Control Integrated POwer System (CIPOS )

Similar documents
Control Integrated POwer System (CIPOS )

Data Sheet, Aug System (CIPOS ) IGCM06F60G A. F o r P o w e r M a n a g e m e n t A p p l i c a t i o n

Control Integrated POwer System (CIPOS )

Control Integrated POwer System (CIPOS )

Control Integrated POwer System (CIPOS )

Control Integrated POwer System (CIPOS )

Integrated Power Hybrid IC for Appliance Motor Drive Applications

Control integrated Power System (CIPOS )

IHW15T120. Soft Switching Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

1 RevH,

Data sheet, Rev. 2.1, Dec ED003L06-F. Integrated 3 Phase Gate Driver. Power Management & Drives

Integrated Power Hybrid IC for Appliance Motor Drive Applications

I n t e g r a t e d 3 P h a s e G a t e D r i v e r

IKW40T120. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

IRAMX16UP60A Series 16A, 600V

15A, 600V IPM. with Integrated PFC and Open Emitter Pins IRAM F. Intelligent Power Module for Energy Efficient Compressor Applications

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22. Number IM513-L6A DIP 20 tubes 280 pcs IM513L6AXKMA1

Fan drives and active filter for HVAC, pumps, and low power motor drives (GPI, Servo Drives)

Plug N Drive TM Integrated Power Module for Appliance Motor Drive

IRAMX16UP60B Series 16A, 600V

FAN73932 Half-Bridge Gate Drive IC

FAN73901 High- and Low-Side, Gate-Drive IC

FAN7371 High-Current High-Side Gate Drive IC

IGB03N120H2. HighSpeed 2-Technology. Power Semiconductors 1 Rev. 2.4 Oct. 07

High-Current, High & Low-Side, Gate-Drive IC

TrenchStop Series. Low Loss DuoPack : IGBT in Trench and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

Symbol Parameters Test Conditions Min Typ Max Unit T J max) Max. Junction Temperature 150 C T J op. Operating Temperature C T stg

IRAM B Series 30A, 150V

IGBT ECONO3 Module, 100 A

FAN7391 High-Current, High & Low-Side, Gate-Drive IC

SKM200GAH123DKL 1200V 200A CHOPPER Module August 2011 PRELIMINARY RoHS Compliant

Typical Application Circuit V CC HIN,, LIN,, FAULT EN GND Pin Description V CC HIN,, LIN,, FAULT EN RCIN ITRIP V SS PIN NO. PIN NAME PIN FUNCTION V B,

InductionHeatingSeries ReverseconductingIGBTwithmonolithicbodydiode IHW20N120R3. Datasheet. IndustrialPowerControl

Symbol Parameters Test Conditions Min Typ Max Unit T J max. Max. Junction Temperature 150 C T J op. Operating Temperature C T stg

1200V 50A IGBT Module

1200 V 600 A IGBT Module

IR3101 Series 1.6A, 500V

IRS21844MPBF HALF-BRIDGE DRIVER

Description. Operating Temperature Range

FAN7191-F085 High-Current, High and Low Side Gate Drive IC

IGBT ECONO3 Module, 150 A

MG06400D-BN4MM Series 400A Dual IGBT

Integrated Power Module for Small Appliance Motor Drive Applications

IRS2113MPBF HIGH- AND LOW-SIDE DRIVER

MTP IGBT Power Module Primary Dual Forward

SLLIMM small low-loss intelligent molded module IPM, 3-phase inverter - 15 A, 600 V short-circuit rugged IGBT. Description. Table 1.

Insulated Gate Bipolar Transistor (Ultrafast IGBT), 100 A

Primary MTP IGBT Power Module

Symbol Parameters Test Conditions Min Typ Max Unit R thjc. Per IGBT 0.09 K/W R thjcd

MG12300D-BN2MM Series 300A Dual IGBT

IRS2136/IRS21362/IRS21363/IRS21365/ IRS21366/IRS21367/IRS21368 (J&S) PbF 3-PHASE BRIDGE DRIVER

IR2110 HIGH AND LOW SIDE DRIVER. Features. Product Summary. Packages. Description. Typical Connection. 500V max. V OFFSET 10-20V VOUT.

Full Bridge IGBT MTP (Ultrafast NPT IGBT), 20 A

STK A-E. Applications Air conditioner three-phase compressor motor driver.

IRS2183/IRS21834(S)PbF

T C = 25 C 400 T C = 80 C 300 A

IRS2110(-1,-2,S)PbF IRS2113(-1,-2,S)PbF HIGH AND LOW SIDE DRIVER. Features. Product Summary. Packages

3-PHASE BRIDGE DRIVER

HALF-BRIDGE DRIVER. Features. Packages. Product Summary

FAN7390 High-Current, High and Low Side, Gate-Drive IC

IRS2181/IRS21814(S)PbF

Insulated Gate Bipolar Transistor (Ultrafast IGBT), 75 A

IGBT Highspeed5FASTIGBTinTRENCHSTOP TM 5technologycopackedwithRAPID1 fastandsoftantiparalleldiode

Insulated Gate Bipolar Transistor (Trench IGBT), 80 A

STK544UC62K-E/D. Intelligent Power Module (IPM) 600 V, 10 A

Control Integrated POwer System (CIPOS )

Control Integrated POwer System (CIPOS )

Symbol Parameters Test Conditions Min Typ Max Unit T J max. Max. Junction Temperature 150 C T J op. Operating Temperature C T stg

2A, 250V. Integrated Power Module for Small Appliance Motor Drive Applications IRSM MA. Description. Features

IGBT STARPOWER GD400SGK120C2S. Absolute Maximum Ratings T C =25 unless otherwise noted SEMICONDUCTOR TM. Molding Type Module

200V HO V DD V B HIN SD HIN SD V S TO LOAD LIN V CC V SS LIN COM LO

FAN7391 High-Current, High & Low-Side, Gate-Drive IC

TLF1963. Data Sheet. Automotive Power. Low Dropout Linear Voltage Post Regulator TLF1963TB TLF1963TE. Rev. 1.0,

Control Integrated POwer System (CIPOS )

V OFFSET. Packages. 14-Lead PDIP

Symbol Description GD200CLT120C2S Units V CES Collector-Emitter Voltage 1200 V V GES Gate-Emitter Voltage ±20V V

Symbol Parameters Test Conditions Min Typ Max Unit T J max. Max. Junction Temperature 150 C T J op. Operating Temperature C T stg

Insulated Gate Bipolar Transistor (Trench IGBT), 180 A

Control Integrated POwer System (CIPOS )

V OFFSET. Description

IR2304(S) & (PbF) HALF-BRIDGE DRIVER Product Summary

IR2112(S) HIGH AND LOW SIDE DRIVER. Features. Product Summary. Packages. Description. Typical Connection V OFFSET. 600V max. 200 ma / 420 ma 10-20V

IRS2336(D) IRS23364D HIGH VOLTAGE 3 PHASE GATE DRIVER IC

Insulated Gate Bipolar Transistor Ultralow V CE(on), 250 A

IRS2103(S)PbF HALF-BRIDGE DRIVER. Features. Product Summary. Packages. Description. Typical Connection. 600 V max. 130 ma/270 ma 10 V - 20 V V OFFSET

This Inverter Power H-IC includes the output stage of a 3-phase inverter, pre-drive circuits, as well as protection circuits in one package.

FAN7384 Half-Bridge Gate-Drive IC

FSB50760SF, FSB50760SFT Motion SPM 5 SuperFET Series

IFX1963. Data Sheet. Industrial Standard Power. 1.5A Low Dropout Linear Voltage Regulator IFX1963TBV IFX1963TEV. Rev. 1.

Control Integrated POwer System (CIPOS )

Half-Bridge Driver IR25606SPBF. Features. Product Summary. Description. Package Options. Ordering Information

IRS SOT-23 High-Side Gate Driver IC IRS10752LPBF. Features. Description. Package Options. Applications. Typical Connection Diagram

FAN7387V Ballast Control IC for Compact Fluorescent Lamp

Insulated Gate Bipolar Transistor Trench PT IGBT, 600 V, 250 A

FSB50250AS Motion SPM 5 Series

HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER

IDW100E60. Fast Switching Emitter Controlled Diode. IFAG IPC TD VLS 1 Rev

Molding Type Module IGBT, 2-in-1 Package, 1200 V and 300 A

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Transcription:

Data Sheet, Jun. 2010 Control Integrated POwer System (CIPOS ) I KCS12F60AA I KCS12F60AC http://www.lspst.com For Power Management Application

Revision History: 201006 Rev.1.0 Previous Version: Infineon Technologies Data Sheet Ver. 2.3 Page Subjects (major changes since last revision) No editorial change Change in document format Authors: Junho Song*, Junbae Lee* and Daewoong Chung*, W. Frank**, W. Brunnbauer** LS Power Semitech*, Infineon Technologies** Edition 201001 Published by LS Power Semitech Co., Ltd. Seoul, Korea LS Power Semitech Co., Ltd. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, LS Power Semitech Co., Ltd. hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest LS Power Semitech Co., Ltd. office or representatives (http://www.lspst.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest LS Power Semitech Co., Ltd. office or representatives. LS Power Semitech Co., Ltd. components may only be used in lifesupport devices or systems with the express written approval LS Power Semitech Co., Ltd., if a failure of such components can reasonably be expected to cause the failure of that lifesupport device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TRENCHSTOP is a registered trademark of Infineon Technologies AG. Data Sheet 2/19 Jun. 2010

Table of contents: CIPOS Control Integrated POwer System... 4 Features... 4 Target Applications... 4 Description... 4 System Configuration... 4 Certification... 4 Internal Electrical Schematic... 5 Pin Assignment... 6 Pin Description... 6 HIN1,2,3 and /LIN1,2,3 (Low side and high side control pins, Pin 15 20)... 6 EN (enable, Pin 24)... 7 ITRIP (Overcurrent detection function, Pin 21)... 7 VDD, VSS (control side supply and reference, Pin 22, 23)... 7 VB1,2,3 and VS1,2,3 (High side supplies, Pin 1, 2, 4, 5, 7, 8)... 7 VRU, VRV, VRW (low side emitter, Pin 12, 13, 14)... 7 V+ (positive bus input voltage, Pin 10)... 7 Absolute Maximum Ratings... 8 Module Section... 8 IGBT and Diode Section... 8 Control Section... 9 Recommended Operation Conditions... 9 Static Characteristics... 10 Dynamic Characteristics... 11 Integrated Components... 12 Circuit of a Typical Application... 12 Characteristics... 13 Package Outline IKCS12F60AA... 18 Package Outline... 19 Data Sheet 3/19 Jun. 2010

CIPOS Control Integrated POwer System Single InLine Intelligent Power Module 3Φbridge 600V / 12A @ 25 C Features Fully isolated Single InLine molded module TrenchStop IGBTs with lowest V CE(sat) Optimal adapted anti parallel diode for low EMI Integrated bootstrap diode and capacitor Rugged SOI gate driver technology with stability against transient and negative voltage Temperature monitor and over temperature shutdown Overcurrent shutdown Under voltage lockout at all channels Matched propagation delay for all channels Low side emitter pins accessible for all phase current monitoring (open emitter) Crossconduction prevention Leadfree terminal plating; RoHS compliant Qualified according to JEDEC 1 (high temperature stress tests for 1000h) for target applications Target Applications Washing machines Consumer Fans and Consumer Compressors Description The CIPOS module family offers the chance for integrating various power and control components to increase reliability, optimize PCB size and system costs. This SILIPM is designed to control AC motors in variable speed drives for applications like air conditioning, compressors and washing machines. The package concept is specially adapted to power applications, which need extremely good thermal conduction and electrical isolation, but also EMIsave control and overload protection. The features of TrenchStop IGBTs and anti parallel diodes are combined with a new optimized Infineon SOI gate driver for excellent electrical performance. System Configuration 3 halfbridges with TrenchStop IGBT & FWdiodes 3Φ SOI gate driver Bootstrap diodes for high side supply Integrated 100nF bootstrap capacitance Temperature sensor, passive components for adaptions Isolated heatsink Creepage distance typ 3.2mm Certification UL 1577 (UL file E314539) 1 JSTD020 and JESD022 Data Sheet 4/19 Jun. 2010

Internal Electrical Schematic V+ (10) Tr1, UHS D1 Tr3, VHS D3 Tr5, WHS D5 Tr2, ULS D2 Tr4, VLS D4 Tr6, WLS D6 VRU (12) VRV (13) VRW (14) U, VS1 (8) V, VS2 (5) W, VS3 (2) RH1 RL1 RH2 RL2 RH3 RL3 VB3 (1) VB2 (4) VB1 (7) CbsH1 CbsH2 CbsH3 Dbs1 Dbs3 Rbs HO1 LO1 VB1 VS1 HO2 LO2 VB2 VS2 HO3 LO3 VB3 VS3 VDD (22) /HIN1 (15) /HIN2 (16) /HIN3 (17) VCC /HIN1 /HIN2 /HIN3 DriverIC /LIN1 (18) /LIN2 (19) /LIN3 (20) /LIN1 /LIN2 /LIN3 RCIN EN ITRIP /FAULT VSS Com ITRIP (21) EN (24) R RTS For integrated components see Table VSS (23) C1 C2 Figure 1: Internal Schematic Data Sheet 5/19 Jun. 2010

Pin Assignment Pin Number Pin Name Pin Description 1 VB3 high side floating IC supply voltage 2 W,VS3 motor output W, high side floating IC supply offset voltage 3 n.a. None 4 VB2 high side floating IC supply voltage 5 V,VS2 motor output V, high side floating IC supply offset voltage 6 n.a. None 7 VB1 high side floating IC supply voltage 8 U,VS1 motor output U, high side floating IC supply offset voltage 9 n.a. None 10 V+ positive bus input voltage 11 n.a. None 12 VRU low side emitter 13 VRV low side emitter 14 VRW low side emitter 15 /HIN1 input gate driver high side 1/U 16 /HIN2 input gate driver high side 2/V 17 /HIN3 input gate driver high side 3/W 18 /LIN1 input gate driver low side 1/U 19 /LIN2 input gate driver low side 2/V 20 /LIN3 input gate driver low side 3/W 21 ITRIP input overcurrent shutdown 22 VDD module control supply 23 VSS module negative supply 24 EN input logic enable, output temperature monitoring Pin Description /HIN1,2,3 and /LIN1,2,3 (Low side and high side control pins, Pin 15 20) These pins are active low and they are Figure 2: Input pin structure responsible for the control of the integrated IGBT. The Schmitttrigger input threshold of them are such to guarantee LSTTL and CMOS compatibility down to 3.3V controller outputs. Pullup resistor of about 75kΩ is internally provided to prebias inputs during supply startup and a zener clamp is provided for pin protection purposes. Input schmitttrigger and noise filter provide beneficial noise rejection to short input pulses. It is recommended for proper work of CIPOS not to provide input pulsewidth lower than 1us. The integrated gate drive provides additionally a shoot through prevention capability which avoids the simultaneous onstate of two gate drivers of the same leg (i.e. HO1 and LO1, HO2 and LO2, HO3 and LO3). Data Sheet 6/19 Jun. 2010

A minimum deadtime insertion of typ 380ns is also provided, in order to reduce crossconduction of the external power switches. EN (enable, Pin 24) The signal applied to pin EN controls directly the output stages. All outputs are set to LOW, if EN is at LOW logic level. The internal structure of the pin is the same as Figure 2 made exception of the switching levels of the SchmittTrigger, which are here V EN,TH+ = 2.1V and V EN,TH = 1.3V. The typical propagation delay time is t EN = 900ns. Figure 3: Internal circuit at pin EN This pin may also be used for reading out the temperature close to the gate drive IC. Please refer to section Integrated Components for the specification of the integrated parts. ITRIP (Overcurrent detection function, Pin 21) CiPoS provides an overcurrent detection function by connecting the ITRIP input with the motor current feedback. The ITRIP comparator threshold (typ 0.46V) is referenced to VSS ground. A input noise filter prevents the driver to detect false overcurrent events. Overcurrent detection generates a hard shut down of all outputs of the gate driver after the shutdown propagation delay of typically 900ns. The faultclear time is set to typically to 4.7ms. VDD, VSS (control side supply and reference, Pin 22, 23) VDD is the low side supply and it provides power both to input logic and to low side output power stage. Input logic is referenced to VSS ground as well as the undervoltage detection circuit. The undervoltage circuit enables the device to operate at power on when a supply voltage of at least a typical voltage of V DDUV+ = 12.1V is at least present. The IC shuts down all the gate drivers power outputs, when the VDD supply voltage is below V DDUV = 10.4V. This prevents the external power switches from critically low gate voltage levels during onstate and therefore from excessive power dissipation. VB1,2,3 and VS1,2,3 (High side supplies, Pin 1, 2, 4, 5, 7, 8) VB to VS is the high side supply voltage. The high side circuit can float with respect to VSS following the external high side power device emitter/source voltage. Due to the low power consumption, the floating driver stage is supplied by an integrated bootstrap circuit connected to VDD. This includes also integrated bootstrap capacitors of 100nF at each floating supply, which are located very close to the gate drive circuit. The undervoltage detection operates with a rising supply threshold of typical V BSUV+ = 12.1V and a falling threshold of V DDUV = 10.4V according to Figure 4. VS1,2,3 provide a high robustness against negative voltage in respect of VSS of 50V. This ensures very stable designs even under rough conditions. v DD Stand by t Normal Operation Figure 4: Operation modes UVLO V DDmax, V BSmax V DDUV+, V BSUV+ V DDUV, V BSUV VRU, VRV, VRW (low side emitter, Pin 12, 13, 14) The low side emitters are available for current measurements of each phase leg. It is recommended to keep the connection to pin VSS as short as possible in order to avoid unnecessary inductive voltage drops. V+ (positive bus input voltage, Pin 10) The high side IGBT are connected to the bus voltage. It is recommended, that the bus voltage does not exceed 500V. Data Sheet 7/19 Jun. 2010

Absolute Maximum Ratings (T J = 25 C, V DD = 15V Unless Otherwise Specified): Module Section Description Condition Symbol Value Unit Storage temperature range T stg 40 125 C Operating temperature control PCB 1 T PCB 125 C Solder temperature Insulation test voltage Wave soldering, 1.6mm (0.063in.) from case for 10s Min max T sol 260 C RMS, f=50hz, t =1min V ISOL 2500 V Mounting torque M3 screw and washer M S 0.6 Nm Mounting pressure on surface Package flat on mounting surface N MC 150 N/mm² Creepage distance d S 3.1 mm External bootstrap capacitor single capacitor charging, VDD = 15V C bs,ext 19 µf IGBT and Diode Section Description Condition Symbol Value Unit min max Max. Blocking Voltage V CES 600 V DC output current T c = 25 C,T vj <150 C T c = 80 C,T vj <150 C I u, I v, I w 12 6 12 6 A Repetitive peak collector current t p limited by T vjmax I u, I v, I w 18 18 A 2 VDD = 15V,VDC = 400V, Short circuit withstand time TvJ = 150 C t sc 5 µs IGBT reverse bias safe operating area (RBSOA) VDD = 15V,VDC 500V, TvJ = 150 C, I C = 6A V CEmax = 600V Full Square Power dissipation per IGBT T c = 25 C P tot 35 W Operating junction temperature range IGBT Diode T vji T vjd 40 40 150 150 C 1 Monitored by pin 24 2 Allowed number of short circuits: <1000; time between short circuits: >1s. Data Sheet 8/19 Jun. 2010

Description Condition Symbol Value Unit Single IGBT thermal resistance, junctioncase Single diode thermal resistance, junctioncase min max R thjc 3.0 R thjcd 4.2 K/W Control Section Description Condition Symbol Value Unit Module supply voltage V DD 1 20 V High side floating supply voltage (VB vs. VS) High side floating IC supply offset voltage t p < 500ns min max V BS 1 20 V V S1,2,3 VDDVBS6 VDDVBS50 600 V Input voltage /LIN, /HIN, EN, ITRIP V in 1 10 V Operating junction temperature 1 T J,IC 125 C Max. switching frequency f PWM 20 khz Recommended Operation Conditions All voltages are absolute voltages referenced to V SS Potential unless otherwise specified. Description Symbol Value Unit min max High side floating supply offset voltage V S 3 500 High side floating supply voltage (V B vs. V S ) V BS 12.5 17.5 Low side power supply V DD 12.5 17.5 V Logic input voltages LIN, HIN, ITRIP V IN 0 5 1 Monitored by pin 24 Data Sheet 9/19 Jun. 2010

Static Characteristics (T c = 25 C, V DD = 15V, if not stated otherwise) Description Condition Symbol Value Unit min typ max CollectorEmitter blocking voltage V IN = 5V, I C = 0.25mA V (BR)CES 600 CollectorEmitter saturation voltage V DD = 15V, I out = +/ 6A 25 C 150 C V CE(sat) 1.6 1.9 2.1 V Diode forward voltage V IN =5V, I out = +/ 6A 25 C 150 C V F 1.65 1.6 2.05 Zero gate voltage collector current of IGBT V CE = 600V, V IN = 5V T j = 25 C T j = 150 C Short circuit collector current 1 V DD = 15V, t SC 5µs V DC = 400V, T vj = 150 C I CES I C(SC) 2 40 1000 µa 40 A Logic "0" input voltage (LIN,HIN) V IH 1.7 2.1 2.4 V Logic "1" input voltage (LIN,HIN) V IL 0.7 0.9 1.1 V EN positive going threshold V EN,TH+ 1.9 2.1 2.3 V EN negative going threshold V EN,TH 1.1 1.3 1.5 V ITRIP positive going threshold V IT,TH+ 360 460 540 mv ITRIP input hysteresis V IT,HYS 45 75 mv VDD and VBS supply under voltage positive going threshold VDD and VBS supply under voltage negative going threshold VCC and VBS supply under voltage lockout hysteresis Input clamp voltage (/HIN, /LIN, EN, ITRIP) Quiescent VB x supply current (VB x only) Quiescent VDD supply current (VDD only) V DDUV+ V BSUV+ 2 11.0 12.1 12.8 V V DDUV V BSUV 2 9.5 10.4 11.0 V V DDUVH V BSUVH 2 1.2 1.7 V I IN = 4 ma V INCLAMP 9.0 10.1 13.0 V V HIN = low I QB 360 550 µa V IN = float I QDD 2.0 3.0 ma Input bias current V IN = 5V I IN+ 55 100 µa Input bias current V IN = 0V I IN 110 200 µa ITRIP Input bias current V ITRIP = 5V I ITRIP+ 75 120 µa EN Input bias current V EN = 5V I EN+ 180 300 µa Leakage current of high side T j,ic = 125 C, VS = 600V I LVS 2 30 µa 1 Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Test is not subject of product test, verified by characterisation Data Sheet 10/19 Jun. 2010

Dynamic Characteristics (T c = 25 C, V DD = 15V, if not stated otherwise) Description Condition Symbol Value Unit Turnon propagation delay High side or low side Turnon rise time High side or low side Turnoff propagation delay High side or low side Turnoff fall time High side or low side Shutdown propagation delay ENABLE V LIN,HIN = 0V; I out = 6A, V DC = 300V I out = 6A, V DC = 300V V LIN,HIN = 5V V LIN,HIN = 5V; I out = 6A, V DC = 300V I out = 6A, V DC = 300V V LIN,HIN = 0V min typ max t d(on) 617 ns t r 21 ns t d(off) 832 ns t f 29 ns V EN = 0V, I u, I v, I w = 6A t EN 900 ns Shutdown propagation delay ITRIP V ITRIP = 1V, I u, I v, I w = 6A t ITRIP 900 ns Input filter time ITRIP V ITRIP = 1V t ITRIPmin 155 210 380 ns Input filter time at LIN for turn on and off and input filter time at HIN for turn on only V LIN,HIN = 0 V & 5V t FILIN 120 270 ns Input filter time at HIN for turn off V HIN = 5V t FILIN1 220 ns Input filter time at HIN for turn off V HIN = 5 V t FILIN2 400 ns Input filter time EN t FILEN 300 430 ns Fault clear time after ITRIPfault Min. deadtime between low side and high side V LIN,HIN = 0 V & 5V V ITRIP = 0 V t FLTCLR 4.7 ms DT PWM 1 µs Deadtime of gate drive circuit DT IC 380 ns IGBT Turnon Energy (includes reverse recovery of diode) IGBT Turnoff Energy Diode recovery Energy I out = 6A, V DC = 300V T vj = 25 C T vj = 150 C I out = 6A, V DC = 300V T vj = 25 C T vj = 150 C I out = 6A, V DC = 300V T vj = 25 C T vj = 150 C E on E off E rec 145 195 122 160 31 81 µj µj µj Data Sheet 11/19 Jun. 2010

Integrated Components Description Condition Symbol 1 Value Unit min typ max Resistor (0.25 W) Rbs 10 Ω Resistor R 24 kω Resistor T NTC = 25 C RTS 100 kω BConstant of NTC (Negative Temperature Coefficient) T NTC = 25 C B25 4250 K Bootstrap diode forward voltage I FDbs = 100mA V FDbs 1.9 2.05 V Capacitor C1 100 Capacitor C2 2.2 Bootstrap Capacitor CbsH x 100 nf Circuit of a Typical Application V+ PFC Stage 3ph AC Motor U, VS1 V, VS2 W, VS3 PFC Control VRU VRV VRW RL1 RL2 RL3 RH1 RH2 RH3 DC/DC Converter VB3 VB2 VB1 CbsH1 CbsH2 CbsH3 Dbs HO1 LO1 VB1 VS1 HO2 LO2 VB2 VS2 HO3 LO3 VB3 VS3 Rbs Micro Controller VDD /HIN1 /HIN2 /HIN3 /LIN1 /LIN2 /LIN3 ITRIP VCC /HIN1 /HIN2 /HIN3 /LIN1 /LIN2 /LIN3 RCIN EN ITRIP DriverIC /FAULT VSS Com EN R RTS VSS C1 C2 1 Symbols according to Figure 1 Data Sheet 12/19 Jun. 2010

Characteristics 1000ns t d(off) 1000ns t d(off) t d(on) t d(on) t, SWITCHING TIMES 100ns t r t f t, SWITCHING TIMES 100ns t f 10ns t r 0A 5A 10A 15A 10ns 25 50 75 100 125 I C, COLLECTOR CURRENT Figure 5. Typical switching times as a function of collector current (inductive load, T J =150 C, V CE = 300V, V DD = 15V Dynamic test circuit in Figure A) T vj, JUNCTION TEMPERATURE Figure 6. Typical switching times as a function of junction temperature (inductive load, V DD = 15V, V CE = 300V, I C = 6A Dynamic test circuit in Figure A) E, SWITCHING ENERGY LOSSES 1.25mJ 1.00mJ 0.75mJ 0.50mJ 0.25mJ E on E off E rec E, SWITCHING ENERGY LOSSES 0.15mJ 0.10mJ 0.05mJ E on E off E rec 0.00mJ 0A 5A 10A 15A I C, COLLECTOR CURRENT Figure 7. Typical switching energy losses as a function of collector current (inductive load, T J = 150 C, V CE = 300V, V DD = 15V Dynamic test circuit in Figure A) 0.00mJ 25 50 75 100 125 T vj, JUNCTION TEMPERATURE Figure 8. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 300V, V DD = 15V, I C = 6A Dynamic test circuit in Figure A) Data Sheet 13/19 Jun. 2010

12V VEN, VOLTAGE AT PIN EN 10V 8V 6V 4V 2V V dd = 10.3V 15V 20V IC, COLLECTOR CURRENT 15A 12A 9A 6A 3A 25 125 150 0V 25 50 75 100 T C, CASE TEMPERATURE Figure 9. Typical voltage at pin EN as a function of case temperature 0A 0V 1V 2V 3V V CE, COLLECTOR EMITTER VOLTAGE Figure 10. Typical output characteristic of IGBT as a function of collector emitter voltage (V DD = 15V) IF, forward CURRENT 15A 12A 9A 6A 3A 25 125 150 ZthJC, TRANSIENT THERMAL RESISTANCE 10 0 K/W 10 1 K/W Single Pulse IGBT Diode 0A 0V 1V 2V V F, forward VOLTAGE Figure 11. Typical diode forward current as a function of forward voltage 10 2 K/W 10 6 s 10 5 s 10 4 s 10 3 s 10 2 s 10 1 s P t, PULSE WIDTH Figure 12. Transient thermal impedance as a function of pulse width (D=t P /T) Data Sheet 14/19 Jun. 2010

C, MAXIMUM EXT. BOOTSTRAP CAPACITOR 100uF 10uF 1uF 10V 12V 14V 16V 18V V DD, SUPPLY VOLTAGE Figure 13. Maximum ext. bootstrap capacitor as a function of supply voltage V DD (T J =25 C, single capacitor charging) Data Sheet 15/19 Jun. 2010

Test Circuits and Parameter Definition I F Erec t Erec = 0 v D i F dt t Erec 25% V R I RRM 90% Figure A: Dynamic test circuit Leakage inductance L σ =180nH Stray capacitance C σ =39pF Figure B: Definition of diodes switching characteristics V EN 1V V I IGBT t EN 90% Figure C: Definition of Enable propagation delay LIN1,2,3 HIN1,2,3 2.1V 0.9V t d(off) t f t d(on) t r i CU, i CV, i CW 90% 90% v CEU, v CEV, v CEW 10% 10% 10% 2% t 2% Eoff Eoff t Eoff = Figure D: Switching times definition and switching energy definition t Eon = t Eon vcex i Cx dt Eon vcex i 0 0 Cx dt Data Sheet 16/19 Jun. 2010

t FILIN t FILIN LIN on HIN LIN off on off high LO HO LO low t FILIN1 t FILIN2 t off,hinx HIN t off,hinx < t FILIN1 HO high HIN t off,hinx t FILIN1 < t off,hinx < t FILIN2 HO HIN t off,hinx t off,hinx > t FILIN2 HO Figure E: Short Pulse suppression Data Sheet 17/19 Jun. 2010

Package Outline IKCS12F60AA Note: There may occur discolorations on the copper surface without any effect of the thermal properties. Data Sheet 18/19 Jun. 2010

Package Outline Package Data Weight Description Condition Symbol Value Unit min typ max Note: There may occur discolorations on the copper surface without any effect of the thermal properties. Data Sheet 19/19 Jun. 2010 m P 17 g

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Infineon: IKCS12F60AA