating Factor.3 0.06 W/ C T J Operating Junction and -55 to 50 C Storage Temperature Range T STG Thermal Resistance Parameter Typ. Max. Units R θjl Junction-to-Drain Lead 42 C/W R θja Junction-to-Ambient f 62.5 Notes through are on page www.irf.com 07/09/08

IRF895 Static @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units BV DSS Drain-to-Source Breakdown Voltage 20 V ΒV DSS / T J Breakdown Voltage Temp. Coefficient 0.05 V/ C R DS(on) Static Drain-to-Source On-Resistance 4.6 8.3 mω 2.6 27 V GS(th) Gate Threshold Voltage.7 2.5 V V GS = 4.5V, I D = 7.A e V DS = V GS, I D = 250µA V GS(th) / T J Gate Threshold Voltage Coefficient -4.8 mv/ C I DSS Drain-to-Source Leakage Current.0 µa V DS = 6V, V GS = 0V 50 V DS = 6V, V GS = 0V, T J = 25 C I GSS Gate-to-Source Forward Leakage 0 na V GS = 20V Gate-to-Source Reverse Leakage -0 V GS = -20V gfs Forward Transconductance 2 S V DS = V, I D = 7.A Q g Total Gate Charge 4.9 7.4 Q gs Pre-Vth Gate-to-Source Charge.8 V DS = V Q gs2 Post-Vth Gate-to-Source Charge 0.6 nc V GS = 4.5V Q gd Gate-to-Drain Charge.7 I D = 7.A Q godr Gate Charge Overdrive 0.79 See Fig. 6 Q sw Switch Charge (Q gs2 Q gd ) 2.3 Q oss Output Charge 2.7 nc V DS = V, V GS = 0V t d(on) Turn-On Delay Time 6.0 V DD = 4.5V, V GS = 4.5V t r Rise Time 2 ns I D = 7.A t d(off) Turn-Off Delay Time 7. Clamped Inductive Load t f Fall Time 3.6 C iss Input Capacitance 540 V GS = 0V C oss Output Capacitance 80 pf V DS = V C rss Reverse Transfer Capacitance 9 ƒ =.0MHz Avalanche Characteristics Parameter Typ. Max. Units E AS Single Pulse Avalanche Energy d 5 mj I AR Avalanche Current c 7. A Diode Characteristics Parameter Min. Typ. Max. Units I S Continuous Source Current 2.5 (Body Diode) A I SM Pulsed Source Current 7 (Body Diode)c V SD Diode Forward Voltage.0 V t rr Reverse Recovery Time 3 9 ns Q rr Reverse Recovery Charge 3.5 5.2 nc Conditions V GS = 0V, I D = 250µA Reference to 25 C, I D = ma V GS = V, I D = 8.9A e Conditions MOSFET symbol D showing the G integral reverse S p-n junction diode. T J = 25 C, I S = 7.A, V GS = 0V e T J = 25 C, I F = 7.A, V DD = V di/dt = 0A/µs e 2 www.irf.com

I D, Drain-to-Source Current (Α) R DS(on), Drain-to-Source On Resistance (Normalized) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) IRF895 0 VGS TOP V 8.0V 5.5V 4.5V 3.5V 3.0V 2.8V BOTTOM 2.5V 0 VGS TOP V 8.0V 5.5V 4.5V 3.5V 3.0V 2.8V BOTTOM 2.5V 0. 0.0 2.5V 60µs PULSE WIDTH Tj = 25 C 0.00 0. 0 V DS, Drain-to-Source Voltage (V) 2.5V 60µs PULSE WIDTH Tj = 50 C 0. 0. 0 V DS, Drain-to-Source Voltage (V) Fig. Typical Output Characteristics Fig 2. Typical Output Characteristics 0.5 I D = 8.9A V GS = V T J = 50 C.0 T J = 25 C 0. V DS = V 60µs PULSE WIDTH 2 3 4 5 6 7 V GS, Gate-to-Source Voltage (V) 0.5-60 -40-20 0 20 40 60 80 0 20 40 60 T J, Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3

I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) C, Capacitance(pF) V GS, Gate-to-Source Voltage (V) IRF895 000 V GS = 0V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd 6.0 5.0 I D = 7.A V DS = 6V V DS = V 00 4.0 C iss C oss 3.0 0 C rss 2.0.0 0 0.0 0 2 3 4 5 6 7 V DS, Drain-to-Source Voltage (V) Q G Total Gate Charge (nc) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 0.00 00 OPERATION IN THIS AREA LIMITED BY R DS (on).00 T J = 50 C 0 T J = 25 C.00 V GS = 0V 0. 0.2 0.4 0.6 0.8.0.2.4.6 V SD, Source-to-Drain Voltage (V) 0. T A = 25 C Tj = 50 C Single Pulse 0µsec msec msec 0 0 00 V DS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I D, Drain Current (A) V GS(th) Gate threshold Voltage (V) IRF895 9 3.0 8 7 6 2.5 5 4 2.0 I D = 250µA 3 2 0 25 50 75 0 25 50 T A, Ambient Temperature ( C).5.0-75 -50-25 0 25 50 75 0 25 50 T J, Temperature ( C ) Fig 9. Maximum Drain Current vs. Ambient Temperature Fig. Threshold Voltage vs. Temperature 0 D = 0.50 Thermal Response ( Z thja ) 0. 0.0 0.20 0. 0.05 0.02 0.0 SINGLE PULSE ( THERMAL RESPONSE ) R R R 2 R 2 R 3 R 3 τ J τ J τ τ τ 2 τ 2 τ 3 τ 3 Ci= τi/ri Ci i/ri E-006 E-005 0.000 0.00 0.0 0. 0 t, Rectangular Pulse Duration (sec) R 4 Ri ( C/W) τi (sec) R 4 3.68799 0.000349 τ 4 τ 4 τ C τ 2.897 0.005246 34.7298 0.4706 2.897 3.52000 P DM Notes:. Duty factor D = t / t 2 2. Peak T = P x Z T J DM thja A t t 2 Fig. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5

R DS(on), Drain-to -Source On Resistance (mω) E AS, Single Pulse Avalanche Energy (mj) IRF895 40 35 30 I D = 8.9A 60 50 40 I D TOP 2.4A 2.9A BOTTOM 7.A 25 T J = 25 C 30 20 5 T J = 25 C 20 2 3 4 5 6 7 8 9 V GS, Gate -to -Source Voltage (V) Fig 2. On-Resistance vs. Gate Voltage 0 25 50 75 0 25 50 Starting T J, Junction Temperature ( C) Fig 3. Maximum Avalanche Energy vs. Drain Current Current Regulator Same Type as D.U.T. V (BR)DSS 5V tp 50KΩ R G V DS 20V VGS tp L D.U.T I AS 0.0Ω DRIVER - V DD A I AS 2V V GS.2µF 3mA.3µF D.U.T. V - DS Fig 4. Unclamped Inductive Test Circuit and Waveform L D I G I D Current Sampling Resistors Fig 5. Gate Charge Test Circuit V DS V DD - V DS 90% D.U.T % V GS Pulse Width < µs Duty Factor < 0.% V GS t d(on) t r t d(off) t f Fig 6. Switching Time Test Circuit Fig 7. Switching Time Waveforms 6 www.irf.com

IRF895 - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 5. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs Vds Id Vgs Vgs(th) Qgs Qgs2 Qgd Qgodr Fig 6. Gate Charge Waveform www.irf.com 7

IRF895 Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q and Q2. Power losses in the high side switch Q, also called the Control FET, are impacted by the R ds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q are given by; P loss = P conduction P switching P drive P output This can be expanded and approximated by; P loss = ( I 2 rms R ds(on ) ) I Q gd V in f I Q gs 2 V in f i g ( ) Q g V g f Q oss 2 V in f This simplified loss equation includes the terms Q gs2 and Q oss which are new to Power MOSFET data sheets. Q gs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q gs and Q gs2, can be seen from Fig 6. Q gs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I dmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in reducing switching losses in Q. Q oss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Q oss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance s C ds and C dg when multiplied by the power supply input buss voltage. i g Synchronous FET The power loss equation for Q2 is approximated by; * P loss = P conduction P drive P output ( ) P loss = I rms 2 R ds(on) ( ) Q g V g f Q oss 2 V f in Q V f rr in *dissipated primarily in Q. ( ) For the synchronous MOSFET Q2, R ds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q oss and reverse recovery charge Q rr both generate losses that are transfered to Q and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and V in. As Q turns on and off there is a rate of change of drain voltage dv/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current. The ratio of Q gd /Q gs must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Q oss Characteristic 8 www.irf.com

IRF895 SO-8 Package Outline(Mosfet & Fetky) Dimensions are shown in milimeters (inches) ' % ',0,&(6 0, 0$; 0,//,0(7(56 0, 0$; $ $ $ ( >@ $ E F ' ( H %$6,& %$6,& H %$6,& %$6,& ; H. / \ ƒ ƒ ƒ ƒ H $.[ƒ & \ ;E $ >@ ;/ ;F >@ & $ % 27(6 ',0(6,2,* 72/(5$&,*3(5$60(<0 &2752//,*',0(6,2,//,0(7(5 ',0(6,26$5(62:,,//,0(7(56>,&(6@ 287/,(&2)250672-('(&287/,(06$$ ',0(6,2'2(627,&/8'(02/'3527586,26 02/'3527586,262772(;&(('>@ ',0(6,2'2(627,&/8'(02/'3527586,26 02/'3527586,262772(;&(('>@ ',0(6,2,67(/(*72)/($')2562/'(5,*72 $68%675$7( >@ )22735,7 ;>@ ;>@ ;>@ SO-8 Part Marking Information (;$03/(7,6,6$,5)026)(7,7(5$7,2$/ 5(&7,),(5 /2*2 ) ;;;; '$7(&2'(<:: 3 ',6*$7(6/($')5(( 352'8&7237,2$/ < /$67',*,72)7(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$5780%(5 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 9

IRF895 SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 2.3 (.484 ).7 (.46 ) 8. (.38 ) 7.9 (.32 ) FEED DIRECTION NOTES:. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-48 & EIA-54. 330.00 (2.992) MAX. NOTES :. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-48 & EIA-54. 4.40 (.566 ) 2.40 (.488 ) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting T J = 25 C, L = 0.59mH, R G = 25Ω, I AS = 7.A. ƒ Pulse width 400µs; duty cycle 2%. When mounted on inch square copper board. R θ is measured at T J of approximately 90 C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (3) 252-75 TAC Fax: (3) 252-7903 Visit us at www.irf.com for sales contact information. 07/2008 www.irf.com