Advance Datasheet Revision: January 2015

Similar documents
Advance Datasheet Revision: April 2015

Advance Datasheet Revision: May 2013

Preliminary Datasheet Revision: January 2016

Advance Datasheet Revision: October Applications

Preliminary Datasheet Revision: July 2014

Product Datasheet Revision: January 2015

Product Datasheet Revision: April Applications

NPA100-D GHz GaN 20W Power Amplifier. Product Description: Key Features:

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features:

NPA110-D. Preliminary GHz GaN 38W Power Amplifier. Product Description: Key Features:

= 25 C) Parameter 2.7 GHz 2.9 GHz 3.1 GHz 3.3 GHz 3.5 GHz Units Small Signal Gain db

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications

= 25 C) Parameter 8.0 GHz 9.0 GHz 10.0 GHz 11.0 GHz Units Small Signal Gain db P OUT. = 25 dbm W Power P IN

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB

CMD GHz Distributed Driver Amplifier. Features. Functional Block Diagram. Description

8 11 GHz 1 Watt Power Amplifier

= 25 C) Parameter 5.5 GHz 6.5 GHz 7.5 GHz 8.5 GHz Units Small Signal Gain db P OUT

5 6.4 GHz 2 Watt Power Amplifier

18-40 GHz Low Noise Amplifier

CMD GHz GaN Low Noise Amplifier. Features. Functional Block Diagram. Description

CMD GHz GaN Low Noise Amplifier. Features. Functional Block Diagram. Description

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

2 3 ACG1 ACG2 RFIN. Parameter Min Typ Max Units Frequency Range

GHz Low Noise Amplifier

HMC-APH596 LINEAR & POWER AMPLIFIERS - CHIP. GaAs HEMT MMIC MEDIUM POWER AMPLIFIER, GHz. Typical Applications. Features

CMD217. Let Performance Drive GHz GaN Power Amplifier

CMD GHz Distributed Low Noise Amplifier RFIN

5 6 GHz 10 Watt Power Amplifier

3 4 ACG1 ACG2. Vgg2 2 RFIN. Parameter Min Typ Max Units Frequency Range

CMD GHz Driver Amplifier. Features. Functional Block Diagram. Description

GHz GaAs MMIC Power Amplifier

GHz 10 Watt Power Amplifier

it to 18 GHz, 2-W Amplifier

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

PRELIMINARY DATASHEET

DC-20 GHz Distributed Power Amplifier

3 4 ACG1 ACG2. 2 Vgg2 RFIN. Parameter Min Typ Max Units. Frequency Range DC - 24 GHz. Gain 18 db. Noise Figure 2.5 db. Output P1dB 25 dbm

GHz GaAs MMIC Power Amplifier

5W X Band Medium Power Amplifier. GaN Monolithic Microwave IC

VD1N, VD2N, VD3N are available externally but are internally interconnected

CMD GHz Low Noise Amplifier. Features. Functional Block Diagram. Description

18W X-Band High Power Amplifier. GaN Monolithic Microwave IC

0.5-20GHz Driver. GaAs Monolithic Microwave IC

Electrical Characteristics (Ambient Temperature T = 25 o C) Units GHz db db db db db dbm dbm VDC VDC ma

Data Sheet. AMMC GHz 0.2 W Driver Amplifier. Features. Description. Applications

D1H010DA1 10 W, 6 GHz, GaN HEMT Die

= 25 C) Parameter 2.5 GHz 4.0 GHz 6.0 GHz Units Gain db W Power P OUT. = 43 dbm

11-15 GHz 0.5 Watt Power Amplifier

9-10 GHz GaAs MMIC Core Chip

CMD GHz Low Noise Amplifier

GHz Ultra-wideband Amplifier

MECGaNLNACX. C- to X-Band GaN HEMT Low Noise Amplifier. Main Features. Product Description. Typical Applications. Measured Data

Product Data Sheet August 5, 2008

Features. = +25 C Vdd = Vdd1, Vdd2, Vdd3, Vdd4, Vdd5, Vdd6, Vdd7, Vdd8 = +6V, Idd = 1400 ma [1]

CMD GHz Low Noise Amplifier. Functional Block Diagram. Features. Description

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W

ENGDA Wideband Distributed Amplifier, DIE, 0.8 to 20 GHz ENGDA Features. Typical Applications. Description. Functional Block Diagram

8-18 GHz Wideband Low Noise Amplifier

9-10 GHz LOW NOISE AMPLIFIER

CMD GHz Active Frequency Doubler. Features. Functional Block Diagram. Description

GaN/SiC Bare Die Power HEMT DC-15 GHz

Features. = +25 C, Vdd = 5V, Idd = 85mA*

9-10 GHz GaAs MMIC Core Chip

Features. = +25 C, Vdd= 2V [1], Idd = 55mA [2]

MMA GHz 1W Traveling Wave Amplifier Data Sheet

MAAP Power Amplifier, 15 W GHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 2. Ordering Information

TGA4811. DC - 60 GHz Low Noise Amplifier

VWA ACAA. Features. Description. Applications. Ordering information. Pin out and dimensions (4,5 X 4,1 X 0.10 mm) Functional Block Diagram

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications

CGY2651UH/C1. Advance Information GHz 10 W Power Amplifier. Description. Features

2-22GHz LNA with AGC. GaAs Monolithic Microwave IC. Performance (db)

CHA2098b RoHS COMPLIANT

Features. = +25 C, Vdd= +8V *

MMA M4. Features:

1-22 GHz Wideband Amplifier

GaN/SiC Bare Die Power HEMT DC-15 GHz

33-47 GHz Wide Band Driver Amplifier TGA4522

TGA2509. Wideband 1W HPA with AGC

Features. = +25 C, Vdd1, 2, 3 = 5V, Idd = 250 ma*

Features. = +25 C, 50 Ohm System

MMA R4 30KHz-50GHz Traveling Wave Amplifier Data Sheet October 2012

Features. = +25 C, Vdd = 5V

MMA GHz, 0.1W Gain Block Data Sheet

CHA5294 RoHS COMPLIANT

Features. = +25 C, Vdd = 5V, Idd = 200 ma*

DC-12 GHz Tunable Passive Gain Equalizer

Gallium Nitride MMIC 5W DC 10.0 GHz Power Amplifier

Features. = +25 C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200mA [1]

Features. = +25 C, Vdd= +5V, Idd = 66mA

PRELIMINARY DATASHEET

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

Features OBSOLETE. Output Third Order Intercept (IP3) [2] dbm Total Supply Current ma

Gallium Nitride MMIC 15W GHz Power Amplifier

4 Watt Ka-Band HPA Key Features Measured Performance Primary Applications Ka-Band VSAT Product Description

81 GHz to 86 GHz, E-Band Power Amplifier With Power Detector HMC8142

Features. = +25 C, Vdd= +5V

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

Features. = +25 C, Vdd = +6V, Idd = 375mA [1]

PRELIMINARY DATASHEET

Features dbm

Transcription:

Advance Datasheet Revision: January 215 Applications Military SatCom Phased-Array Radar Applications Terminal Amplifiers X = 3.7mm Y = 3.2mm Product Features RF frequency: 43 to 46 GHz Linear Gain: 2 db typ. Psat: 39 dbm typ. PAE @ Psat: 2% Die Size: < 11.84 sq. mm..2um GaN HEMT 4 mil substrate DC Power: 28 VDC @ 18 ma Product Description The monolithic GaN HEMT amplifier is a broadband, two-stage power device, designed for use in Military SatCom and Radar Applications. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Ti/Au, which is compatible with conventional die attach, thermocompression, and thermosonic wire bonding assembly techniques. Performance Characteristics (Ta = 25 C) Specification Min Typ Max Unit Frequency 43 46 GHz Linear Gain 18 2 db Input Return Loss 17 22 db Output Return Loss 17 25 db P1dB 35.5 dbm Psat 38.5 39 dbm PAE @ Psat 2 % Vd1=Vd1a, Vd2=Vd2a 28 V Vg1=Vg1a -4.5 V Vg2=Vg2a -4.5 V Id1+Id1a 336 ma Id2+Id2a 672 ma * Pulsed-Power On-Wafer Absolute Maximum Ratings (Ta = 25 C) Parameter Min Max Unit Vd1=Vg1a, Vd2=Vg2a 2 28 V Id1+Id1a 336 ma Id2+Id1a 672 ma Vg1, Vg1a, Vg2, Vg2a -5 V Input drive level TBD dbm Assy. Temperature 3 deg. C (6 seconds) 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 1

Input Return Loss (db) Output Return Loss (db) Gain (db) Pout (dbm), Gain (db), PAE% Advance Datasheet Revision: January 215 Vd = 28. V, Id1+Id1a = 336 ma, Id2+Id2a = 672 ma Linear Gain vs. Frequency Power, Gain, PAE% vs. Frequency ** 26 24 22 2 18 16 14 12 1 8 6 4 2 4 41 42 43 44 45 46 47 48 45 4 35 3 25 2 15 1 Gain SS Gain@Pin=dBm 5 P1dB Psat PAE%@Psat Max PAE% 4 41 42 43 44 45 46 47 48 Input Return Loss vs. Frequency Output Return Loss vs. Frequency -5-5 -1-15 -2-25 -3-35 4 41 42 43 44 45 46 47 48-1 -15-2 -25-3 -35 4 41 42 43 44 45 46 47 48 * Pulsed-Power On-Wafer, ** CW Fixtured 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 2

Input Return Loss (db) Output Return Loss (db) Gain (db) Pout (dbm), Gain (db), PAE% Advance Datasheet Revision: January 215 Vd = 24. V, Id1+Id1a = 336 ma, Id2+Id2a = 672 ma * Linear Gain vs. Frequency 24 22 2 18 16 14 12 1 8 6 4 2 38 39 4 41 42 43 44 45 46 47 48 49 5 Power, Gain, PAE% vs. Frequency 45 4 35 3 25 2 15 1 5 Gain(dB)@Pin=dBm P1dB(dBm) Psat (dbm) PAE%@Psat PAE% Max 4 41 42 43 44 45 46 47 48 Input Return Loss vs. Frequency Output Return Loss vs. Frequency -5-5 -1-15 -2-25 -3-35 38 39 4 41 42 43 44 45 46 47 48 49 5-1 -15-2 -25-3 -35 38 39 4 41 42 43 44 45 46 47 48 49 5 * Pulsed-Power On-Wafer 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 3

Pout (dbm) Pout (dbm) Pout (dbm), Gain (db), PAE% Pout (dbm), Gain (db), PAE% Advance Datasheet Revision: January 215 Vd = 28. V, Id1+Id1a = 336 ma, Id2+Id2a = 672 ma Power, Gain, PAE% vs. Frequency * Power, Gain, PAE% vs. Frequency ** 45 4 35 3 25 2 15 1 Gain @ 1dBm (db) P1dB (dbm) 5 Psat (dbm) PAE% @ Psat Max PAE% Linear Gain (db) 4 41 42 43 44 45 46 47 48 45 4 35 3 25 2 15 1 Gain SS Gain@Pin=dBm 5 P1dB Psat PAE%@Psat Max PAE% 4 41 42 43 44 45 46 47 48 Output Power vs. Input Power * Output Power vs. Input Power ** 42 4 38 36 34 32 3 28 26 24 22 2 18 16 14 42.5 GHz 43.5 GHz 44.5 GHz 45.5 GHz 46.5 GHz 2 4 6 8 1 12 14 16 18 2 22 24 26 42 4 38 36 34 32 3 28 26 24 22 2 18 16 14 41 GHz 42 GHz 43 GHz 44 GHz 45 GHz 46 GHz 2 4 6 8 1 12 14 16 18 2 22 24 26 * Pulse-Power On-Wafer, ** CW Fixtured 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 4

Id (ma) Id (ma) Advance Datasheet Revision: January 215 Vd = 28. V, Id1+Id1a = 336 ma, Id2+Id2a = 672 ma Power, Gain, PAE% vs. Frequency * Power, Gain, PAE% vs. Frequency ** 12 11 1 9 8 Id1_42.5G Id1_44.5G Id1_46.5G Id2_43.5G Id2_45.5G Id1_43.5G Id1_45.5G Id2_42.5G Id2_44.5G Id2_46.5G 12 11 1 9 8 Id1_41G Id1_43G Id1_45G Id1_47G Id2_42G Id2_44G Id2_46G Id1_42G Id1_44G Id1_46G Id2_41G Id2_43G Id2_45G Id2_47G 7 7 6 6 5 5 4 4 3 3 2 2 4 6 8 1 12 14 16 18 2 22 24 26 2 2 4 6 8 1 12 14 16 18 2 22 24 26 * Pulse-Power On-Wafer, **CW Fixtured Thermal Properties Preliminary Thermal Properties with die mounted with 1mil 8/2 AuSn Eutectic to 25mil CuW Shim. Junction Temperature Tjc Thermal Resistance θjc Shim Boundary Conditions Temperature Vd = 28V, Id1+Id1a = 368 ma * 25 ºC 162.8 ºC 4.9 ºC/W Id2 + Id2a = 921 ma * 49.6 ºC 2. ºC ** 5.3 ºC/W Pin=25.95 dbm Pout=39.8 dbm * Vd = 28. V, Idq1+Id1aq = 336 ma, Id2q+Id2aq = 672 ma ** Max recommended. Pre-qualification reliability testing indicates that MTTF in excess of 1 5 hours can be achieved by ensuring Tjc is kept below 2ºC. 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 5

Advance Datasheet Revision: January 215 Vd = 28. V, Id1+Id1a = 336 ma, Id2+Id2a = 672 ma * Freq GHz S11 Mag S11 Ang S21 Mag S21 Ang S12 Mag S12 Ang S22 Mag S22 Ang 34..11-11.841.484-122.815.3 76.615.117 1.41 34.5.96-115.16.564-138.227.3 27.194.97-23.379 35..71-126.967.657-153.93.2 19.337.8-45.269 35.5.55-148.663.762-169.695.2 65.428.57-63.815 36..59 17.195.887 174.835.2 28.841.41-85.852 36.5.49 66.15 1.32 158.855.3 49.684.25-133.162 37..44 87.52 1.21 143.65.3 21.637.2 2.382 37.5.46 111.189 1.429 127.274.4 34.5.15 43.11 38..54 77.822 1.71 11.887.4 38.93.13 51.419 38.5.6 7.129 2.73 93.64.6 14.638.19 41.519 39..59 54.528 2.547 75.429.7 16.914.45 97.535 39.5.57 4.942 3.125 55.173.8-5.825.86 143.48 4..75 36.181 3.831 33.623.8-17.491.13 118.876 4.5.83 3.121 4.657 1.49.9-45.99.178 92.759 41..87 3.891 5.599-14.815.9-66.837.22 62.945 41.5.15 22.66 6.537-4.73.1-93.443.226 35.64 42..11 4.235 7.69-67.989.1-112.892.212 3.391 42.5.115-7.29 8.54-97.87.11-138.365.157-26.472 43..123-23.958 9.177-127.764.11-7.641.87-46.456 43.5.91-41.38 9.317-156.756.11 74.75.39-48.488 44..67-47.232 9.458 111.449.13 136.755.45-4.377 44.5.4-78.825 1.192 15.96.11 119.834.65-17.427 45..2-6.9 11.289 117.318.11 86.296.73-61.977 45.5.19-6.146 1.787 81.44.16 52.268.54-117.24 46..41 53.231 1.14 47.229.12 18.448.65-16.45 46.5.78 78.114 8.66 11.82.13-4.884.17 134.47 47..17 56.365 6.82-21.376.1-6.62.135 99.37 47.5.129 37.462 5.21-5.756.7-94.563.146 74.3 48..171 15.729 3.87-76.996.8-78.311.154 54.56 48.5.175-1.411 2.886-1.2.6-35.341.146 38.277 49..182-12.623 2.168-12.84.8 41.826.139 14.877 49.5.166-26.498 1.642-141.538.11 35.637.115 2.399 5..143-38.35 1.233-158.589.4 67.183.84-2.484 * Pulsed-Power On-Wafer 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 6

VG1A VD1A VG2B VD2B VG1 VD1 VG2 VD2 Advance Datasheet Revision: January 215 Die Size and Bond Pad Locations (Not to Scale) 2438µm 1838 µm 1438 µm 138 µm RFIN X = 37 µm 25 µm Y = 32 25 µm DC Bond Pad = 1 x 1.5 µm RF Bond Pad = 1 x 1.5 µm Chip Thickness = 11 5 µm RFOUT 119 µm 32 µm 138 µm 1438 µm 1838 µm 2438 µm 37 µm Biasing/De-Biasing Details: Bias for 1 st stage is from top. The 2 nd stages must bias up from both sides. Listed below are some guidelines for GaN device testing and wire bonding: a. Limit positive gate bias (G-S or G-D) to < 1V b. Know your devices breakdown voltages c. Use a power supply with both voltage and current limit. d. With the power supply off and the voltage and current levels at minimum, attach the ground lead to your test fixture. i. Apply negative gate voltage (-5 V) to ensure that all devices are off ii. Ramp up drain bias to ~1 V iii. Gradually increase gate bias voltage while monitoring drain current until 2% of the operating current is achieved iv. Ramp up drain to operating bias v. Gradually increase gate bias voltage while monitoring drain current until the operating current is achieved e. To safely de-bias GaN devices, start by debiasing output amplifier stages first (if applicable): i. Gradually decrease drain bias to V. ii. Gradually decrease gate bias to V. iii. Turn off supply voltages f. Repeat de-bias procedure for each amplifier stage 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 7 Approved for Public Release: Northrop Grumman Case 13-xxxx, 5/xx/13

VG1A VD1A VG2A VD2A VG1 VD1 VG2 VD2 Advance Datasheet Revision: January 215 VD1 VG2 VD2 Suggested Bonding Arrangement [4] [4] =.1uF, 5V (Shunt) [4] VG1 =.1uF, 5V (Shunt) = 1 pf, 5V (Shunt) RF Input RF Output Substrate RFIN RFOUT Substrate VG1A [4] [4] =.1uF, 15V (Shunt) =.1uF, 15V (Shunt) = 1 Ohms, 3V (Series) VD1A VG2A VD2A = 1 pf, 15V (Shunt) Recommended Assembly Notes 1. Bypass caps should be 1 pf (approximately) ceramic (single-layer) placed no farther than 3 mils from the amplifier. 2. Best performance obtained from use of <1 mil (long) by 3 by.5 mil ribbons on input and output. 3. Part must be biased from both sides as indicated. 4. The.1uF, 5V capacitors are not needed if the drain supply line is clean. If Drain Pulsing of the device is to be used, do NOT use the.1uf, 5V Capacitors. Mounting Processes Most NGAS GaN IC chips have a gold backing and can be mounted successfully using either a conductive epoxy or AuSn attachment. NGAS recommends the use of AuSn for high power devices to provide a good thermal path and a good RF path to ground. Maximum recommended temp during die attach is 32 o C for 3 seconds. Note: Many of the NGAS parts do incorporate airbridges, so caution should be used when determining the pick up tool. CAUTION: THE IMPROPER USE OF AuSn ATTACHMENT CAN CATASTROPHICALLY DAMAGE GaN CHIPS. PLEASE ALSO REFER TO OUR GaN Chip Handling Application Note BEFORE HANDLING, ASSEMBLING OR BIASING THESE MMICS! 214 Northrop Grumman Systems Corporation Phone: (31) 814-5 Fax: (31) 812-711 E-mail: as-mps.sales@ngc.com Page 8 Approved for Public Release: Northrop Grumman Case 15-25 1/7/15