Werner Bächtold (Prof. em.) and Alexander Megej

Similar documents
MMA RECEIVERS: HFET AMPLIFIERS

of-the-art Terahertz astronomy detectors Dr. Ir. Gert de Lange

mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher

CHA2395 RoHS COMPLIANT

A Low Noise GHz Amplifier

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

techniques, and gold metalization in the fabrication of this device.

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

Silicon Bipolar High f T Low Noise Medium Power 12 Volt Transistors

Development of Local Oscillators for CASIMIR

A New Microwave One Port Transistor Amplifier with High Performance for L- Band Operation

Cloud Radar LNA/Downconverter FINAL SUMMARY REPORT

AM Noise in Drivers for Frequency Multiplied Local Oscillators

ALMA Memo 436. Band 6 Receiver Noise Measurements using a Pre- Prototype YIG-Tunable LO

A GHz MICROWAVE UP CONVERSION MIXERS USING THE CONCEPTS OF DISTRIBUTED AND DOUBLE BALANCED MIXING FOR OBTAINING LO AND RF (LSB) REJECTION

Smiths Microwave Product Overview May, 2016

Capacitive-Division Traveling-Wave Amplifier with 340 GHz Gain-Bandwidth Product

Datasheet SHF 100 BPP

T/R Modules. Version 1.0

Continuous Wave SSPAs. Version 1.6

37-40GHz MMIC Sub-Harmonically Pumped Image Rejection Diode Mixer

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology

CUSTOM INTEGRATED ASSEMBLIES

Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p.

HA Quad, 3.5MHz, Operational Amplifier. Description. Features. Applications. Ordering Information. Pinouts. November 1996

CHA2098b RoHS COMPLIANT

OMMIC Innovating with III-V s OMMIC OMMIC

Influence of Temperature Variations on the Stability of a Submm Wave Receiver

Advanced Regulating Pulse Width Modulators

PRELIMINARY DATASHEET

The Doherty Power Amplifier 1936 to the Present Day

Product Datasheet Revision: April Applications

Dual-Frequency GNSS Front-End ASIC Design

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder

8.5 GHz to 13.5 GHz, GaAs, MMIC, I/Q Mixer HMC521ALC4

LM2900 LM3900 LM3301 Quad Amplifiers

Thales UK Designs GaN MMIC/Packaging for EU MAGNUS Program Using NI AWR Software

it to 18 GHz, 2-W Amplifier

AMPLIFIER/DOUBLER/AMPLIFIER

RF & Microwave Power Amplifiers

Microwave Office Application Note

CHA5294 RoHS COMPLIANT

Up to 6 GHz Medium Power Silicon Bipolar Transistor. Technical Data AT Plastic Package

Please call sales office for

CHA2095a RoHS COMPLIANT

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

Advanced Regulating Pulse Width Modulators

Advanced Regulating Pulse Width Modulators

20-43 GHz Double-Balanced Mixer and LO-Amplifier

LM3046 Transistor Array

6-18 GHz MMIC Drive and Power Amplifiers

AMPLIFIERS, ANTENNAS, MULTIPLIERS, SOURCES, WAVEGUIDE PRODUCTS MILLIMETER-WAVE COMPONENTS FERRITE PRODUCTS AND SUB-SYSTEMS

HMMC-1002 DC 50 GHz Variable Attenuator. Data Sheet

Wide-Band Two-Stage GaAs LNA for Radio Astronomy

SHF Communication Technologies AG

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

RF/Microwave Circuits I. Introduction Fall 2003

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

Surface Mount Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41411

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

A 2.4GHz Cascode CMOS Low Noise Amplifier

LOW NOISE L TO K-BAND GaAs MESFET SYMBOLS PARAMETERS AND CONDITIONS UNITS MIN TYP MAX NFOPT 1

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Features. Description. 100 mil Package. High Output Power:

GaN MMIC PAs for MMW Applicaitons

CHA2159 RoHS COMPLIANT

Including the proper parasitics in a nonlinear

Low Power RF Transceivers

ULTRA LOW NOISE PSEUDOMORPHIC HJ FET

MPT, Inc. The Right Solution With A Lower Risk At The Right Time.

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter HMC815B

A 600 GHz Varactor Doubler using CMOS 65nm process

DISCONTINUED V NE C TO X BAND N-CHANNEL GaAs MESFET. California Eastern Laboratories. PACKAGE DIMENSIONS (Units in mm) DESCRIPTION

ARL-TN-0743 MAR US Army Research Laboratory

WIDEBAND IQ DEMODULATOR FOR DIGITAL RECEIVERS VCC (IFQ) VCC (RF)

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4

CHA3093c RoHS COMPLIANT

CHR3364-QEG RoHS COMPLIANT

Methodology for MMIC Layout Design

20 40 GHz Amplifier. Technical Data HMMC-5040

The HIFI Focal Plane Unit

Full H-band Waveguide-to-Coupled Microstrip Transition Using Dipole Antenna with Directors

Recent ETHZ-YEBES Developments in Low-Noise phemts for Cryogenic Amplifiers

30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected Power-combining

CHA2293 RoHS COMPLIANT

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

Design of a Broadband HEMT Mixer for UWB Applications

4 GHz to 8.5 GHz, GaAs, MMIC, I/Q Mixer HMC525ALC4

DATA SHEET. Embossed tape, 8 mm wide, pin No. 3 (collector) facing the perforation

ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering Code Pin Configuration Package

RFM XR. 2-30MHz 500W Class AB Linear Amplifier. Maximum Ratings Operation beyond these ratings will void warranty.

Xin Dai, ECE 545 Introductory Microwave Networks and Components. Final Report

Design A Distributed Amplifier System Using -Filtering Structure

A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology

Integration Techniques for MMICs and Chip Devices in LTCC Multichip Modules for Radio Frequencies

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator

Silicon Bipolar Low Noise Microwave Transistors

DATA SHEET. BGA2771 MMIC wideband amplifier DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2001 Oct Aug 06.

DATA SHEET. BGA2776 MMIC wideband amplifier DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2001 Oct Aug 06.

Microwave Office Application Note

THE ARO 1.3mm IMAGE-SEPARATING MIXER RECEIVER SYSTEM. Revision 1.0

Transcription:

Werner Bächtold (Prof. em.) and Alexander Megej Laboratory for Electromagnetic Fields and Microwave Electronics, ETH Zürich Introduction: the HIFI-Receiver System The IF-2 Amplifier System The InP HEMT: a low noise microwave amplifier device Cryo-cooled amplifier From the (academic) prototype to the (industrial) flight model Conclusions Laboratory for Electromagnetic Fields and Microwave Electronics 1

IF-2: a part in the Herschel HIFI Receiver Chain 2

HIFI System Design: SRON Netherlands Institute for Space Research HIFI Dual IF System - one polarization (Identical diagram for the orthogonal polarization). 2 K level 4 K level 15 K level 290 K (SVM) mixer & isolator IF-1 amplifier level trimming IF-2 assembly cryoharness IF up-converter warm harness Spectrometers 2.4-4.8 GHz IF 6H 6L IF gain: -1 db 29 db -3 db +30 db -6 db 2.4-4.8 GHz -16 db -3 db -2 db 10.4 GHz 8-5.6 GHz 5 HRS-V 4 4-8 GHz IF 3 2 1 IF gain: min. level: -1 db 25 db -128 dbm/mhz -5 db (+31 db) (-10 db) -108 dbm/mhz +21 db IF-2-Box: 14 amplifiers+ -8 db signal -85 dbm/mhzcombiners -95 dbm/mhz -3 db -2 db WBS-V -100 dbm/mhz 3

HIFI Receiver: Gain and Noise (Channel 1; 480 640 GHz) 2 K 4 K 15 K 290 K Signal from Space Mixer Circulator IF-1 IF-2 Combiners Local Oscillator -80 dbm/mhz -100-120 input Minimum Signal Level Mixer loss: 18 db IF-1 gain IF-2 gain Combiner loss kt O -140 Noise Temperature : T N = 100 K T N = 600 K 4

HIFI IF-2 Assembly - one polarization N. D. Whyborn, 2.4-4.8 GHz IF +30 db Two amplifier types: 4-8 GHz IF Bands 1 5 (4 8 GHz) Bands 6H&L (2.4 4.8 GHz) (+32 db) (-10 db) +22 db (Identical diagram for the orthogonal polarization) 5

Amplifier Specifications: Comment/Challenge Octave Bandwidths: 2.4 4.8 + (ultimate bandwidth and 4 8 GHz for hybrid technology) Power Gain: 32 db 0 (3 stage ampl.) Operation at T = 15K 0 (III/V devices requ.) Low noise temperature: < 50K 0 (HEMTs requ.) Input return loss: > 10 db, + (large bandwidth) Output return loss: > 10 db + (large bandwidth) Power dissipation 6 mw 0 (HEMTs requ.) +: challenging 0: manageable -: no problem) 6

Required semiconductor amplifier device: Low noise low power high gain - small input/output capacitance InP-HEMT (high electron mobility transistor) (World wide one space qualified device: TRW CRYO7) 7

InP HEMT: A Field-Effect Transistor for the mm- Wave Range InGaAs/InAlAs HEMT on InP Key Parameter: Gate-Length: 0.2 µm 0.1 µm. Max. Oscillation Frequency f max : 200 GHz 300 GHz InP Source Gate Drain Gate voltage controls electron current in GaInAs-channel from source to drain 8

HEMT Noise Properties The InP HEMT shows best microwave noise performance of all semiconductor devices. The HEMT noise sources are mostly thermal noise sources. the HEMT noise temperature scales with ambient temperature Typical: HEMT operating temperature 300 K 15 K HEMT noise temperature 60 K 6 K at f = 6 GHz Cryo-cooled InP HEMT microwave amplifiers are world champions in noise temperatures 9

Amplifier Design and Manufacturing: Hybrid technology (MIC) (Monolithic would be preferable no space qualified process available) Complex mounting and bonding technology for HEMTs, line elements, passive lumped devices 10

IF-2 Development 1999 2000 2001 2002 2003 2004 2005 2006 Year ETH Industry Ampl. Predevelopment Final Design Manufacturing Delivery of IF-2 Flight Model (Oct. 2005) 11

Transfer to the Industry Prime Contractor, management product assurance, measurements: Mechanical construction: Electronics: Low temperature microwave measurements: Development of the amplifiers at the ETH prior to selection of the industrial partner no info available of space qualified mounting and bonding processes of the industry Significant and time consuming modifications and adaptations: Mounting and bonding processes for passive devices and HEMTs 12

IF-2 Amplifier Box 2 x 7 Inputs 2 x 7 Amplifiers Output combiner network 13

38 IF-2 2.4 4.8 GHz Amplifier 28 Gain, G / db 36 34 32 30 28 26 24 22 20 18 J106 J107 J113 J114 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,2 26 24 22 20 18 16 14 12 10 8 Noise Temperature (uncorr.), T n / K Frequency, f / GHz 14

Gain, G / db 40 38 36 34 32 30 28 26 24 22 20 IF-2 4-8 GHz Amplifier J101 J102 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5J103 9,0 J104 J105 Frequency, f / GHz 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 J108 J109 J110 J111 J112 15 10 Noise Temperature (uncorr.), T n / K

Summary of Measurements 2.4 4.8 GHz Ampl. 4 8 GHz Ampl. Power Gain 31-35 33 36 db Gain Ripple ± 1 ±1.2 db Input Reflection < -8 < -8 db Output Reflection < - 10 < -10 db Mean Noise Temp 13 (uncorrected) 17 (uncorrected) K Power Consumption <6 < 6 mw/ampl. 16

Conclusions A University Lab can design but cannot manufacture a space qualified device. The specifications for a system like HIFI are moving targets. The design takes longer (much longer) than expected. The cooperation with the industry was smooth, but required more time than expected. Our thanks go to 17