Obsolete Product(s) - Obsolete Product(s)

Similar documents
L6234. Three phase motor driver. Features. Description

L6201 L L6203 DMOS FULL BRIDGE DRIVER


L6205 DMOS DUAL FULL BRIDGE DRIVER

L9305A DUAL HIGH CURRENT RELAY DRIVER

ST755 ADJUSTABLE INVERTING NEGATIVE OUTPUT CURRENT MODE PWM REGULATORS

VNP35N07 "OMNIFET": FULLY AUTOPROTECTED POWER MOSFET

L4972A L4972AD 2A SWITCHING REGULATOR

L293D L293DD PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES. 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL 1.2A PEAK OUTPUT CURRENT (non repetitive)

HCF40107B DUAL 2-INPUT NAND BUFFER/DRIVER

. HIGH PERFORMANCE CLAMPING AT

L6571AD L6571BD HIGH VOLTAGE HALF BRIDGE DRIVER WITH OSCILLATOR

STSR30 SYNCHRONOUS RECTIFIER SMART DRIVER FOR FLYBACK

L6219DS STEPPER MOTOR DRIVER

L4963W L4963D 1.5A SWITCHING REGULATOR

Obsolete Product(s) - Obsolete Product(s)

TDA7231A 1.6W AUDIO AMPLIFIER OPERATING VOLTAGE 1.8 TO 15 V LOW QUIESCENT CURRENT HIGH POWER CAPABILITY LOW CROSSOVER DISTORTION SOFT CLIPPING

L2720/2/4 LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS

VNP49N04 OMNIFET : FULLY AUTOPROTECTED POWER MOSFET

STD10NF10 N-CHANNEL 100V Ω - 13A IPAK/DPAK LOW GATE CHARGE STripFET II POWER MOSFET

L165 3A POWER OPERATIONAL AMPLIFIER

L4975A 5A SWITCHING REGULATOR

STS7PF30L P-CHANNEL 30V Ω - 7ASO-8 STripFET II POWER MOSFET

L A POWER SWITCHING REGULATOR


L A POWER SWITCHING REGULATOR

Obsolete Product(s) - Obsolete Product(s)

-55 to 175 C T j ( ) Pulse width limited by safe operating area.

L6221. Quad Darlington switch. Features. Applications. Description

VNP49N04FI / VNB49N04 / VNV49N04

HCF4585B 4-BIT MAGNITUDE COMPARATOR

Obsolete Product(s) - Obsolete Product(s)

L482 HALL EFFECT PICKUP IGNITION CONTROLLER

L272 DUAL POWER OPERATIONAL AMPLIFIERS

PBL3717A STEPPER MOTOR DRIVER

STD12NF06L N-CHANNEL 60V Ω - 12A IPAK/DPAK STripFET II POWER MOSFET

STP55NF03L STB55NF03L STB55NF03L-1 N-CHANNEL 30V Ω - 55A TO-220/D 2 PAK/I 2 PAK STripFET II POWER MOSFET

NE556 SA556 - SE556 GENERAL PURPOSE DUAL BIPOLAR TIMERS

TDA7241B 20W BRIDGE AMPLIFIER FOR CAR RADIO

L9333 QUAD LOW SIDE DRIVER

TEA3717 STEPPER MOTOR DRIVER

LM138/LM238 LM338 THREE-TERMINAL 5 A ADJUSTABLE VOLTAGE REGULATORS

STS7PF30L P-CHANNEL 30V Ω - 7A - SO-8 STripFET II Power MOSFET General features Description Internal schematic diagram

L4620 LIQUID LEVEL ALARM. DRIVES DIRECTLY 300 ma ALARM LOAD PROGRAMMABLE INPUT POLARITY TO ACTIVATE THE OUTPUT STAGE PROGRAMMABLE DELAY TIME

HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)

STF12PF06 P-CHANNEL 60V Ω - 12A TO-220/TO-220FP STripFET II POWER MOSFET

TDA W AUDIO AMPLIFIER

DC LINE TERMINATION ACT DCT V-

ADJUSTABLE AND +3.3 V DUAL VOLTAGE REGULATOR WITH DISABLE AND RESET FUNCTIONS RESET DELAY CAPACITOR. September /12

L4964 HIGH CURRENT SWITCHING REGULATOR

MC1488 RS-232C QUAD LINE DRIVER

Obsolete Product(s) - Obsolete Product(s)

IRF540 N-CHANNEL 100V Ω - 22A TO-220 LOW GATE CHARGE STripFET II POWER MOSFET

n/a VNP7N04 7A POWER MOSFET TO-220 (RC)

STS5PF30L P-CHANNEL 30V Ω - 5A SO-8 STRIPFET POWER MOSFET

Obsolete Product(s) - Obsolete Product(s)

STS7NF60L N-CHANNEL 60V Ω - 7.5A SO-8 STripFET II POWER MOSFET

LDRxxyy VERY LOW DROP DUAL VOLTAGE REGULATOR

A HIGH EFFICIENCY, MIXED-TECHNOLOGY MOTOR DRIVER

HCF4041UB QUAD TRUE/COMPLEMENT BUFFER

HCF4072B DUAL 4 INPUT OR GATE

HCF4050B HEX BUFFER/CONVERTER (NON INVERTING)


STW20NB50. N - CHANNEL 500V Ω - 20A - TO-247 PowerMESH MOSFET

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s)

VNP28N04 "OMNIFET": FULLY AUTOPROTECTED POWER MOSFET

M74HC51TTR DUAL 2 WIDE 2 INPUT AND/OR INVERT GATE

STD20NF06L N-CHANNEL 60V Ω - 24A DPAK/IPAK STripFET II POWER MOSFET

STW9NC80Z N-CHANNEL 800V Ω - 9.4A TO-247 Zener-Protected PowerMESH III MOSFET

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s)

BZW06-5V8/376 BZW06-5V8B/376B

STD17NF03L N-CHANNEL 30V Ω - 17A - DPAK/IPAK STripFET POWER MOSFET

L293D L293DD PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES. 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL 1.2A PEAK OUTPUT CURRENT (non repetitive)

HCF4070B QUAD EXCLUSIVE OR GATE

STA501 40V 3.5A DOUBLE POWER HALF BRIDGE

IRFP460 N-CHANNEL 500V Ω A TO-247 PowerMesh II MOSFET

MJD122-1 / MJD122T4 MJD127-1 / MJD127T4 COMPLEMENTARY POWER DARLINGTON TRANSISTORS

74V1T07CTR SINGLE BUFFER (OPEN DRAIN)

STP80NF10 STB80NF10 N-CHANNEL 100V Ω - 80A - TO-220/D 2 PAK LOW GATE CHARGE STripFET II MOSFET

HCF4012B DUAL 4 INPUT NAND GATE

Obsolete Product(s) - Obsolete Product(s)

HCF4000B DUAL 3-INPUT NOR GATE PLUS INVERTER

L9686D AUTOMOTIVE DIRECTION INDICATOR

STB55NF06 STB55NF06-1 STP55NF06 STP55NF06FP

L6219 STEPPER MOTOR DRIVER

Symbol Parameter Value Unit. Maximum lead temperature for soldering during 10s at 5mm from case

N - CHANNEL 800V - 3Ω - 4A - TO-220/TO-220FP PowerMESH MOSFET 4 A 4 A. Symbol Parameter Value Unit

2N2219A 2N2222A HIGH SPEED SWITCHES

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s)

50V - 1.5A QUAD DARLINGTON SWITCHES

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s)

STD7NS20 STD7NS20-1 N-CHANNEL 200V Ω - 7A DPAK / IPAK MESH OVERLAY MOSFET

M74HC10TTR TRIPLE 3-INPUT NAND GATE

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s)

ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

Transcription:

DMOS DUAL FULL BRIDGE DRIVER SUPPLY VOLTAGE UP TO 48V R DS(ON) 1.2Ω L6204 (25 C) CROSS CONDUCTION PROTECTION THERMAL SHUTDOWN 0.5A DC CURRENT TTL/CMOS COMPATIBLE DRIVER HIGH EFFICIENCY CHOPPING MULTIPOWER BCD TECHNOLOGY DESCRIPTION The L6204 is a dual full bridge driver for motor control applications realized in BCD technology which combines isolated DMOS power transistors with CMOS and Bipolar circuits on the same chip. By using mixed technology it has been possible to optimize the logic circuitry and the power stage to achieve the best possible performance. The logic inputs are TTL/CMOS compatible. Both channels are controlled by a separate Enable. BLOCK DIAGRAM VBOOT Vs1 OUT 1 OUT 2 MULTOPOWER BCD TECHNOLOGY Powerdip 16+2+2 SO 24+2+2 ORDERING NUMBERS: L6204 L6204D Each bridge has a sense resistor to control the currenrt level. The L6204 is mounted in an 20-lead Powerdip and SO 24+2+2 packages and the four center pins are used to conduct heat to the PCB. At normal operating temperatures no external heatsink is required. Vs2 OUT 3 OUT 4 IN1 IN4 ENABLE 1 IN2 ENABLE 2 IN3 BOOTSTRAP OSCILLATOR CHARGE PUMP THERMAL SHUT DOWN SENSE 1 SENSE 2 July 2003 1/12

PIN CONNECTIONS SENS1 IN1 ENABLE1 OUT1 OUT3 ENABLE2 IN3 SENSE2 PIN DESCRIPTION 1 2 3 20 19 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 DIP20 DIP16+2+2 VBOOT IN2 OUT2 Vs1 Vs2 OUT4 IN4 VCP SENSE1 IN1 ENABLE1 SO DIP Pin Pin (*) Symbols Functions 1 1 SENSE 1 Sense resistor to provide the feedback for motor current control of the bridge A 2 2 IN1 Digital input from the motor controller (bridge A) 3 3 ENABLE 1 A logic level low on this pin disable the bridge A 6 4 OUT 1 Output of one half bridge of the bridge A 7 5 Common Power Ground 8 6 Common Power Ground 9 7 OUT 3 Ouput of one half bridge of the bridge B 12 8 ENABLE 2 A logic level low on this pin disable the bridge B 13 9 IN 3 Digital input from the motor controller (bridge B) 14 10 SENSE 2 Sense resistor to provide the feedback for motor current control of the bridge B 15 11 BOOSTRAP OSC. VCP Oscillator output for the external charge pump 16 12 IN 4 Digital input from the motor controller (bridge B) 17 13 OUT 4 Output of one half bridge of the bridge B 20 14 V S 2 Supply voltage bridge B 21 15 Common Power Ground 22 16 Common Power Ground 23 17 V S 1 Supply Voltage bridge A 26 18 OUT 2 Output of one half bridge of the bridge A 27 19 IN 2 Digital input from the motor controller (bridge A) 28 20 VBOOT Overvoltage input for driving of the upper DMOS (*) For SO package the pins 4, 5, 10, 11, 18, 19, 24 and 25 are not connected. OUT1 OUT3 ENABLE2 IN3 SENSE2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SO24+2+2 SO24+2+2 28 27 26 25 24 23 22 21 20 19 18 17 16 15 VBOOT IN2 OUT2 VS1 VS2 OUT4 IN4 VCP 2/12

ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit V S Supply Voltage 50 V V IN, V EN Input or Enable Voltage Range -0.3 to +7 V I o Pulsed Output Current 3 A V SENSE Sensing Voltage -1 to 4 V V BOOT Bootstrap Supply 60 V P tot Total power dissipation: (T pins = 80 C) (T amb = 70 C no copper area on PCB) (T amb = 70 C 8cm 2 copper area on PCB) 5 1.23 2 W W W T stg, T j Storage and Junction Temperature -40 to 150 C THERMAL DATA Symbol Parameter SO DIP Unit R th j-pins Thermal Resistance Junction-pins Max 16 14 C/W R th j-amb Thermal Resistance Junction-ambient Max 73 65 C/W ELECTRICAL CHARACTERISTCS Symbol Parameter Test Condition Min. Typ. Max. Unit V S Supply Voltage 12 48 V I S Total Quiescent Current EN1=EN2=H; IN1=IN2=IN3=IN4=L EN1 = EN2 = L 10 10 ma ma f C Commutation Frequency 20 KHz T J Thermal Shutdown 150 C T d Dead Time Protection 500 ns TRANSISTORS I DSS Leakage Current OFF 1 ma R DS On Resistance ON 1.2 Ω LOGIC LEVELS V INL, V ENL Input Low Voltage -0.3 0.8 V V INH, V ENH Input High Voltage 2 7 V I INL, I ENL Input Low Current IN1 = IN2 = IN3 = IN4 = EN1 = EN2 = L -10 µa I INH, I ENH Input High Current IN1 = IN2 = IN3 = IN4 = EN1 = EN2 = H 50 µa 3/12

APPLICATION DIAGRAM A STEPPER MOTOR Vs C1 D1 Vs1 OUT1 OUT2 B Vs2 OUT3 OUT4 VBOOT CIRCUIT DESCRIPTION L6204 is a dual full bridge IC designed to drive DC motors, stepper motors and other inductive loads. Each bridge has 4 power DMOS transistor with R DSon = 1.2Ω and the relative protection and control circuitry. (see fig. 3) The 4 half bridges can be controlled independently by means of the 4 inputs IN!, IN2, IN3, IN4 and 2 enable inputs ENABLE1 and ENABLE2. External connections are provided so that sensing resistors can be added for constant current chopper applications. LOGIC DRIVE (*) EN1=EN2=H D2 IN1 ENABLE1 IN2 C2 L = Low H = High X = Don t care (*) True table for the two full bridges BOOTSTRAP OSCILLATOR INPUTS CHARGE PUMP IN1 IN3 SENSE1 SENSE1 RS1 IN2 IN4 THERMAL SHUT DOWN L L Sink 1, Sink 2 L H Sink 1, Source 2 H L Source 1, Sink 2 H H Source 1, Source 2 EN1=EN2=L X X All transistor turned OFF SENSE2 SENSE2 RS2 OUTPUT MOSFETS IN4 ENABLE 2 IN3 4/12

CROSS CONDUCTION Although the device guarantees the absence of cross-conduction, the presence of the intrinsic diodes in the POWER DMOS structure causes the generation of current spikes on the sensing terminals. This is due to charge-discharge phenomena in the capacitors C1 & C2 associated with the drain source junctions (fig. 1). When the output switches from high to low, a current spike is generated associated with the capacitor C1. On the low-to-high transition a spike of the same polarity is generated by C2, preceded by a spike of the opposite polarity due to the charging of the input capacity of the lower POWER DMOS transistor (see fig. 2). Figure 1. Intrinsic Structures in the POWER MOS Transistors Figure 2. Current Typical Spikes on the Sensing Pin 5/12

TRANSISTOR OPERATION ON STATE When one of the POWER DMOS transistors is ON it can be considered as a resistor R DS(ON) = 1.2Ω at a junction temperature of 25 C. In this condition the dissipated power is given by : 2 P ON = R DS(ON) I DS The low R DS(ON) of the Multipower-BCD process can provide high currents with low power dissipation. OFF STATE When one of the POWER DMOS transistor is OFF the VDS voltage is equal to the supply voltage and only the leakage current IDSS flows. The power dissipation during this period is given by : P OFF = V S I DSS TRANSITIONS Like all MOS power transistors the DMOS POWER transistors have as intrinsic diode between their source and drain that can operate as a fast freewheeling diode in switched mode applications. During recirculation with the ENABLE input high, the voltage drop across the transistor is RDS(ON). ID and when the voltage reaches the diode voltage it is clamped to its characteristic. When the ENABLE input is low, the POWER MOS is OFF and the diode carries all of the recirculation current. The power dissipated in the transitional times in the cycle depends upon the voltage and current waveforms in the application. P trans = I DS (t) V DS (t) BOOTSTRAP CAPACITORS To ensure the correct driving of high side drivers a voltage higher than V S is supplied on pin 20 (V boot ). This bootstrap voltage is not needed for the lower power DMOS transistor because their sources are grounded. To produce this voltage a charge pump method is used and made by two external capacitors and two diodes. It can supply the 4 driving blocks of the high side drivers. Using an external capacitor the turn-on speed of the high side driver is very high; furthermore with different capacitance values it is possible to adapt the device to different switching frequencies. It is also possible to operate two or more L6204s using only 2 diodes and 2 capacitance for all the ICs; all the Vboot pins are connected to the Cstore capacitance while the pin 11 (VCP) of just one L6204 is connect to C pump, obviously all the L6204 ICs have to be connected to the same V S. (see fig. 6) Figure 3. Two Phase Chopping IN1 = H IN2 = L EN1 = H IN1 = L IN2 = H EN1 = H 6/12

Figure 4. One Phase Chopping IN1 = H IN2 = L EN1 = H Figure 5. Enable Chopping IN1 = H IN2 = L EN1 = H Figure 6. IN1 = H IN2 = H EN1 = H IN1 = X IN2 = X EN1 = L DEAD TIME To protect the device against simultaneous conduction in both arms of the bridge and the resulting rail-torail short, the logic circuits provide a dead time. THERMAL PROTECTION A thermal protection circuit has been included that will disable the device if the junction temperature reaches 150 C. When the temperature has fallen to a safe level the device restarts under the control of the input and enable signals. 7/12

APPLICATION INFORMATION RECIRCULATION During recirculation with the ENABLE input high, the voltage drop across the transistor is R DS(ON). I L for voltages less than 0.7 V and is clamped at a voltage depending on the characteristics of the source-drain diode for greater voltages. Although the device is protected against cross conduction, current spikes can appear on the current sense pin due to charge/discharge phenomena in the intrinsic source drain capacitances. In the application this does not cause any problems because the voltage created across the sense resistor is usually much less than the peak value, although a small RC filter can be added if necessary. POWER DISSIPATION (each bridge) In order to achieve the high performance provided by the L6204 some attention must be paid to ensure that it has an adequate PCB area to dissipate the heat. The first stage of any thermal design is to calculate the dissipated power in the appl ication, for this example the half step operation shown in figure 7 is considered. RISE TIME T r When an arm of the half bridge is turned on current begins to flow in the inductive load until the maximum current I L is reached after a time T r. The dissipated energy E OFF/ON is in this case : E OFF/ON = [R DS(ON) I L2 T r ] 2/3 Figure 7. ON TIME T ON During this time the energy dissipated is due to the ON resistance of the transistors E ON and the commutation E COM. As two of the POWER DMOS transistors are ON E ON is given by : E ON = I 2 L R DS(ON) 2 T ON In the commutation the energy dissipated is : E COM = V S I L T COM f SWITCH T ON Where : T COM = Commutation Time and it is assumed that ; T COM = T TURN-ON = T TURN-OFF = 100 ns f SWITCH = Chopper frequency 8/12

FALL TIME T f For this example it is assumed that the energy dissipated in this part of the cycle takes the same form as that shown for the rise time : E ON/OFF = [R DS(ON) I L T f ] 2/3 QUIESCENT ENERGY The last contribution to the energy dissipation is due to the quiescent supply current and is given by : E QUIESCENT = I QUIESCENT V S T TOTAL ENERGY PER CYCLE E TOT = (E OFF/ON + E ON + E COM + E ON/OFF ) bridge 1 + (E OFF/ON + E ON + E COM + E ON/OFF )bridge 2 + + E QUIESCENT The Total Power Dissipation PDIS is simply : P DIS = E TOT /T T r = Rise time T ON = ON time T f = Fall Time T d = Dead time T = Period T = T r + T ON + T f + T d 9/12

DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. OUTLINE AND MECHANICAL DATA a1 0.51 0.020 B 0.85 1.40 0.033 0.055 b 0.50 0.020 b1 0.38 0.50 0.015 0.020 D 24.80 0.976 E 8.80 0.346 e 2.54 0.100 e3 22.86 0.900 F 7.10 0.280 I 5.10 0.201 L 3.30 0.130 Z 1.27 0.050 Powerdip 20 10/12

DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. OUTLINE AND MECHANICAL DATA A 2.65 0.104 a1 0.1 0.3 0.004 0.012 b 0.35 0.49 0.014 0.019 b1 0.23 0.32 0.009 0.013 C 0.5 0.020 c1 45 (typ.) D 17.7 18.1 0.697 0.713 E 10 10.65 0.394 0.419 e 1.27 0.050 e3 16.51 0.65 F 7.4 7.6 0.291 0.299 L 0.4 1.27 0.016 0.050 S 8 (max.) SO28 11/12

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. STMicroelectronics acknowledges the trademarks of all companies referred to in this document. The ST logo is a registered trademark of STMicroelectronics 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com 12/12