Differential Difference Current Conveyor Based Cascadable Voltage Mode First Order All Pass Filters

Similar documents
NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

Independently tunable high-input impedance voltage-mode universal biquadratic filter using grounded passive components

Voltage Mode First Order All Pass Filter Design Using DX-MOCCII

Versatile universal electronically tunable current-mode filter using CCCIIs

A NEW DIFFERENTIAL CONFIGURATION SUITABLE FOR REALIZATION OF HIGH CMRR, ALL-PASS/NOTCH FILTERS

Lossy and Lossless Current-mode Integrators using CMOS Current Mirrors

Efficient Current Feedback Operational Amplifier for Wireless Communication

DVCC Based Current Mode and Voltage Mode PID Controller

Supplementary First-Order All-Pass Filters with Two Grounded Passive Elements Using FDCCII

Generation of Voltage-Mode OTRA-Based Multifunction Biquad Filter

Research Article Third-Order Quadrature Oscillator Circuit with Current and Voltage Outputs

Int. J. Electron. Commun. (AEÜ)

High-Input Impedance Voltage-Mode Multifunction Filter Using a Single DDCCTA and Grounded Passive Elements

220 S. MAHESHWARI AND I. A. KHAN 2 DEVICE PROPOSED The already reported CDBA is characterized by the following port relationship [7]. V p V n 0, I z I

Voltage-mode OTA-based active-c universal filter and its transformation into CFA-based RC-filter

Seventh-order elliptic video filter with 0.1 db pass band ripple employing CMOS CDTAs

New Simple Square-Rooting Circuits Based on Translinear Current Conveyors

REALIZATION OF SOME NOVEL ACTIVE CIRCUITS SYNOPSIS

Tunable Versatile High Input Impedance Voltage-Mode Universal Biquadratic Filter Based on DDCCs

SINGLE OTRA BASED PD CONTROLLERS

A 0.18µm CMOS DDCCII for Portable LV-LP Filters

Explicit-current-output sinusoidal oscillators employing only a single current-feedback op-amp

Research Article Sinusoidal Generator with π/4-shifted Four/Eight Voltage Outputs Employing Four Grounded Components and Two/Six Active Elements

Novel MOS-C oscillators using the current feedback op-amp

Research Article Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA

A Novel Equi-amplitude Quadrature Oscillator Based on CFOA

Current differencing transconductance amplifier-based current-mode four-phase quadrature oscillator

Differential Second-Order Voltage-Mode All-Pass Filter Using Current Conveyors

Realization of Resistorless Wave Active Filter using Differential Voltage Current Controlled Conveyor Transconductance Amplifier

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS)

v,+ v,+ NOVEL ALL-PASS FILTERS WITH REDUCED NI.]MBER OF PASSIVE ELEMENTS USING A SINGLE CURRENT COIWEYOR

An Analog Phase-Locked Loop

A new class AB folded-cascode operational amplifier

Current Controlled Current Conveyor (CCCII) and Application using 65nm CMOS Technology

New CMOS Realization of Voltage Differencing Buffered Amplifier and Its Biquad Filter Applications

Table 1. Comparative study of the available nth order voltage mode filter. All passive elements are grounded. Number of resistors required

High Pass Filter and Bandpass Filter Using Voltage Differencing Buffered Amplifier

Wien oscillators using current conveyors

Quadrature Oscillator: A New Simple Configuration based on 45nm 2 nd Generation CMOS Current Controlled Current Conveyor

Tunable Resistor and Grounded Capacitor Based Square Wave Generator Using CMOS DCCII

Lossy/Lossless Floating/Grounded Inductance Simulation Using One DDCC

CHAPTER 3 ACTIVE INDUCTANCE SIMULATION

Voltage-mode universal biquad with five inputs and two outputs using two current feedback amplifiers

Research Article Single-Input Four-Output Current Mode Filter Using Operational Floating Current Conveyor

VOLTAGE-MODE UNIVERSAL BIQUADRATIC FILTER USING TWO OTAs

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Tunable Gm-C Floating Capacitance Multiplier

International Journal of Mechanical Engineering and Technology (IJMET) IAEME Scopus

Research Article A New Translinear-Based Dual-Output Square-Rooting Circuit

A Modified Bipolar Translinear Cell with Improved Linear Range and Its Applications

An Electronically Tunable Universal Filter Employing Single CCCCTA and Minimum Number of Passive Components

Voltage-Mode Universal Biquad Filter Employing Single Voltage Differencing Differential Input Buffered Amplifier

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

Electronically Tunable Fractional Order All Pass Filter

Current Conveyor Simulation Circuits Using Operational Amplifiers

SOLIMAN A. MAHMOUD Department of Electrical Engineering, Faculty of Engineering, Cairo University, Fayoum, Egypt

Generation of Voltage-Mode OTRA-R/MOS-C LP, BP, HP, and BR Biquad Filter

CMOS voltage controlled floating resistor

Research Article Quadrature Oscillators Using Operational Amplifiers

Hung-Chun Chien* Indian Journal of Engineering & Materials Sciences Vol. 23, February 2016, pp. 7-19

A NEW CMOS DESIGN AND ANALYSIS OF CURRENT CONVEYOR SECOND GENERATION (CCII)

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007.

Second-Generation Current

CURRENT-MODE CCII+ BASED OSCILLATOR CIRCUITS USING A CONVENTIONAL AND MODIFIED WIEN-BRIDGE WITH ALL CAPACITORS GROUNDED

High Voltage Operational Amplifiers in SOI Technology

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab

Universal Voltage Conveyor and its Novel Dual-Output Fully-Cascadable VM APF Application

A Novel First-Order Current-Mode All-Pass Filter Using CDTA

A Novel Super Transistor-Based High- Performance CCII and Its Applications

Analysis of CMOS Second Generation Current Conveyors

On the New Design of CFA based Voltage Controlled Integrator/ Differentiator Suitable for Analog Signal Processing

A Low Voltage Tuned Colpitt s Oscillator Using CDTA

Int. J. Electron. Commun. (AEÜ)

Novel CCII-based Field Programmable Analog Array and its Application to a Sixth-Order Butterworth LPF

ECEN 474/704 Lab 6: Differential Pairs

Grounded Voltage Controlled Positive Resistor with Ultra Low Power Consumption

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

PLEASE SCROLL DOWN FOR ARTICLE. Full terms and conditions of use:

UNIVERSITY OF PENNSYLVANIA EE 206

MOS Inverters Dr. Lynn Fuller Webpage:

DESIGN AND EXPERIMENTAL EVALUATION OF QUADRATURE OSCILLATOR EMPLOYING SINGLE FB VDBA

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

CV of. Academic Qualifications M. Tech. (1999) B. Sc. Engg. (1992)

NOVEL FCS-BASED LAYOUT-FRIENDLY ACCURATE WIDE-BAND LOW-POWER CCII REALIZATIONS,y

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Voltage and Current Mode KHN Filter: A Current Feedback Amplifier Approach Indu Prabha Singh, Meeti Dehran, Dr. Kalyan Singh

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

Ota-C Based Proportional-Integral-Derivative (PID) Controller and Calculating Optimum Parameter Tolerances

Performance Analysis of Low Power, High Gain Operational Amplifier Using CMOS VLSI Design

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP

REALIZATION OF SOME NOVEL ACTIVE CIRCUITS DOCTOR OF PHILOSOPHY

EEEE 381 Electronics I

VOLTAGE DIFFERENCING TRANSCONDUCTANCE AMPLIFIERS BASED MIXED-MODE QUADRATURE OSCILLATOR

Low-voltage high dynamic range CMOS exponential function generator

Simulation and Analysis of Current Conveyor using 0.18um CMOS Technology

DESIGN AND SIMULATION OF A HIGH PERFORMANCE CMOS VOLTAGE DOUBLERS USING CHARGE REUSE TECHNIQUE

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

UNIT 1 MULTI STAGE AMPLIFIES

A 100MHz CMOS wideband IF amplifier

Transcription:

Differential Difference Current Conveyor Based Cascadable ltage Mode First Order All Pass Filters P..S. MURALI KRISHNA, NAEEN KUMAR, AIRENI SRINIASULU, R.K.LAL Department of Electronics & Communication Engineering ignan University, Guntur-522 23 Birla Institute of Technology, Mesra-835 25 INDIA avireni@ieee.org http://www.vignanuniversity.org, http://www.bitmesra.ac.in Abstract: - This paper proposes two first-order all-pass filters using DDCCs as active elements, one resistor and one capacitor. Both proposed filters have two DDCCs, one grounded resistor and one grounded capacitor. Thus the two topologies are having minimum number of components and there is no need for matching constraints on passive components. The performance of the proposed circuits is examined using PSPICE simulations with the model parameters of a.5 µm CMOS process. Obtained results demonstrate excellent agreement with theoretical values. Keywords: - Current conveyor, CCII, DDA, DDCC, all-pass filter, SPICE Introduction Second generation current conveyor (CCII), introduced in 97 [], has been a popular building block in voltage-mode and current-mode analog applications likes oscillators, various types of filters and amplifiers, due to its high and versatile performance, low power consumption, high bandwidth and high output voltage swing. Many CCII applications were available in the literature [2-3]. But CCII has a drawback. It has only one voltage input terminal. Thus it is not suitable for applications that use differential inputs or floating inputs. So, such applications require two or more CCIIs. Differential difference current conveyor (DDCC) is more suitable in such applications. CMOS based DDCC was introduced in 996. DDCC encompasses the good features of Differential difference amplifier (DDA) like high input impedance, low output impedance, less number of components and capability of performing arithmetic operations, and advantages of CCII such as high gain, accuracy and bandwidth. DDCC applications such as realizing squarer, square rooter and multiplier circuits, differential integrators, and voltage mode and current mode low-pass filters and high-pass filters were also demonstrated [4]. Later, many applications using DDCC were presented [5-2]. All-pass filters of first-order are widely used in analog signal processing applications for changing the phase shift, where amplitude remain unchanged. They are also used to construct quadrature and multiphase oscillators. Recently many voltage-mode and currentmode all-pass filters were presented using CCII or DDCC. Grounded passive components provide tuning facility that is required in analog ICs after manufacture, because of the problem of high tolerances. The frequency of oscillation can be adjusted by a grounded resistor without disturbing the oscillation condition. Grounded capacitors are easier for fabrication and have less parasitics compared with floating capacitors [5-8], [-3], [8-27]. Here two new first order all-pass filters are proposed using DDCCs as active elements. The remaining sections of the paper are organized as follows. The DDCC fundamentals and proposed design are presented in section 2 and 3. Non-ideal analysis is included in section 4. Finally, simulation results and conclusions are given in section 5 and 6 respectively. 2 DDCC Fundamentals The symbol of five-port DDCC is shown in Fig.. The internal structure of this device is shown in Fig. 2 and it can be characterized by the following matrixrelations between various voltage and current variables [2, 28]. I I I I Y β -β 2 β 3 α I In the DDCC,,, and are three voltage input terminals with high input impedance. Terminal is a low impedance current input terminal. There is a high impedance current output terminal. The hybrid matrix can be represented by the following equations: I I I, β β + β, Y and I Y Y 2 3 () α I (2) ISBN: 978--684-56-5 28

Here α represents the current tracking error from to terminal. β, β 2 and β 3 represent the voltage tracking errors from,, to terminal. Ideally β β 2 β 3 α. Actually these tracking errors arise due to parasitic capacitance and resistance of the DDCC. It provides to 8 phase shift. Its phase response is 2 tan ( ωcr) (6) Y Y2 Y3 I Y I Y2 I Y3 DDCC I i DDCC C R DDCC 2 I Fig. Symbol for DDCC Fig. 3 Proposed all-pass filter dd M 7 M 8 M 9 M i DDCC C DDCC 2 M M 2 M 4 M 5 R b ss M 3 M 6 M M 2 Fig. 2 Device level presentation of DDCC 3 Proposed Design The first proposed filter is shown in Fig. 3. In this topology, DDCC outport is fed to the input port of DDCC 2 with a grounded capacitor C. And also, DDCC terminal is fed to the input port of DDCC 2 with a grounded resistor R. The voltage transfer function is scr (3) i scr + It provides 8 to phase shift. And the phase response is 8 2 tan ( ωcr) (4) The second proposed filter is shown in Fig. 4. In this topology, DDCC outport is fed to the input port of DDCC 2 with a grounded capacitor C. And also, DDCC terminal is fed to the input port of DDCC 2 with a grounded resistor R. The voltage transfer function is scr + scr i (5) Fig. 4 Proposed all-pass filter 2 4 Non-Ideal Analysis So far, ideal characteristics for the DDCC are being considered in the analysis. However, in this section of investigation, the analysis could change if the parameters of non-idealities are taken for granted. From Fig. 3, we can write voltage transfer function as β ( β 2sCR αβ 22 ) (7) i scr+ and phase response as β 2ωCR ωcr 8 tan tan (8) αβ 22 From Fig. 4, we can write voltage transfer function as β ( αβ 2 β 22sCR) (9) i + scr and the phase response as β 22ωCR ωcr tan tan () α β α β 2 Effects of non-ideality on pole frequency: Ideally, from Eqs. (3) and (5), we can observe that the pole/zero frequency will be ω RC and its p / z P / sensitivity due to passive element is C. From 2 S ω R, ISBN: 978--684-56-5 29

Eqs. (7) and (9) we can observe that the pole frequency is different from the zero frequency and it is the following characteristic equations. For Fig. 3, ω α β RC, ω α β RC and P 2 22 β 2 αβ 2 β 22 For Fig. 4, ω P α β2 RC, ω RC After completion of analysis we found that the sensitivity of pole or zero frequency due to DDCC is not more than unity. The sensitivities for Fig. 3 are P S ω α, β2 () z S ω α β2β22 (2) and for Fig. 4, they are denoted by S ω β P α 2 (3) z S ω α β 2β 22 (4) In comparison with the published all pass filter, this filter can have additional transfer function, scr 2 i + scr (5) i.e., this filter is also capable of producing amplified output by connecting the terminal to. 5 Simulation Results The proposed all-pass filters were simulated using PSPICE with.5 µm MITECH parameters. The parameters are given in table I and the aspect ratios of transistors are given in table II. The supply voltages of proposed all-pass filter circuits are +2.5 and the biasing voltage B is -.7. The simulation results of all-pass network shown in Fig. 3 are given in Fig. 5 and Fig. 6 and those of all-pass network shown in Fig. 4 are given in Fig. 7 and Fig. 8. The passive component values selected are R kω, C pf and the pole frequency f 59 KHz. TABLE I.5 µm MIETEC CMOS PROCESS MODEL PARAMETERS; LEEL-3 MODEL NT NMOS LEEL3 +UO46.5 TO.E-8 TPG TO.62 JS.8E- 6+J.5E-6 RS47 RSH2.73 LD. ETA+MA3E3 NSUB.7E7 PB.76 PHI.95+THETA.29 GAMMA.69 KAPPA. AF+WD.E-6 CJ76.4E-5 MJ.357CJSW5.68E-+MJSW.32 CGSO.38E- CGDO.38E-+CGBO3.45E- KF3.7E-29 DELTA.42+NFS.2E MODEL PT PMOS LEEL3 +UO TO.E-8 TPG TO-.58 JS3.8E- 6+J.E-6 RS886 RSH.8 LD.3EETA+MA5E3 NSUB2.8E7 PB.9PHI.95+THETA.2 GAMMA.76 KAPPA2 AF+WD.4E-6 CJ85E-5 MJ.429 CJSW4.67E- +MJSW.63 CGSO.38E- CGDO.38E-+CGBO3.45E- KF.8E-29 DELTA.8 +NFS.52E TABLE II. TRANSISTORS ASPECT RATIOS TRANSISTOR W (µm) L (µm) M, M 2, M 4, M 5.8.5 M 3, M 6 4.4.5 M 7, M 8 4..5 M 9, M..5 M, M 2 45..5 6 Conclusion In this paper, two new voltage-mode first-order allpass networks employing two DDCCs, one grounded resistor, another grounded capacitor are presented. Both use optimum and canonical number of passive components. So there is no need for passive component matching. No capacitors are connected at terminal. We found that Total Harmonic Distortion (THD) of both circuits is less than 4%. However its value is decreasing for first proposed circuit with increasing frequency and it is less than 2%. Both the circuits have grounded resistor and grounded capacitor, which provide the tunable property. The circuits are verified using SPICE simulation and the simulated results agreed with theoretical ones. These are alternative better circuits than the ones present in [5], and have added advantages of parasitic resistances and capacitances that can be minimal. The circuit presented in [8], provides only low output impedance. And circuits presented in [5-7] uses the floating passive element and have element matching restrictions. References [] A. S. Sedra and K. C. Smith, A second generation current conveyor and its application, IEEE Trans. ISBN: 978--684-56-5 3

Circuit Theory, l. CT-7, No., pp. 32-34, Feb. 97. [2] A. Srinivasulu, A novel current conveyor-based Schmitt trigger and its application as a relaxation oscillator, Int. J. Circuit Theo. and Appl. l. 39, No. 6, pp. 679-686, June 2. [3] D. Pal, A. Srinivasulu, B. B. Pal, A. Demosthenous, and B. N. Das, Current conveyor based square/triangular waveform generators with improved linearity, IEEE Trans. Instr. and Measur., l. 58, No. 7, pp. 274-28, 29. [4] D. Pal, A. Srinivasulu and M. Goswami, Novel current-mode waveform generator with independent frequency and amplitude control, Proc. IEEE Int. Symp. Circuits and Systems, pp.2946-2949, May. 29. [5] I. A. Khan and S. Maheshwari, Simple first order all-pass filters using a single CCII, Int. J. Electron, l. 87, No. 3, pp. 33-36, 2. [6] N. Pandey and S. K. Paul, All-pass filters based on CCII- and CCCII-, Int. J. Electron., l. 9, No. 8, pp. 485-489, 24. [7] O. Cicekoglu, H. Kuntman and S. Berk, All-pass filters using a single current conveyor, Int. J. Electron., l. 86, No. 8, pp. 947-955, 999. [8] J. W. Horng, Current conveyor based all-pass filters and quadrature oscillators employing grounded capacitors and resistors, Comp. and Electri. Engi. l. 3, pp. 8-92, 25. [9] P. Kumar, A. U. Keskin and K. Pal, Wide-band resistorless all-pass sections with single element tuning, Int. J. Electron., l. 94, No. 6, pp. 597-64, 27. [] S. Minaei and O. Cicekoglu, A resistorless realization of the first-order all-pass filter, Int. J. Electron., l. 93, No. 3, pp. 77-83, 26. [] J. W. Horng, C. L. Hou, C-M. Chang, W-Y. Chung, H-L. Liu and C-T. Lin, High output impedance current-mode first-order all-pass networks with four grounded components and two CCIIs, Int. J. Electron., l. 93, No. 9, pp. 63-62, 26. [2] R.I. Salawu, Realization of an all-pass transfer function using the second-generation current conveyor, Proc, IEEE, 68, 83-84, Jan. 98. [3] I. A. Khan and S. Maheshwari, Simple first order all-pass filters using a single CCII, Int. J. Electron., l. 87, No. 3, pp. 33-36, 2. [4] W. Chiu, S.I. Liu, H.W. Tsao and J.J. Chen, CMOS differential difference current conveyors and their applications, IEE Proc. Circuits Dev. Syst, 43(2), pp. 9-96, 996. [5] M. Kumngern and K. Dejhan, High input lowoutput impedance voltage-mode allpass networks, Proc. Integrated Circuits, ISIC, pp.38-384, 29. [6] S.S. Gupta and R. Senani, Comments on CMOS differential difference current conveyors and their applications, IEE Proc. Circuits Dev. Syst. 48(6), pp. 335-336, 2. [7] M. A. Ibrahim, H. Kuntman and O. Cicekoglu, First-order all-pass filter canonical in number of resistors and capacitors employing a single DDCC, Circuit, Syst. Signal Proce. J. l. 22, No. 5, pp. 525-536, 23. [8] J-W. Horng, C.L. Hou, C.M. Chang, W.Y. Chung, C.T. Lin, I.C. Shiu and W-Y. Chiu, First-order allpass filter and sinusoidal oscillator using DDCCs, Int. J. Electron., l. 93, No. 7, pp. 457-466, 26. [9] M. A. Ibrahim, H. Kuntman and O. Cicekoglu, A very high-frequency CMOS self-biasing complementary folded cascade differential difference current conveyor with application examples, Circuit and System, l., pp. 279-282, 22. [2] Metin Bilgin, O. Cicekoglu and K. Pal, DDCC based all-pass filters using minimum number of passive elements, Proc. IEEE MWSCAS/NEWCAS, pp. 58-52, 27. [2] M. A. Ibrahim, H. Kuntman and O. Cicekoglu, First-order all-pass filter canonical in number of resistors and capacitors employing a single DDCC, Circuit, Syst. Signal Proce. J. l. 22, No. 5, pp. 525-536, 23. [22] M.T. Ahmed, I.A. Khan and N. Minhaj, On transconductance-c quadrature oscillators, Int. J. Electron., l. 83, pp. 2-27, 997. [23] S.J.G. Gift, The application of all-pass filters in the design of multiphase sinusoidal systems, Microelectron. J., l. 3, pp. 9-3, 2. [24] D.T. Comer, D.J. Comer and J.R. Gonzales, A high frequency integrable band pass filter configuration, IEEE Trans. Circuits. Syst. II: Analog. Digital Signal Proc., l. 44, pp. 856-86, 997. [25] S. Maheshwari, New voltage and current mode allpass filter using a current controlled conveyor, Int. J. Electron., l. 9, pp. 735-743, 24. [26] M. A. Ibrahim, S. Minaei and H. Kuntman, DCC based differential mode all-pass and notch filters with high CMRR, Int. J. Electron., l. 93, pp. 23-24, 26. [27] S. Minaei and M. A. Ibrahim, General configuration for realizing current mode first-order all-pass filter using DCC, Int. J. Electron., l. 92, pp. 347-356, 25. [28] R.J. Baker, H.W. Li and D.E. Boyce, CMOS Circuit Design, Layout and Simulation, Chapter 7, IEEE Press, New York, 998. ISBN: 978--684-56-5 3

Fig. 5 Phase and magnitude plots of the proposed circuit of Fig. 3 Fig. 6 Dependence of output voltage harmonic distortion on input voltage frequency for.2 PP of Fig. 3 Fig. 7 Phase and magnitude plots of the proposed circuit of Fig. 4 Fig. 8 Dependence of output voltage harmonic distortion on input voltage frequency for.2 PP of Fig. 4 ISBN: 978--684-56-5 32