Analysis on Radio Frequency Interferences

Similar documents
Title: Test on 5.8 GHz Band Outdoor WiFi (802.11b/g) Wireless Base Station

Table of Contents 1. GENERAL INFORMATION SYSTEM TEST CONFIGURATION CONDUCTED EMISSIONS TEST RADIATED EMISSION TEST...

8370 Court Avenue, Suite B-1 Ellicott City, Maryland (410) FCC CERTIFICATION

Test sites for EMC measurements

FCC Test Report. Report No.: AGC FE02 CLIENT : INNOVATIVE CONCEPTS AND DESIGN LLC. Attestation of Global Compliance (Shenzhen) Co., Ltd.

FCC ID: A3LSLS-BD106Q. Report No.: HCT-RF-1801-FC003. Plot Data for Output Port 2_QPSK 9 khz ~ 150 khz Middle channel 150 khz ~ 30 MHz Low channel

Signal Generators for Anritsu RF and Microwave Handheld Instruments

Ave output power ANT 1(dBm) Ave output power ANT 2 (dbm)

White Paper. 850 MHz & 900 MHz Co-Existence. 850 MHz Out-Of-Band Emissions Problem xxxx-xxxreva

INTRODUCTION OF RADIO MICROPHONE APPLICATIONS IN THE FREQUENCY RANGE MHz

EXHIBIT 7: MEASUREMENT PROCEDURES Pursuant 47 CFR 2.947

Spectrian Dual Mode Cellular Power Amplifier Model No.: SCLPA 800 CR FCC ID: I2ONTHX51AA

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT FOR. Bluetooth Remote Control for Video Set Top Box MODEL NUMBER: IPRC1000 FCC ID: 2ABTE-L3YJC9

Radiated Emissions, FCC Part 15

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8 BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT FOR. 2.4GHz LE MODULE MODEL NUMBER: RN4020

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

AK-18G Antenna Kit Operation Manual

EMI T E S T R E P O R T

Radiated Spurious Emission Testing. Jari Vikstedt

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-GEN AND RSS-210 CERTIFICATION TEST REPORT FOR BROADCOM BLUETOOTH MODULE MODEL NUMBER: BCM92046MD

Report On. FCC and Industry Canada Testing of the Inmarsat Global Ltd IsatPhone Pro GMR2+ Satellite Phone COMMERCIAL-IN-CONFIDENCE

FCC TEST REPORT. ADDRESS: #2 Creation Rd. 4, Science-Based Ind. Park Hsinchu Taiwan, R.O.C.

FCC Part 22H & 24E Measurement and Test Report

RADIO test report. According to the standards:

Radio ETI031 Laboratory Experiments 2: VECTOR NETWORK ANALYSER, ANTENNA and RECEIVER MEASUREMENTS

5. Average Power Spectral Density

STUDIO TO TRANSMITTER LINKING SYSTEM

Channel 01 (2422MHz)

CEPT/ERC Recommendation ERC E (Funchal 1998)

Measurement of Digital Transmission Systems Operating under Section March 23, 2005

Revision history. Revision Date of issue Test report No. Description KES-RF-14T0042 Initial

TEST REPORT FROM RFI GLOBAL SERVICES LTD

ECC Recommendation (16)04

RF Emissions Test Report To Determine Compliance With: FCC, Part 15 Rules and Regulations

FCC & IC Certification. Test Report. FCC & Industry Canada Certification. Test Report. for Hetronic USA FCC ID: LW9-CS434TXN IC ID: 2219A-CS434TXN

TRANSMITTER MODEL: KAS-2030M

FCC PART 95 MEASUREMENT AND TEST REPORT. Powerwerx, Inc.

OUTDOOR SOUND MODULE/TRANSMITTER MODEL: THE BANDIT

EXHIBIT 10 TEST REPORT. FCC Parts 2 & 24

9. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

Frequency Range Peak Data Quasi-Peak Data Average Data (khz) (khz) (khz)

FCC PART 80 & 90 TEST REPORT

FCC Part 22H&90S Test Report

RECOMMENDATION ITU-R SM.1268*

White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem

and GHz. ECE Radiometer. Technical Description and User Manual

MIL-STD 461F Results for M&A Technology Companion epad Computer

Description of Test Facility

Specification for Conducted Emission Test

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of. DEI Sales Inc. dba Definitive Technology. Model Number: STUDIO SLIM SUBWOOFER

FCC PART 15 B CLASS B TEST REPORT

RIGOL Presents: New Solutions for Affordable Pre- Compliance Testing

TEST REPORT. Issued for: TICATAG 4 rue Louis de Broglie LANNION FRANCE. Issued By:

FCC AND IC CERTIFICATION TEST REPORT

TEST REPORT. Table of Contents

Chambers Accessories Equipment 1 Equipment 2 Amplifiers Antennas Emission

Demo / Application Guide for DSA815(-TG) / DSA1000 Series

RECOMMENDATION ITU-R S.1512

COMMUNICATION CERTIFICATION LABORATORY 1940 West Alexander Street Salt Lake City, UT

EN / EN RADIO TEST REPORT. Shanghai Anviz Technology Co.Ltd Fingerprint & RFID Time Attendance Model No.: A300

: REMOTE CONTROL TRANSMITTER : FEGO PRECISION INDUSTRIAL CO., LTD.

FFT 3010 EMI TEST RECEIVER

Version TEST REPORT NO. DATE DESCRIPTION. HCTR1208FR50 August 29, 2012 First Approval Report

REPORT ON Radio testing of the VERTEX STANDARD VX-2100-G6-45 / VX-2200-G6-45 In accordance with ANSI/TIA/EIA-603, RSS-119. Report number TA000506

APPLICATION FOR CERTIFICATION On Behalf of Futaba Corporation Radio Control Model No.:T10CG-2.4G FCC ID:AZPT10CG-24G Brand : Futaba

RECOMMENDATION ITU-R F Radio-frequency channel arrangements for fixed wireless systems operating in the 13 GHz ( GHz) frequency band

INTERNATIONAL STANDARD

Product Information. Page 1 of 10

Advanced Compliance Solutions, Inc FAU Blvd, Suite 310 Boca Raton, Florida (561)

TEST REPORT. Issued for: ShenZhen MYGT Co.,LTD D3 Tongfuyu Industrial Area Community of Shajing Town, Baoan, Shenzhen, China.

47 CFR Part 15, Subpart C Section

T E S T - R E P O R T. No for. FHS 20/21 Typ 2 ASK 315 MHz. Remote Control Transmitter

7.3 Spurious Emission at Antenna Termianal

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024

EMC Test Report. Tested by: Jeremy O. Pickens, Senior EMC Engineer. Reviewed by: David Schramm, EMC/RF/SAR/HAC Manager

Vertex Standard Co., Ltd. Page 1 of 38

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of. ION Audio, LLC. Portable Karaoke PA speaker with vocal effects

15.247(d) RF Conducted Emissions & Band Edge

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 CERTIFICATION TEST REPORT FOR g WIRELESS LAN + BLUETOOTH PCI-E MINI CARD

VCCI TEST REPORT. According to. V-3/ , TECHNICAL REQUIREMENTS, Class B ITE. Equipment : USB video camera. Model No. : V-U0017 / V-U0021

For Sky. Phone LLC. FCC Part 22H. FCC Rules: 3G Smart Phone. Report No.: By: Tested By: Manager. Prepared. Shenzhen SEM.

Pass* * In the configuration tested, the EUT complied with the standards specified above.

Report No.: TRE Page: 21 of 40 Issued: No Plot 8DPSK - Report Template Version: H00 ( )

FCC RF Test Report : N8000. : FCC 47 CFR Part 2, 22(H), 24(E), 27(L) : PCS Licensed Transmitter Held to Ear (PCE)

FCC Test Report - LTE Band 26 (part 22)

Test Report Version. Test Report No. Date Description. DRTFCC Sep. 12, 2014 Initial issue

FieldFox Handheld Education Series Part 1: Techniques for Precise Interference Measurements in the Field

3.2 Measuring Frequency Response Of Low-Pass Filter :

FCC TEST REPORT. For EASYACC TECHNOLOGY CO., LIMITED Wireless speaker

P. 1 of 18 REPORT 1.1. TV ANTENNA RECONSTITUTION P. 1 of 18. Commercial in Confidence SAMPLE SITE (TV). 3 MARCH 2017.

Page 1 of 51 Report No.: T TEST REPORT FCC ID: 2AGJ5WAP-30. In Accordance with: FCC PART 15, SUBPART C : 2015 (Section 15.

FCC Test Report. : RV340W Dual WAN Wireless-AC VPN Router. Standard : 47 CFR FCC Part : 2400 MHz MHz

TETRA Tx Test Solution

Agilent ESA-L Series Spectrum Analyzers

100 Hz to 22. HP 8566B Spectrum Analyzer. Discontinued Product Support Information Only. Outstanding Precision and Capability

Broadband System - J

Method of measuring the maximum frequency deviation of FM broadcast emissions at monitoring stations. Recommendation ITU-R SM.

FCC Test Report. : Wireless Way Richmond, BC, V6V 3A4 Canada : 47 CFR FCC Part 27 Subpart L

ERC Recommendation 54-01

Measurement and Test Report

Transcription:

Analysis on Radio Frequency Interferences 01 05/06/2002 G. Giovanni O. Benaglia ED DATE CHANGE NOTE APPRAISAL AUTHORITY ORIGINATOR Research Procedure on Interferences 955.203.374 Z 3DB 04165 EAAA 1/14

Analysis on RF interferences on Alcatel s point-point Radio links NB. The analysis on interference carried out might, owing to the sensitivity of the tools being used, NOT permit to locate the interfering co-channels at fields lower than that of the sensitivity of the tools being implemented, and the signals that might still interfere with the useful traffic signal during particular conditions of propagation. Therefore, the fields displayed during the test must be considered as purely indicative. TABLE OF CONTENTS 1 INTRODUCTION... 3 2 TOOLS REQUESTED... 3 3 TEST DESCRIPTION... 5 4 CALCULATION OF THE INTERFERING FIELD LEVEL... 6 5 TOLERANCE VALUES TABLE... 7 6 LIST OF THE DOCUMENTS AND TESTS TO ENCLOSE... 9 7 RESULTS OF THE TEST... 10 7.1. AUXILIARY... 11 8 RESULTS OF THE TESTS... 12 8.1. AUXILIARY... 13 9 LIST OF THE TESTS AND AUXILIARY... 14 10 LIST OF NOTES AND AUXILIARY... 14 11 ACCEPTANCE... 14 955.203. 374 Z 3DB 04165 EAAA 2/14

1 INTRODUCTION The aim of this document is of describing the interference test carried out in the various RF bands implemented by Alcatel s Radio Systems. 2 TOOLS REQUESTED - Spectrum Analyzer with the following characteristics: - Frequency Range - See max. frequency limit to measure. - Power supply - From battery. - Functions - Mask storing function. - Settings - Attenuation_ 0 db - RL - Reference Level_ -10 dbm - Es. Center Freq. 26 GHz - Span_ 112 / 360 MHz - RES BW_ 300 KHz - VID BW_ 300 Hz - Expected field sensitivity -85 dbm. - Amplifier operating in the frequency band being measured Gain = > 25dB NF = < 3.5dB - Antenna or horn antenna concerned with the frequency band being measured Gain 20dB Flare angle 30. - Cable guide adapter for the band being measured. - RF cable for the band being measured. NB. The spectrum sensitivity values indicated are obtained with a: Spectrum Analyzer type - HP 8563E Freq. Max 26GHz. As shown by the spectrum sensitivity values derived from the various examples indicated below, the cited sensitivity values variation is based on the characteristics of the instruments being implemented, on the settings and on the frequency used for the test (the highest the frequency the greater is the loss of the spectrum sensitivity). Therefore, by properly operating on the test setting values (see SPAN and RES BW ) it will be possible to optimize the background spectrum sensitivity. Note that the variation of these test settings corresponds to a SWP time variation. 955.203. 374 Z 3DB 04165 EAAA 3/14

RES BW Variable to consider in the application of the interference calculation. Typical values read with a typical spectrum analyzer. Typical setting Type of Spectrum Analyzer: HP 8563E Freq. Max 26GHz -Center Freq 6 GHz 6 GHz 22 GHz 22 GHz 22 GHz - Attenuation 0 db 0 db 0 db 0 db 0 db - RL Ref. Level - 10 dbm - 10 dbm - 10 dbm - 10 dbm - 10 dbm - Span 112 / 360 MHz 112 / 360 MHz 112 / 360 MHz 112 /360 MHz 112 /360 MHz - RES BW 300 KHz 100 KHz 30 KHz 100 KHz 100 KHz - VID BW 300 Hz 300 Hz 300 Hz 300 Hz 300 Hz - SWP 3 sec. 9 sec. 32 sec. 9.4 sec. 30 sec. -Field sensitivity -90 dbm -95 dbm -95 dbm -90 dbm -90 dbm 955.203. 374 Z 3DB 04165 EAAA 4/14

3 TEST DESCRIPTION - Test drawing: RF Amplifier Spectrum Analyzer To reduce to a minimum the eventual loss induced by the RF cable on the link between the antenna and the amplifier/spectrum analyzer, a battery-powered analyzer is implemented compliant with the Safety Norms. set for tower operation. For the RF test use is made of a horn antenna with a flare angle of 30, and whose characteristics give: - 1 a satisfactory orientation. - 2 A 30 flare angle to reduce the amount of tests needed to cover the 360 needed to locate an interfering signal. The horn antenna must be mounted at a height that is equal to that set for the definite link. The interference test is inclusive of the detection of the current frequency band in 112MHz and 360MHz increments, in H and V polarisation. The bearing tests are split into : - Orientation tests (pointing the remote radio station) within the 30 angle. - Tests on the remaining 330, outside the section s 30 orientation angle. The different way of executing the tests is basically due to the no interference Span section. 112MHz in the remote station direction, and 360MHz in the remaining 330. See Start and Stop Frequency channelling adopted for the link being tested. N.B. The orientation tests within the 30 angle must be carried out throughout the frequency band and with H and V polarization in 112MHz ( Span ) increments. See Centr.Freq. start Ch 1 and stop Ch N' channelling for the link being tested. 955.203. 374 Z 3DB 04165 EAAA 5/14

4 CALCULATION OF THE INTERFERING FIELD LEVEL The following is a description of the formula and limitations adopted to calculate the electromagnetic interfering level accepted at the antenna input: Pi = Pm - Ga + Ac G.Ampli. Pm = 10xLog RBW = (Spectrum Analyser RBW setting) Symbol Rate (Symbol Rate of the interfering signal) Piv = Pi - Pm Pm - Signal level measured by the analyser with 300kHz RBW Ga - Antenna gain Ac - RF signal loss produced by the RF cable between the antenna and the instrument G.Ampli. - Preamplifier gain Pi - Interference level assessed at the input of the antenna. (Measured with 300kHz RBW) Pm - Difference between the signal level read through the analyser and the true signal level Piv - True incoming interfering level (based on the type of interfering signal). 955.203. 374 Z 3DB 04165 EAAA 6/14

5 TOLERANCE VALUES TABLE Pi = Ps/Piv Maximum allowed co-channel interfering value referred to the Ps useful signal. Ps - Signal level wanted at the input of the antenna Maximum allowed co-channel interfering value See relevant Radio System Specifications Typical value Pi - 30 db Interference input direction Station: Measured value Piv= - dbm Station: Measured value Piv= - dbm The presence of interferences with values lower than those reported on the table can, in some cases, access the orientation point. In this case, owing to the high antenna gain their contribute to interference would no longer be considered unimportant. To prevent this from occurring, more restrictive limits should be reported on the table which would though, go beyond the sensitivity limits of the test instruments. Therefore, should such a condition arise, the solution indicated is that of searching among the free channels within the range. Should the channel necessarily be the one indicated and should it result to be interfered with, then proceed evaluating interference through the antenna that will be implemented on the link. The tests are stored on the spectrum analyser and then printed out thus offering a complete documentation. The documentation must be inclusive of the printouts of all the tests made with specific references: Spectrum Analyser setting Parameters Centre Frequency of each bearing. Start and Stop Band Frequency indication. Antenna pointing coordinate for each bearing. Remote station coordinate. 955.203. 374 Z 3DB 04165 EAAA 7/14

Typical interference calculation Pi = Pm - Ga + Ac G.Amplif. = - 70-20 + 3 30 = - 117 dbm Pm = 10XLog RBW = 10XLog 300K = -1 9,3dB = -20dB (RBW of the Spectrum Analyser) Symbol Rate 25,4 Mb/s (Symbol Rate of a 128QAM STM1 signal) Piv = Pi - Pm = - 117 ( - 20 ) = - 97 dbm Pi = - 117 dbm; Interference value assessed at the input of the antenna (read with the Spectrum Analyser) Piv = - 97 dbm; True interference value assessed at the input of the antenna. NB: Therefore, assuming that : the useful signal of a SDH Radio System is considered valid up to approx. 75dBm fields, an interfering co-channel is considered as of no consequence for field of 30dBr below the useful signal level (-75 dbm). To this concern a specific test sensitivity is required. To reach this, apply an amplifier with a 25dB gain and NF lower than 3.5dB at the input of the Spectrum Analyser. 955.203. 374 Z 3DB 04165 EAAA 8/14

6 LIST OF THE DOCUMENTS AND TESTS TO ENCLOSE Date of test execution Name of the site Address Type of structure Height of the antenna Azimuth of the link ( coordinate ) Frequency band Channelling measured with Start / Stop Freq.. Instrument used and date of calibration Antenna used and characteristics (flare angle and gain) Printout of the tests made with Vertical polarisation Printout of the tests made with Horizontal polarisation 955.203. 374 Z 3DB 04165 EAAA 9/14

7 RESULTS OF THE TEST NAME OF THE LOCAL RADIO STATION NAME OF THE REMOTE RADIO STATION Height of the antenna Azimuth of the link Frequency band Channelling measured with Start / Stop Freq.. Brand and type of Spectrum Analyser: Date of calibration Type of Antenna used: Diameter of the antenna Flare angle of the antenna Antenna gain Amplifier gain Printout of the tests made with Vertical polarisation Printout of the tests made with Horizontal polarisation / Date: Customer Operator: Alcatel Operator: 955.203. 374 Z 3DB 04165 EAAA 10/14

7.1. AUXILIARY 955.203. 374 Z 3DB 04165 EAAA 11/14

8 RESULTS OF THE TESTS NAME OF THE LOCAL RADIO STATION NAME OF THE REMOTE RADIO STATION Height of the antenna Azimuth of the link Frequency band Channelling measured with Start / Stop Freq. Brand and type of Spectrum Analyser: Date of calibration Type of Antenna used: Diameter of the antenna Flare angle of the antenna Antenna gain Amplifier gain Printout of the tests made with Vertical polarisation Printout of the tests made with Horizontal polarisation / Date: Customer Operator: Alcatel Operator: 955.203. 374 Z 3DB 04165 EAAA 12/14

8.1. AUXILIARY 955.203. 374 Z 3DB 04165 EAAA 13/14

9 LIST OF THE TESTS AND AUXILIARY 10 LIST OF NOTES AND AUXILIARY 11 ACCEPTANCE Date / / On behalf of CUSTOMER:........ On behalf of ALCATEL:........ END OF DOCUMENT 955.203. 374 Z 3DB 04165 EAAA 14/14