A1101, A1102, A1103, A1104, and A1106

Similar documents
Continuous-Time Switch Family

A3282. Features and Benefits. Chopper stabilization Superior temperature stability Extremely low switchpoint drift Insensitive to physical stress

Continuous-Time Bipolar Switch Family

Continuous-Time Bipolar Switch Family

Continuous-Time Bipolar Switch Family

Chopper Stabilized Precision Hall Effect Switches

Continuous-Time Bipolar Switch

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications

Chopper Stabilized Precision Hall Effect Latches

Description (continued) The is rated for operation between the ambient temperatures 4 C and 85 C for the E temperature range, and 4 C to C for the L t

A1126. Chopper Stabilized Omnipolar Hall-Effect Switch. Description

Discontinued Product

Chopper Stabilized Precision Hall Effect Switches

Continuous-Time Bipolar Switch

High-Temperature Chopper-Stabilized Precision Hall-Effect Switch for 5 V Applications

A1225, A1227, and A1229. Hall Effect Latch for High Temperature Operation

Low Current Ultrasensitive Two-Wire Chopper-Stabilized Unipolar Hall Effect Switches

A1260. Chopper Stabilized Precision Vertical Hall-Effect Latch PACKAGES:

SW REVISED DECEMBER 2016

Discontinued Product

A1321, A1322, and A1323

Discontinued Product

A3213 and A3214. Micropower Ultra-Sensitive Hall-Effect Switches. Packages:

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications


A3280, A3281, and A3283 Chopper-Stabilized, Precision Hall-Ef fect Latches

Discontinued Product

Discontinued Product

3280, 3281, AND 3283 CHOPPER-STABILIZED, PRECISION HALL-EFFECT LATCHES. Suffix ' LT' & ' UA' Pinning (SOT89/TO-243AA & ultra-mini SIP)

A3250 and A3251 Field-Programmable, Chopper-Stabilized Unipolar Hall-Effect Switches

ARS ASIL-Compliant Wheel Speed Sensor IC. PACKAGE: 2-pin SIP (suffix UB) Functional Block Diagram VCC GND

Discontinued Product


A3425. Ultra-Sensitive Dual-Channel Quadrature Hall-Effect Bipolar Switch

A3280, A3281, and A3283 Chopper-Stabilized, Precision Hall-Ef fect Latches

Discontinued Product

Discontinued Product

Discontinued Product

2-pin ultramini SIP 1.5 mm 4 mm 4 mm (suffix UB) UB package only. To all subcircuits. Clock/Logic. Sample and Hold. Amp.

ATS635LSE and ATS636LSE Programmable Back Biased Hall-Effect Switch with TPOS Functionality

Discontinued Product

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010

A3121, A3122, and A3133

A1230 Ultra-Sensitive Dual-Channel Quadrature Hall-Effect Bipolar Switch

SUPPLY GROUND NO (INTERNAL) CONNECTION Data Sheet a SUNSTAR 传感与控制 61 AND 62 Suffix Code 'LH' Pinning (SOT2W) X NC 1

3141 THRU 3144 SENSITIVE HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION. FEATURES and BENEFITS V CC GROUND OUTPUT SUPPLY

ATS617LSG. Dynamic, Self-Calibrating, Peak-Detecting, Differential Hall Effect Gear Tooth Sensor IC

A1448. Package: 6-contact MLP/DFN 1.5 mm 2 mm 0.40 mm maximum overall height (EW package) Functional Block Diagram.

Current Sensor: ACS755SCB-200

Discontinued Product

Current Sensor: ACS752SCA-050

A1233. Dual-Channel Hall-Effect Direction Detection Sensor IC

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES:

ATS668LSM True Zero-Speed High-Accuracy Gear Tooth Sensor IC

Current Sensor: ACS750xCA-050

ATS692LSH(RSNPH) Two-Wire, Differential, Vibration Resistant Sensor IC with Speed and Direction Output

A1266. Micropower Ultrasensitive 3D Hall-Effect Switch PACKAGES:

ATS643LSH Self-Calibrating, Zero-Speed Differential Gear Tooth Sensor IC with Continuous Update

Current Sensor: ACS754SCB-200

Discontinued Product

Cosemitech. Automotive Product Group. FEATURES and FUNCTIONAL DIAGRAM

Limited Availability Product

A16100 Three-Wire Differential Sensor IC for Cam Application, Programmable Threshold

Discontinued Product

DISCONTINUED PRODUCT FOR REFERENCE ONLY COMPLEMENTARY OUTPUT POWER HALL LATCH 5275 COMPLEMENTARY OUTPUT POWERHALL LATCH FEATURES

Current Sensor: ACS754xCB-100

Product Information. Latching Switch Hall-Effect IC Basics. Introduction

A1171. Micropower Ultrasensitive Hall Effect Switch

A3982. DMOS Stepper Motor Driver with Translator

HALL-EFFECT SWITCH FOR 2-WIRE APPLICATIONS

ATS667LSG. True Zero-Speed, High Accuracy Gear Tooth Sensor IC

ATS688LSN Two-Wire, Zero-Speed Differential Gear Tooth Sensor IC

Discontinued Product

A1684LUB Two-Wire, Zero-Speed, High Accuracy Differential Sensor IC

A1130, A1131, and A1132 Two-Wire Unipolar Vertical Hall-Effect Switches with Advanced Diagnostics

Discontinued Product

SS1350 Unipolar Hall Switch-Low Sensitivity

ATS128LSE Highly Programmable, Back-Biased, Hall-Effect Switch with TPOS Functionality

A1388 and A1389. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package

A1381, A1382, A1383, and A1384

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback

Product Information. Bipolar Switch Hall-Effect IC Basics. Introduction

3185 THRU 3189 HALL-EFFECT LATCHES FOR HIGH-TEMPERATURE OPERATION FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C V CC GROUND OUTPUT SUPPLY

ATS675LSE Self-Calibrating TPOS Speed Sensor IC Optimized for Automotive Cam Sensing Applications

A1318 and A1319. Linear Hall-Effect Sensor ICs with Analog Output Available in a Miniature, Low-Profile Surface-Mount Package

The differential Hall Effect sensor SC9625 provides a high sensitivity and a superior stability over

Discontinued Product

HAL , 508, 509, HAL Hall Effect Sensor Family

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback

A8430. Approximate actual size. Same pad footprint as SOT-23-5 R θja = 50 C/W, see note 1, page 2 AB SO LUTE MAX I MUM RAT INGS

Discontinued Product

HAL , 508, 509, HAL , 523 Hall Effect Sensor Family MICRONAS. Edition Feb. 14, E DS

Limited Availability Product

A4941. Three-Phase Sensorless Fan Driver

A3949. DMOS Full-Bridge Motor Driver. Features and Benefits Single supply operation Very small outline package Low R DS(ON)

Typical Application VCC IP+ ACS755 GND C F 3 R F

A8431. White LED Driver Constant Current Step-up Converter

High Sensitivity Differential Speed Sensor IC CYGTS9625

For Reference Only DUAL-OUTPUT HALL-EFFECT SWITCH FEATURES. ABSOLUTE MAXIMUM RATINGS at T A = +25 C

Typical Application C BYP C F 3 R F

Transcription:

Package LH, 3-pin Surface Mount GND 3 1 2 1 2 VCC VOUT Package UA, 3-pin SIP 3 The Allegro A111-A114 and A116 Hall-effect switches are next generation replacements for the popular Allegro 312x and 314x lines of bipolar switches. The A11x family, produced with BiCMOS technology, consists of devices that feature fast power-on time and low-noise operation. Device programming is performed after packaging, to ensure increased switchpoint accuracy by eliminating offsets that can be induced by package stress. Unique Hall element geometries and low-offset amplifiers help to minimize noise and to reduce the residual offset voltage normally caused by device overmolding, temperature excursions, and thermal stress. The A111-A114 and A116 Hall-effect switches include the following on a single silicon chip: voltage regulator, Hall-voltage generator, small-signal amplifier, Schmitt trigger, and NMOS output transistor. The integrated voltage regulator permits operation from 3.8 to 24 V. The extensive on-board protection circuitry makes possible a ±3 V absolute maximum voltage rating for superior protection in automotive and industrial motor commutation applications, without adding external components. All devices in the family are identical except for magnetic switchpoint levels. The small geometries of the BiCMOS process allow these devices to be provided in ultrasmall packages. The package styles available provide magnetically optimized solutions for most applications. Package LH is an SOT23W, a miniature low-profile surface-mount package, while package UA is a three-lead ultramini SIP for through-hole mounting. Each package is lead (Pb) free, with 1% matte tin plated leadframes. VCC 1 2 3 GND VOUT 1 2 AB SO LUTE MAX I MUM RAT INGS Supply Voltage, V CC...3 V Reverse-Supply Voltage, V RCC... 3 V Output Off Voltage, V OUT...3 V Reverse-Output Voltage, V ROUT....5 V Output Current, I OUTSINK... 25 ma Magnetic Flux Density, B...Unlimited Operating Temperature Ambient, T A, Range E... 4ºC to 85ºC Ambient, T A, Range L... 4ºC to 15ºC Maximum Junction, T J(max)...165ºC Storage Temperature, T S... 65ºC to 17ºC 3 Features and Benefits Continuous-time operation Fast power-on time Low noise Stable operation over full operating temperature range Reverse battery protection Solid-state reliability Factory-programmed at end-of-line for optimum performance Robust EMC performance High ESD rating Regulator stability without a bypass capacitor

Product Selection Guide Part Number Packing* Mounting Ambient, T A B RP (Min) B OP (Max) A111ELHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A111EUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 85ºC A111LLHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A111LUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 15ºC 1 175 A112ELHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A112EUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 85ºC A112LLHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A112LUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 15ºC 6 245 A113ELHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A113EUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 85ºC A113LLHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A113LUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 15ºC 15 355 A114ELHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A114EUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 85ºC A114LLHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A114LUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 15ºC 25 45 A116ELHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A116EUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 85ºC A116LLHLT-T 7-in. reel, 3 pieces/reel 3-pin SOT23W surface mount A116LUA-T Bulk, 5 pieces/bag 3-pin SIP through hole 4ºC to 15ºC 16 43 *Contact Allegro for additional packing options. Functional Block Diagram VCC Regulator To all subcircuits VOUT Amp Gain Offset Trim Control Terminal List Name Description GND Number Package LH Package UA VCC Connects power supply to chip 1 1 VOUT Output from circuit 2 3 GND Ground 3 2 2

ELECTRICAL OPERATING CHARACTERISTICS over full operating voltage and ambient temperature ranges, unless otherwise noted Characteristic Symbol Test Conditions Min. Typ. Max. Units Supply Voltage 1 V CC Operating, T J < 165 C 3.8 24 V Output Leakage Current I OUTOFF V OUT = 24 V, B < B RP 1 µa Output On Voltage V OUT(SAT) I OUT = 2 ma, B > B OP 215 4 mv Power-On Time 2 t PO Slew rate (dv CC /dt) < 2.5 V/µs, B > B OP + 5 G or B < B RP 5 G 4 µs Output Rise Time 3 t r V CC = 12 V, R LOAD = 82 Ω, C S = 12 pf 4 ns Output Fall Time 3 t f V CC = 12 V, R LOAD = 82 Ω, C S = 12 pf 4 ns Supply Current I CCON B > B OP 4.1 7.5 ma I CCOFF B < B RP 3.8 7.5 ma Reverse Battery Current I RCC V RCC = 3 V 1 ma Supply Zener Clamp Voltage V Z I CC = 1.5 ma; T A = 25 C 32 V Supply Zener Current 4 I Z V Z = 32 V; T A = 25 C 1.5 ma 1 Maximum voltage must be adjusted for power dissipation and junction temperature, see Power Derating section. 2 For V CC slew rates greater than 25 V/µs, and T A = 15 C, the Power-On Time can reach its maximum value. 3 C S =oscilloscope probe capacitance. 4 Maximum current limit is equal to the maximum I CC(max) + 3 ma. DEVICE QUALIFICATION PROGRAM Contact Allegro for information. EMC (Electromagnetic Compatibility) REQUIREMENTS Contact Allegro for information. 3

MAGNETIC OPERATING CHARACTERISTICS 1 over full operating voltage and ambient temperature ranges, unless otherwise noted Characteristic Symbol Test Conditions Min. Typ. Max. Units Operate Point Release Point Hysteresis B OP B RP B HYS A111 A112 A113 A114 A116 A111 A112 A113 A114 A116 A111 A112 A113 A114 A116 T A = 25 C 5 1 16 G Operating Temperature Range 3 1 175 G T A = 25 C 13 18 23 G Operating Temperature Range 115 18 245 G T A = 25 C 22 28 34 G Operating Temperature Range 25 28 355 G T A = 25 C 7 35 G Operating Temperature Range 35 45 G T A = 25 C 28 34 4 G Operating Temperature Range 26 34 43 G T A = 25 C 1 45 13 G Operating Temperature Range 1 45 145 G T A = 25 C 75 125 175 G Operating Temperature Range 6 125 19 G T A = 25 C 165 225 285 G Operating Temperature Range 15 225 3 G T A = 25 C 5 33 G Operating Temperature Range 25 43 G T A = 25 C 18 24 3 G Operating Temperature Range 16 24 33 G T A = 25 C 2 55 8 G Operating Temperature Range 2 55 8 G T A = 25 C 3 55 8 G Operating Temperature Range 3 55 8 G T A = 25 C 3 55 8 G Operating Temperature Range 3 55 8 G T A = 25 C 2 55 G Operating Temperature Range 2 55 G T A = 25 C 7 15 14 G Operating Temperature Range 7 15 14 G 1 Magnetic flux density, B, is indicated as a negative value for north-polarity magnetic fields, and as a positive value for south-polarity magnetic fields. This so-called algebraic convention supports arithmetic comparison of north and south polarity values, where the relative strength of the field is indicated by the absolute value of B, and the sign indicates the polarity of the field (for example, a 1 G field and a 1 G field have equivalent strength, but opposite polarity). 4

THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information Characteristic Symbol Test Conditions Value Units Package LH, minimum-k PCB (single layer, single-sided with copper limited to solder pads) 11 ºC/W Package Thermal Resistance R θja Package LH, low-k PCB (single layer, double-sided with.926 in 2 copper area) 228 ºC/W Package UA, minimum-k PCB (single layer, single-sided with copper limited to solder pads) 165 ºC/W Power Derating Curve Maximum Allowable 25 24 23 22 21 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 T J(max) = 165ºC; I CC = I CC(max) Low-K PCB, Package LH (R θja = 11 ºC/W) Minimum-K PCB, Package UA (R θja = 165 ºC/W) Minimum-K PCB, Package LH (R θja = 228 ºC/W) 2 4 6 8 1 12 14 16 18 V CC(max) V CC(min) Power Dissipation, PD (mw) 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 Power Dissipation versus Ambient Temperature Low-K PCB, Package LH (R θja = 11 ºC/W) Minimum-K PCB, Package UA (R θja =165ºC/W) Minimum-K PCB, Package LH (R θja =228ºC/W) 2 4 6 8 1 12 14 16 18 Temperature ( C) 5

Characteristic Data Supply Current (On) versus Ambient Temperature (A111/2/3/4/6) Supply Current (On) versus Supply Voltage (A111/2/3/4/6) ICCON (ma) 8. 7. 6. 5. 4. 3. 2. 1. 24 3.8 5 5 1 15 5 1 15 2 25 ICCON (ma) 8. 7. 6. 5. 4. 3. 2. 1. 4 25 15 Supply Current (Off) versus Ambient Temperature (A111/2/3/4/6) Supply Current (Off) versus Supply Voltage (A111/2/3/4/6) ICCOFF (ma) 8. 8. 7. 7. 6. 6. 5. 5. 4 24 4. 25 3.8 4. 15 3. 3. 2. 2. 1. 1. 5 5 1 15 5 1 15 2 25 ICCOFF (ma) Output Voltage (On) versus Ambient Temperature (A111/2/3/4/6) 4 4 Output Voltage (On) versus Supply Voltage (A111/2/3/4/6) 35 35 V OUT(SAT) (mv) 3 25 2 15 1 24 3.8 VOUT(SAT) (mv) 3 25 2 15 1 4 25 15 5 5 5 5 1 15 5 1 15 2 25 6

Functional Description OPERATION The output of these devices switches low (turns on) when a magnetic field (south polarity) perpendicular to the Hall sensor exceeds the operate point threshold, B OP. After turn-on, the output is capable of sinking 25 ma and the output voltage is V OUT(SAT). When the magnetic field is reduced below the release point, B RP, the device output goes high (turns off). The difference in the magnetic operate and release points is the hysteresis, B hys, of the device. This built-in hysteresis allows clean switching of the output, even in the presence of external mechanical vibration and electrical noise. Powering-on the device in the hysteresis region, less than B OP and higher than B RP, allows an indeterminate output state. The correct state is attained after the first excursion beyond B OP or B RP. CONTINUOUS-TIME BENEFITS Continuous-time devices, such as the A11x family, offer the fastest available power-on settling time and frequency response. Due to offsets generated during the IC packaging process, continuous-time devices typically require programming after packaging to tighten magnetic parameter distributions. In contrast, chopper-stabilized switches employ an offset cancellation technique on the chip that eliminates these offsets without the need for after-packaging programming. The tradeoff is a longer settling time and reduced frequency response as a result of the chopper-stabilization offset cancellation algorithm. The choice between continuous-time and chopper-stabilized designs is solely determined by the application. Battery management is an example where continuous-time is often required. In these applications, V CC is chopped with a very small duty cycle in order to conserve power (refer to figure 2). The duty cycle is controlled by the power-on time, t PO, of the device. Because continuous-time devices have the shorter power-on time, they are the clear choice for such applications. For more information on the chopper stabilization technique, refer to Technical Paper STP 97-1, Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation and Technical Paper STP 99-1, Chopper-Stabilized Amplifiers with a Track-and-Hold Signal Demodulator. (A) (B) V+ V CC V S V OUT B Switch to High B RP B OP Switch to Low B+ V OUT(SAT) VCC A11x VOUT GND R L Sensor Output B HYS Figure 1. Switching Behavior of Unipolar Switches. On the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength, and the B direction indicates decreasing south polarity field strength (including the case of increasing north polarity). This behavior can be exhibited when using a circuit such as that shown in Panel B. 7

ADDITIONAL APPLICATIONS INFORMATION Extensive applications information for Hall-effect sensors is available in: Hall-Effect IC Applications Guide, Application Note 2771 Hall-Effect Devices: Gluing, Potting, Encapsulating, Lead Welding and Lead Forming, Application Note 2773.1 Soldering Methods for Allegro s Products SMT and Through- Hole, Application Note 269 All are provided in Allegro Electronic Data Book, AMS-72, and the Allegro Web site,. 1 2 3 4 5 V CC t V OUT t t PO(max) Output Sampled Figure 2. Continuous-Time Application, B < B RP.. This figure illustrates the use of a quick cycle for chopping V CC in order to conserve battery power. Position 1, power is applied to the device. Position 2, the output assumes the correct state at a time prior to the maximum Power-On Time, t PO(max). The case shown is where the correct output state is HIGH. Position 3, t PO(max) has elapsed. The device output is valid. Position 4, after the output is valid, a control unit reads the output. Position 5, power is removed from the device. 8

Power Derating Power Derating The device must be operated below the maximum junction temperature of the device, T J(max). Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T J. (Thermal data is also available on the Allegro MicroSystems Web site.) The Package Thermal Resistance, R θja, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, R θjc, is relatively small component of R θja. Ambient air temperature, T A, and air motion are significant external factors, damped by overmolding. The effect of varying power levels (Power Dissipation, P D ), can be estimated. The following formulas represent the fundamental relationships used to estimate T J, at P D. P D = V IN I IN (1) T = P D R θja (2) Example: Reliability for V CC at T A = 15 C, package UA, using minimum-k PCB. Observe the worst-case ratings for the device, specifically: R θja = 165 C/W, T J(max) = 165 C, V CC(max) = 24 V, and I CC(max) = 7.5 ma. Calculate the maximum allowable power level, P D(max). First, invert equation 3: T max = T J(max) T A = 165 C 15 C = 15 C This provides the allowable increase to T J resulting from internal power dissipation. Then, invert equation 2: P D(max) = T max R θja = 15 C 165 C/W = 91 mw Finally, invert equation 1 with respect to voltage: V CC(est) = P D(max) I CC(max) = 91 mw 7.5 ma = 12.1 V The result indicates that, at T A, the application and device can dissipate adequate amounts of heat at voltages V CC(est). Compare V CC(est) to V CC(max). If V CC(est) V CC(max), then reliable operation between V CC(est) and V CC(max) requires enhanced R θja. If V CC(est) V CC(max), then operation between V CC(est) and V CC(max) is reliable under these conditions. T J = T A + T (3) For example, given common conditions such as: T A = 25 C, V CC = 12 V, I CC = 4 ma, and R θja = 14 C/W, then: P D = V CC I CC = 12 V 4 ma = 48 mw T = P D R θja = 48 mw 14 C/W = 7 C T J = T A + T = 25 C + 7 C = 32 C A worst-case estimate, P D(max), represents the maximum allowable power level (V CC(max), I CC(max) ), without exceeding T J(max), at a selected R θja and T A. 9

Package LH, 3-Pin (SOT-23W) Package UA, 3-Pin 1

The products described herein are manufactured under one or more of the following U.S. patents: 5,45,92; 5,264,783; 5,442,283; 5,389,889; 5,581,179; 5,517,112; 5,619,137; 5,621,319; 5,65,719; 5,686,894; 5,694,38; 5,729,13; 5,917,32; and other patents pending. reserves the right to make, from time to time, such de par tures from the detail spec i fi ca tions as may be required to permit improvements in the per for mance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro products are not authorized for use as critical components in life-support devices or sys tems without express written approval. The in for ma tion in clud ed herein is believed to be ac cu rate and reliable. However, assumes no responsibility for its use; nor for any in fringe ment of patents or other rights of third parties which may result from its use. Copyright 25, 11