PS21A79 MAIN FUNCTION AND RATINGS 3 phase inverter with N-side open emitter structure 600V / 50A (CSTBT)

Similar documents
PS22A78-E Transfer-Mold Type Insulated Type

< Dual-In-Line Package Intelligent Power Module > PSS25SA2FT TRANSFER MOLDING TYPE INSULATED TYPE

PS22A74. < Dual-In-Line Package Intelligent Power Module > Publication Date : January 2012 TRANSFER MOLDING TYPE INSULATED TYPE

SLIMDIP-L TRANSFER MOLDING TYPE INSULATED TYPE

PSS10S72FT TRANSFER MOLDING TYPE INSULATED TYPE

Applied between V UFB -V UFS, V VFB -V VFS,V WFB -V WFS. Applied between U P,V P,W P -V PC, U N,V N,W N -V NC

PSS15S92F6-AG PSS15S92E6-AG TRANSFER MOLDING TYPE INSULATED TYPE

PSS15MC1FT TRANSFER MOLDING TYPE INSULATED TYPE

PSS25NC1FT TRANSFER MOLDING TYPE INSULATED TYPE

PSM03S93E5-A TRANSFER MOLDING TYPE INSULATED TYPE

PSS20S51F6 / PSS20S51F6-C TRANSFER MOLDING TYPE INSULATED TYPE

APPLICATION AC100V~200V three-phase inverter drive for small power motor control (1.96) 17.7 (3.5) 35.9 ±0.5 (5.5)

N 36 NU 37 W 38 V 39 U 40 P 41 U 42 V

Mitsubishi Semiconductors <Dual-In-Line Package Intelligent Power Module> PS21865 Transfer-Mold Type Insulated Type

Application Note Mitsubishi Semiconductors <Dual-In-Line Package Intelligent Power Module> PS21867 Transfer-Mold Type Insulated Type

PS21562-SP PS21562-SP. APPLICATION AC100V~200V inverter drive for small power motor control. PS21562-SP

APPLICATION AC100V~200V three-phase inverter drive for small power motor control (1.96) 17.7 (12.78) (3.5) 35.9 ±0.5 (5.5) (13.5)

C L DETAIL "B" TERMINAL CODE 1 (VNC) 2 VUFB 3 VVFB 4 VWFB 5 UP 6 VP 7 WP 8 VP1 9 VNC* 10 UN 11 VN 12 WN 13 VN1 HEATSINK SIDE

PS21963-S Intellimod Module Dual-In-Line Intelligent Power Module 10 Amperes/600 Volts

PS S Intellimod Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts

PS21265-P PS21265-AP Intellimod Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts

PS21867-P. Intellimod Module Dual-In-Line Intelligent Power Module 30 Amperes/600 Volts

AB (2 PLACES) 30 NC 31 P 33 V 34 W

PS , PS A, PS C Intellimod Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts

PS21353-GP. Intellimod Module Dual-In-Line Intelligent Power Module 10 Amperes/600 Volts

PS , PS A, PS C Intellimod Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts

N P HEATSINK SIDE 25 UN 26 VUFB 27 UP 30 NC 31 NC 32 NC 33 NC 34 NC 35 NC 28 U(VUFS) 29 NC

PS21562-P. Intellimod Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts

APPLICATION AC100V~200V three-phase inverter drive for small power motor control. (2.2) 21.4 ±0.5 (10) (11) (10) (4.65) (2.9) 34.9 ± ±0.5 (1.

PS21661-RZ/FR PS21661-FR. APPLICATION AC100V~200V, three-phase inverter drive for small power motor control.

< IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE APPLICATION

MITSUBISHI INTELLIGENT POWER MODULES PM800HSA060 FLAT-BASE TYPE INSULATED PACKAGE

PS21265-P/AP TRANSFER-MOLD TYPE TYPE INSULATED TYPE TYPE

PS21767 Intellimod Module Dual-In-Line Intelligent Power Module 30 Amperes/600 Volts

< IGBT MODULES > CM50MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE APPLICATION

CM1800HCB-34N. <High Voltage Insulated Gate Bipolar Transistor:HVIGBT >

PS21963-ET/-AET/-CET/-ETW TRANSFER-MOLD TYPE INSULATED TYPE

FBA42060 PFC SPM 45 Series for Single-Phase Boost PFC

PS11035 Intellimod Module Application Specific IPM 20 Amperes/600 Volts

TYPE INSULATED MAIN FUNCTION OUTLINE. Brake circuit RATING APPLICATION INTEGRATED. protection (UV), supply) fault (N-side. File E P1 (1)

PS , PS A, PS C Intellimod Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts

FSBB30CH60DF. Motion SPM 3 Series. FSBB30CH60DF Motion SPM 3 Series. Features. General Description. Applications.

LDIP- IPM IM (Preliminary)

FSBB10CH120D Motion SPM 3 Series

PS11036 Intellimod Module Application Specific IPM 30 Amperes/600 Volts

PS21869-P/AP PS21869-P/AP. APPLICATION AC100V~200V inverter drive for small power motor control. PS21869

Y Y D T SQ PIN (10 PLS) L N TERMINAL CODE 5 : FNO 4 : VNC N 3 : CN1 2 : NC 1 : VN1 5 : FPO 4 : VPC P 3 : CP1 2 : NC 1 : VP1. FWDi IGBT C2E1.

<Intelligent Power Modules> PM100CG1A065/PM100CG1AL065

AIM5C05B060N1 Dual-In-Line Package Intelligent Power Module

U P V VPI VFO WFO UP UFO V VPC GND GND

U P V VPI VFO R (2 TYP.) WFO UP UFO V VPC GND GND

VLA574-01R V I + V CC DETECT C trip V O V I - F O C S V EE TIMER & RESET LATCH DETECT. 1kΩ INTERFACE UVL 240Ω GATE SHUT DOWN BLOCK DIAGRAM DESCRIPTION

Smart Pack Electric Co., Ltd <Intelligent Power Module> SPE10S60F-A TRANSFER-MOLD TYPE FULL PACK TYPE

FPDB40PH60B PFC SPM 3 Series for 2-Phase Bridgeless PFC

<Intelligent Power Modules> PM50RG1A065

FPAM30LH60 PFC SPM 2 Series for 2-Phase Interleaved PFC

FNA V Motion SPM 2 Series. FNA V Motion SPM 2 Series. Features. General Description. Applications.

AIM5D05B060M1S. Dual-In-Line Package Intelligent Power Module. Features. External View. Applications. Internal Equivalent Circuit / Pin Configuration

PS21965, PS21965-A, PS21965-C Intellimod Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts

FPDB30PH60 PFC SPM 3 Series for 2-Phase Bridgeless PFC

PM300DSA060 Intellimod Module Single Phase IGBT Inverter Output 300 Amperes/600 Volts

FSBS3CH60 Motion SPM 3 Series Features

T - 4 TYP. XØ (2 PLACES) W SQ. PIN (10 PLACES) TERMINAL CODE 1. VN1 2. SNR 3. CN1 4. VNC 5. FNO VP1 RFO AMP E2 C2E1 C1

<Dual-In-Line Package Intelligent Power Module> 1200V LARGE DIPIPM Ver.4 Series APPLICATION NOTE PS22A7. Table of contents

APPLICATION AC100V~200V three-phase inverter drive for small power motor control. (3.556) (1) TERMINAL (0.5) (6.5) (10.5) (1.5) (1.

FSAM30SH60A Motion SPM 2 Series

<Dual-In-Line Package Intelligent Power Module> Super mini DIPIPM Ver.6 Series APPLICATION NOTE PSS**S92E6-AG/ PSS**S92F6-AG.

CHAPTER 1 : INTRODUCTION...

APPLICATION AC100V~200V three-phase inverter drive for small power motor control. (2.2) 21.4 ±0.5 (10) (11) (10) (4.65) (2.9) 34.9 ± ±0.5 (1.

FPAB30BH60B PFC SPM 3 Series for Single-Phase Boost PFC

Smart Pack Electric Co., Ltd <Intelligent Power Module> SPE05M50F-A TRANSFER-MOLD TYPE FULL PACK TYPE

FPAB30BH60 PFC SPM 3 Series for Single-Phase Boost PFC

U (2 TYP.) T WFO VUPC IN F O GND GND OUT OT OUT OT S I

PS22053 PS APPLICATION AC400V 0.2kW~0.75kW inverter drive for small power motor control. PS22053

IGBT Gate Drive Unit VLA598-11R

PM50CLA120. APPLICATION General purpose inverter, servo drives and other motor controls PM50CLA120 FEATURE MITSUBISHI <INTELLIGENT POWER MODULES>

PM30CSJ060 Intellimod Module Three Phase IGBT Inverter Output 30 Amperes/600 Volts

<TRANSISTOR ARRAY> M54562FP 8-UNIT 500mA DARLINGTON TRANSISTOR ARRAY WITH CLAMP DIODE SOURCE TYPE

page.1 IGBT Gate Drive Unit Apr.07, 09

V VPI V (14 TYP.) VFO R (2 TYP.) WFO UP UFO V VPC GND GND GND GND GND GND VCC

TYP K "T" (4 TYP) TYP TYP UP UFO V VPI GND GND GND GND IN V CC OUT S I

FSB44104A Motion SPM 45 LV Series

FSBF15CH60BT. Motion SPM 3 Series. FSBF15CH60BT Motion SPM 3 Series. Features. General Description. Applications.

(0~3 ) HEAT SINK SIDE (3.5) (6.5) (1.5) (0.4) (0.5) (1) (45 ) (30 ) (15 )

V VPC V FO V WPI W FO W UP UFO V VPI GND GND GND GND V CC OUT OUT. Dimensions Inches Millimeters L

PM25CLA120. APPLICATION General purpose inverter, servo drives and other motor controls PM25CLA120 MITSUBISHI <INTELLIGENT POWER MODULES>

VLA542-01R. 3,7,9,10 pin : Non connection DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM HYBRID IC. Hybrid IC for driving IGBT modules

APPLICATION AC100V~200V three-phase inverter drive for small power motor control. TERMINAL (3.556) (1) (0.5) (6.5) (10.5) (1.5) DUMMY PIN.

IGBT Gate Drive Unit VLA598-01R

SLLIMM small low-loss intelligent molded module IPM, 3-phase inverter - 15 A, 600 V short-circuit rugged IGBT. Description. Table 1.

PRELIMINARY DRIVER FOR IGBT MODULES

PM75DSA120 Intellimod Module Single Phase IGBT Inverter Output 75 Amperes/1200 Volts

PM200CVA060 PM200CVA060. APPLICATION General purpose inverter, servo drives and other motor controls LABEL PM200CVA060

PM75CL1A120 FLAT-BASE TYPE INSULATED PACKAGE

Description of Terminal Symbols and Terminology

RT3DKAM DKA ISAHAYA ELECTRONICS CORPORATION SMALL-SIGNAL DIODE

PM25RSB120 Intellimod Module Three Phase + Brake IGBT Inverter Output 25 Amperes/1200 Volts

PM150RLB060. APPLICATION General purpose inverter, servo drives and other motor controls PM150RLB060.

Motion-SPM FPAB30BH60B. Smart Power Module(SPM ) for Front-End Rectifier. General Description. Features. Applications. April Fig. 1.

PM50CSE120 FLAT-BASE TYPE TYPE INSULATED PACKAGE

Transcription:

MAIN FUNCTION AND RATINGS 3 phase inverter with N-side open emitter structure 600V / 50A (CSTBT) APPLICATION AC100 ~ 200Vrms class, motor control INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS For P-side : Drive circuit, High voltage high-speed level shifting, Control supply under-voltage (UV) protection For N-side : Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC), Fault signaling : Corresponding to SC fault (N-side IGBT), UV fault (N-side supply) Temperature monitoring : Analog output of LVIC temperature Input interface : 3, 5V line, Schmitt trigger receiver circuit (High Active) UL Approved : File No. E80276 MAXIMUM RATINGS (T j = 25 C, unless otherwise noted) INVERTER PART Symbol Parameter Condition Ratings Unit V CC Supply voltage Applied between P-NU,NV,NW 450 V V CC(surge) Supply voltage (surge) Applied between P-NU,NV,NW 500 V V CES Collector-emitter voltage 600 V ±I C Each IGBT collector current T C = 25 C 50 A ±I CP Each IGBT collector current (peak) T C = 25 C, less than 1ms 100 A P C Collector dissipation T C = 25 C, per 1 chip 142 W T j Junction temperature -20~+150 C CONTROL (PROTECTION) PART Symbol Parameter Condition Ratings Unit V D Control supply voltage Applied between V P1 -V PC, V N1 -V NC 20 V V DB Control supply voltage Applied between V UFB -V UFS, V VFB -V VFS, V WFB -V WFS 20 V V IN Input voltage Applied between U P, V P, W P -V PC, U N, V N, W N -V NC -0.5~V D +0.5 V V FO Fault output supply voltage Applied between F O -V NC -0.5~V D +0.5 V I FO Fault output current Sink current at F O terminal 1 ma V SC Current sensing input voltage Applied between CIN-V NC -0.5~V D +0.5 V TOTAL SYSTEM Symbol Parameter Condition Ratings Unit V CC(PROT) Self protection supply voltage limit V D = 13.5~16.5V, Inverter Part (Short circuit protection capability) T j = 125 C, non-repetitive, less than 2μs 400 V T C Module case operation temperature (Note 1) -20~+100 C T stg Storage temperature -40~+125 C V iso Isolation voltage 60Hz, Sinusoidal, AC 1minute, between connected all pins and heat-sink plate 2500 V rms Note 1: Tc measurement point is described in Fig.1. THERMAL RESISTANCE Limits Symbol Parameter Condition Unit Min. Typ. Max. R th(j-c)q Junction to case thermal Inverter IGBT part (per 1/6 module) - - 0.88 C/W R th(j-c)f resistance (Note 2) Inverter FWDi part (per 1/6 module) - - 1.78 C/W Note 2: Grease with good thermal conductivity and long-term endurance should be applied evenly with about +100μm~+200μm on the contacting surface of DIPIPM and heat-sink. The contacting thermal resistance between DIPIPM case and heat sink Rth(c-f) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) is about 0.2 C/W (per 1/6 module, grease thickness: 20μm, thermal conductivity: 1.0W/m k). 1

Fig. 1: T C MEASUREMENT POINT Measurement point for Tc ELECTRICAL CHARACTERISTICS (T j = 25 C, unless otherwise noted) INVERTER PART Symbol Parameter Condition Limits Min. Typ. Max. Unit V CE(sat) Collector-emitter saturation V D =V DB = 15V T j = 25 C - 1.55 2.05 voltage V IN = 5V, I C = 50A T j = 125 C - 1.65 2.10 V V EC FWDi forward voltage -I C = 50A, V IN = 0V - 1.70 2.20 V t on 1.80 2.40 3.60 μs t C(on) V CC = 300V, V D = V DB = 15V - 0.40 0.60 μs t off Switching times I C = 50A, T j = 125 C, V IN = 0 5 V - 3.00 4.20 μs t C(off) Inductive Load (upper-lower arm) - 0.60 1.20 μs t rr - 0.30 - μs I CES Collector-emitter cut-off T j = 25 C - - 1 V CE =V CES current T j = 125 C - - 10 ma CONTROL (PROTECTION) PART Symbol Parameter Condition Limits Min. Typ. Max. Unit V D = 15V, V IN = 0V - - 5.50 I D Circuit current Total of V P1 -V PC, V N1 -V NC V D = 15V, V IN = 5V - - 5.50 V V D = V DB = 15V, V IN = 0V - - 0.55 I DB Circuit current UFB -V UFS, V VFB -V VFS, V WFB -V WFS V D = V DB = 15V, V IN = 5V - - 0.55 ma I SC Short circuit trip level -20 C Tj 125 C, Rs= 40.2Ω (±1%), Not connecting outer shunt resistors to NU,NV,NW terminals (Note 3) 85 - - A UV DBt Trip level 10.0-12.0 V P-side UV DBr Control supply under-voltage Reset level 10.5-12.5 V T UV Dt protection j 125 C Trip level 10.3-12.5 V N-side UV Dr Reset level 10.8-13.0 V V FOH V SC = 0V, F O terminal pull-up to 5V by 10kΩ 4.9 - - V Fault output voltage V FOL V SC = 1V, I FO = 1mA - - 0.95 V t FO Fault output pulse width C FO =22nF (Note 4) 1.6 2.4 - ms I IN Input current V IN = 5V 0.7 1.0 1.5 ma V th(on) ON threshold voltage 2.1 2.3 2.6 V Applied between U P, V P, W P -V PC, U N, V N, W N -V NC V th(off) OFF threshold voltage 0.8 1.4 2.1 V V OT Temperature output LVIC temperature = 85 C (Note 5) 3.57 3.63 3.69 V Note 3 : Short circuit protection can work for N-side IGBTs only. Isc level can change by sense resistance. For details, please refer the application note for this DIPIPM or contact us. And in that case, it should be for sense resistor to be larger resistance than the value mentioned above. Note 4 : Fault signal is output when short circuit or N-side control supply under-voltage protective functions operate. The fault output pulse-width t FO depends on the capacitance value of C FO. (C FO (typ.) = t FO x (9.1 x 10-6 ) [F]) Note 5 : DIPIPM don't shutdown IGBTs and output fault signal automatically when temperature rises excessively. When temperature exceeds the protective level that user defined, controller (MCU) should stop the DIPIPM. And this output might exceed 5V when temperature rises excessively, so it is recommended for protection of control part like MCU to insert a clamp Di between supply (e.g. 5V) for control part and this output. Temperature of LVIC vs. V OT output characteristics is described in Fig.2 2

Fig.2 Temperature of LVIC - V OT output characteristics 5.0 4.5 VOT Output (V) 4.26 4.0 3.63 3.5 85±3 C 110±10 C 3.0 60±10 C 2.5 40 50 60 70 80 90 100 110 120 130 LVIC Temperature ( C) MECHANICAL CHARACTERISTICS AND RATINGS Parameter Condition Limits Min. Typ. Max. Mounting torque Mounting screw : M4 Recommended 1.18N m 0.98 1.18 1.47 N m Terminal pulling strength Load 19.6N EIAJ- ED-4701 10 - - s Terminal bending strength Load 9.8N, 90deg. bend EIAJ- ED-4701 2 - - times Weight - 46 - g Heat-sink flatness (Note 6) -50-100 μm Unit Note 6: Measurement point of heat-sink flatness 3

RECOMMENDED OPERATION CONDITIONS Symbol Parameter Condition Limits Min. Typ. Max. V CC Supply voltage Applied between P-NU, NV, NW 0 300 400 V V D Control supply voltage Applied between V P1 -V PC, V N1 -V NC 13.5 15.0 16.5 V V DB Control supply voltage Applied between V UFB -V UFS, V VFB -V VFS, V WFB -V WFS 13.0 15.0 18.5 V ΔV D, ΔV DB Control supply variation -1 - +1 V/μs t dead Arm shoot-through blocking time For each input signal, T C 100 C 2.2 - - μs f PWM PWM input frequency T C 100 C, T j 125 C - - 20 khz V CC = 300V, V D = 15V, P.F = 0.8, f PWM = 5kHz - - 23.6 I O Allowable r.m.s. current Sinusoidal PWM Arms T C 100 C, T j 125 C (Note 7) f PWM = 15kHz - - 13.8 PWIN(on) (Note 8) 1.1 - - 200 V CC 350V, 13.5 V D 16.5V, I C 50A 3.0 - - PWIN(off) Minimum input pulse width 13.0 V DB 18.5V, -20 C T C 100 C, μs N line wiring inductance less than 10nH 50<I C 85A 5.0 - - (Note 9) V NC V NC variation Between V NC -NU, NV, NW (including surge) -5.0 - +5.0 V T j Junction temperature -20 - +125 C Note 7: The allowable r.m.s. current value depends on the actual application conditions. 8: DIPIPM might not make response to the input on signal with pulse width less than PWIN (on). 9: IPM might make no response or delayed response (at P-side IGBT only) for the input signal with off pulse width less than PWIN(off). Please refer Fig. 3 about delayed response. Unit Fig. 3 About Delayed Response Against Shorter Input Off Signal Than PWIN(off) (P-side only) P-side Control Input Internal IGBT Gate Output Current Ic t2 t1 Solid line Broken line Off pulse width PWIN(off); Turn on time t1 (Normal delay) Off pulse width < PWIN(off); Turn on time t2 (Longer delay in some cases) 4

Fig. 4 INTERNAL CIRCUIT V UFB V UFS V P1 V CC V B IGBT1 Di1 P U P IN HO COM V S U V VFB V VFS V P1 V CC V B IGBT2 Di2 V P IN HO COM V S V V WFB V WFS V P1 V CC V B IGBT3 Di3 W P IN HO V PC COM V S W LVIC U OUT IGBT4 Di4 V N1 V CC IGBT5 Di5 NU V OUT NV U N V N U N V N W OUT IGBT6 Di6 W N Fo V OT V NC W N Fo V OT GND V NO CIN CFO NW C FO CIN Vsc 5

Fig. 5 TIMING CHARTS OF THE DIPIPM PROTECTIVE FUNCTIONS [A] Short-Circuit Protection (N-side only with the external sense resistor and RC filter) a1. Normal operation: IGBT ON and outputs current. a2. Short circuit current detection (SC trigger) (It is recommended to set RC time constant 1.5~2.0μs so that IGBT shut down within 2.0μs when SC.) a3. All N-side IGBT's gates are hard interrupted. a4. All N-side IGBTs turn OFF. a5. F O outputs with a fixed pulse width determined by the external capacitor C FO. a6. Input = L : IGBT OFF a7. Fo finishes output, but IGBTs don't turn on until inputting next ON signal (L H). (IGBT of each phase can return to normal state by inputting ON signal to each phase.) a8. Normal operation: IGBT ON and outputs current. Lower-side control input a6 Protection circuit state SET RESET Internal IGBT gate a3 a4 Output current Ic Sense voltage of the sense resistor SC trip current level a1 a2 SC reference voltage a7 a8 Delay by RC filtering Error output Fo a5 [B] Under-Voltage Protection (N-side, UV D ) b1. Control supply voltage V D exceeds under voltage reset level (UV Dr ), but IGBT turns ON when inputting next ON signal (L H). (IGBT of each phase can return to normal state by inputting ON signal to each phase.) b2. Normal operation: IGBT ON and outputs current. b3. V D level drops to under voltage trip level. (UV Dt ). b4. All N-side IGBTs turn OFF in spite of control input condition. b5. Fo outputs for the period determined by the capacitance C FO, but output is extended during V D keeps below UV Dr. b6. V D level reaches UV Dr. b7. Normal operation: IGBT ON and outputs current. Control input Protection circuit state RESET SET RESET Control supply voltage V D UV Dr b1 UV Dt b3 b6 b2 b4 b7 Output current Ic Error output Fo b5 6

[C] Under-Voltage Protection (P-side, UV DB ) c1. Control supply voltage V DB rises. After the voltage reaches under voltage reset level UV DBr, IGBT can turn on when inputting next ON signal (L H). c2. Normal operation: IGBT ON and outputs current. c3. V DB level drops to under voltage trip level (UV DBt ). c4. IGBT of corresponding phase only turns OFF in spite of control input signal level, but there is no F O signal output. c5. V DB level reaches UV DBr. c6. Normal operation: IGBT ON and outputs current. Control input Protection circuit state RESET SET RESET UV DBr Control supply voltage V DB c1 UV DBt c3 c5 c2 c4 c6 Output current Ic Error output Fo Keep High-level (no fault output) Fig. 6 MCU I/O INTERFACE CIRCUIT 5V line 10kΩ DIPIPM U P,V P,W P,U N,V N,W N MCU Fo 3.3kΩ(min) V NC (Logic) Note) Design for input RC filter depends on the PWM control scheme used in the application and the wiring impedance of the printed circuit board. The DIPIPM input signal interface integrates a 3.3kΩ(min) pull-down resistor. Therefore, when using RC filter, be careful to satisfy the turn-on threshold voltage requirement. Fo output is open drain type. It should be pulled up to the positive side of 5V or 15V power supply with the resistor that limits Fo sink current I Fo under 1mA. In the case of pulling up to 5V supply, over 5.1kΩ is needed. (10kΩ is recommended.) 7

Fig. 7 AN EXAMPLE OF APPLICATION CIRCUIT MCU C2 + D2 C1 D1 C2 C2 + D2 C1 D1 C2 C2 + D2 C1 D1 C2 5V U P (1) V P1 (3) V UFB (4) V UFS (6) V P (7) V P1 (9) V VFB (10) V VFS (12) W P (13) V P1 (14) V PC (15) V WFB (16) V WFS (18) U N (27) V N (28) W N (29) C FO (25) IGBT1 IGBT2 IGBT3 IGBT4 IGBT5 Di1 Di2 Di3 Di4 Di5 P(40) U(39) V(38) W(37) NU(36) M C3 + R2 Fo(26) V OT (23) LVIC IGBT6 Di6 NV(35) 15V V D + C1 D1 C2 V N1 (21) V NC (22) V NO CIN(24) V SC (19) B D C4 R1 Rs Sense resistor A N1 Note 1 :If control GND is connected to power GND by broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND and power GND at only a point at which NU, NV, NW are connected to power GND line. 2 :To prevent surge destruction, the wiring between the smoothing capacitor and the P,N1 terminals should be as short as possible. Generally inserting a 0.1μ~0.22μF snubber capacitor C3 between the P-N1 terminals is recommended. 3 :The time constant R1C4 of RC filter for preventing protection circuit malfunction should be selected in the range of 1.5μs~2μs. SC interrupting time might vary with the wiring pattern. Tight tolerance, temp-compensated type is recommended for R1,C4. When R1 is too small, it will leads to delay of protection. So R1 should be min. 10 times larger resistance than Rs. (Over 100 times is recommended.) 4 :All capacitors should be mounted as close to the terminals of the DIPIPM as possible. (C1: good temperature, frequency characteristic electrolytic type, and C2: 0.22μ~2.0μF, good temperature, frequency and DC bias characteristic ceramic type are recommended.) 5 :It is recommended to insert a Zener diode D1 (24V/1W) between each pair of control supply terminals to prevent surge destruction. 6 :To prevent erroneous SC protection, the wiring from V SC terminal to CIN filter should be divided at the point D that is close to the terminal of sense resistor. And the wiring should be patterned as short as possible. 7 :For sense resistor, the variation within 1%(including temperature characteristics), low inductance type is recommended. And the over 1/8W is recommended, but it is necessary to evaluate in your real system finally. 8 :To prevent erroneous operation, the wiring of A, B, C should be as short as possible. 9 :Fo output is open drain type. It should be pulled up to the positive side of 5V or 15V power supply with the resistor that limits Fo sink current I Fo under 1mA. In the case pull up to 5V supply, over R2=5.1kΩ is needed. (10kΩ is recommended.) 10 :Error signal output width (t Fo ) can be set by the capacitor connected to C FO terminal. C FO (typ.) = t Fo x (9.1 x 10-6 ) (F) 11 :High voltage (V RRM =600V or more) and fast recovery type (trr=less than 100ns or less) diode D2 should be used in the bootstrap circuit. 12 :If high frequency noise superimposed to the control supply line, IC malfunction might happen and cause erroneous operation. To avoid such problem, voltage ripple of control supply line should meet dv/dt +/-1V/μs, Vripple 2Vp-p. 13 :Input drive is High-Active type. There is a 3.3kΩ(min.) pull-down resistor integrated in the IC input circuit. To prevent malfunction, the wiring of each input should be patterned as short as possible. When using RC filter, it is necessary to confirm the input signal level to meet the turn-on and turn-off threshold voltage. Thanks to inside the module, direct coupling to MCU without any opto-coupler or transformer isolation is possible. NW(34) C 8

Fig. 8 PACKAGE OUTLINES Dimensions in mm 9

Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but these are always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (1) placement of substitutive, auxiliary circuits, (2) use of non-flammable material or (3) prevention against any malfunction or mishap. Notice regarding these materials These materials are intended as reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party s rights, originating in the use of any product data, diagrams, chart, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com) When using any or all of the information contained in these materials, including product data, diagrams, charts, programs and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. DIPIPM and CSTBT are registered trademarks of MITSUBISHI ELECTRIC CORPORATION. 10