The Basics. HECRAS Basis Input. Geometry Data - the basics. Geometry Data. Flow Data. Perform Hydraulic Computations. Viewing the Output

Similar documents
Example Application C H A P T E R 4. Contents

CE 365K Exercise 2: HEC-RAS Modeling Spring 2014 Hydraulic Engineering Design

Field Observations and One-Dimensional Flow Modeling of Summit Creek in Mack Park, Smithfield, Utah

3 Table of Contents. Introduction. Installing and Activating... 8 Getting Updates Basic Working Procedures

Floodplain Modeling 101. Presentation Goals

Hydraulics and Floodplain Modeling Managing HEC-RAS Cross Sections

Hydraulics and Floodplain Modeling Managing HEC-RAS Cross Sections

Loy Gulch, Paint Pony, East Fork Paint Pony LOMR

APPENDIX I FLOODPLAIN ANALYSIS

APPENDIX E - FLOODPLAIN INFORMATION

URBAN DRAINAGE AND FLOOD CONTROL DISTRICT

Water Surface Profiles

Stream Design: From GEOPAK to HEC-Ras

Iowa Bridge Sensor Demonstration Project Phase I and Phase II Executive Summary Report. Floodplain Management Services Silver Jackets Pilot Study

Presented By: Todd Ward Project Manager

Re: Survey of constructed cross section per Restoration Framework on Wind River, Fremont County, WY

North Carolina No-Rise Guidance Document

Floods On The Minnesota River Planning For St. Peter

AutoCAD 2016 for Civil Engineering Applications

Existing and Design Profiles

Appendix N: Data Capture Guidelines Summary of Changes

CONTOURS SURVEYING 1 CE 215 CHAPTER -3- Ishik University / Sulaimani Civil Engineering Department 12/7/2017. Ishik University / Sulaimani

50.24 Type, Size and Location Plans for Culverts, Bridges and Culvert Bridges

Digital Letter of Map Change (DLOMC) Guidelines May 2010

Module 1C: Adding Dovetail Seams to Curved Edges on A Flat Sheet-Metal Piece

Digital Flood Hazard Area Delineation (DFHAD) Guidelines

Creo Revolve Tutorial

Anne Arundel County Dept. of Inspections and Permits Storm Drain Checklist

Flood Hazard Area Delineation Guidelines MOSER & ASSOCIATES ENGINEERING ICON ENGINEERING URBAN DRAINAGE AND FLOOD CONTROL DISTRICT

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Relief Well Spacing

Landscaping Tutorial

Authorized Agent: City of Manassas Check List Attached: Contact: Address: Phone Number: Fax Number: Developer s Name: Phone Number:

Town of Westlake Construction Plans Review Checklist

PART XIII: HYDRAULIC/ HYDROLOGY SURVEYS

Introduction to Aerial Photographs and Topographic maps (Chapter 3)

Comparison of Flow Characteristics at Rectangular and Trapezoidal Channel Junctions

Date Requested, 200_ Work Order No. Funding source Name of project Project limits: Purpose of the project

Landscaping Tutorial. Adding a Driveway Adding Library Objects to Your Plan

Roof Tutorial Wall Specification

Surveying & Measurement. Detail Survey Topographic Surveying

Section E NSPS MODEL STANDARDS FOR TOPOGRAPHIC SURVEYS Approved 3/12/02

Landscaping Tutorial

AutoCAD Civil 3D 2009 ESSENTIALS

1 Sketching. Introduction

Learning Guide. ASR Automated Systems Research Inc. # Douglas Crescent, Langley, BC. V3A 4B6. Fax:

Introduction to Aerial Photographs and Topographic maps (Chapter 7, 9 th edition) or (chapter 3, 8 th edition)

PRE-LAB for: Introduction to Aerial Photographs and Topographic maps (Ch. 3)

CITY OF TUMWATER 555 ISRAEL RD. SW, TUMWATER, WA (360)

Module 1E: Parallel-Line Flat Pattern Development of Sheet- Metal Folded Model Wrapping the 3D Space of An Oblique Circular Cylinder

HVAC in AutoCAD MEP: New and Improved. David Butts Gannett Fleming MP3724-L. Learning Objectives. At the end of this class, you will be able to:

Modeling an Airframe Tutorial

List of Figures. List of Forms

1. Working with Bathymetry

Module 2: Radial-Line Sheet-Metal 3D Modeling and 2D Pattern Development: Right Cone (Regular, Frustum, and Truncated)

Alternatively, the solid section can be made with open line sketch and adding thickness by Thicken Sketch.

BRASELTON WATER AND WASTEWATER DEPARTMENT CONSTRUCTION PLAN REVIEW CHECKLIST May 2006

Module 1G: Creating a Circle-Based Cylindrical Sheet-metal Lateral Piece with an Overlaying Lateral Edge Seam And Dove-Tail Seams on the Top Edge

for Solidworks TRAINING GUIDE LESSON-9-CAD

The Benefits and Appropriate Use of Base Flood Approximate Shapefiles to Calculate Zone A Base Flood Elevations. Jeremy Kirkendall, CFM June 12, 2013

FLOOD ESTIMATE FROM POSSIBLE DAM BREAK SCENARIO OF SUN KOSI LAND SLIDE DAM, NEPAL. O. P. GUPTA Director Central Water Commission

SECTION 100 PRELIMINARY CONSIDERATIONS & INSTRUCTIONS

QUANTITY SURVEYS. Introduction

Module 2: Mapping Topic 3 Content: Topographic Maps Presentation Notes. Topographic Maps

CHECKLIST PRELIMINARY SUBDIVISION AND PRELIMINARY SITE PLAN

Lab #4 Topographic Maps and Aerial Photographs

New Sketch Editing/Adding

Plan Preparation Checklist

Table of Contents. Lesson 1 Getting Started

ME Week 2 Project 2 Flange Manifold Part

Ansoft Designer Tutorial ECE 584 October, 2004

ENVI.2030L Topographic Maps and Profiles

An Introduction to Dimensioning Dimension Elements-

Draw IT 2016 for AutoCAD

Experiment P01: Understanding Motion I Distance and Time (Motion Sensor)

Landscaping Tutorial. Chapter 5:

Design Data 12M. Hydraulic Capacity of Precast Concrete Boxes. RISE, Millimeters. Span Millimeters

UNITED STATES MARINE CORPS FIELD MEDICAL TRAINING BATTALION Camp Lejeune, NC

2.5 Design of Channels

1. The topographic map below shows a depression contour line on Earth's surface.

B-PERMIT PLAN CHECK MANUAL

B.2 MAJOR SUBDIVISION PRELIMINARY PLAN CHECKLIST

What's the Latest with InRoads Storm & Sanitary SS1?

Toothbrush Holder. A drawing of the sheet metal part will also be created.

Quick Start for Autodesk Inventor

RE: Engineered Riffle Concepts for Sodom Dam Removal Grade Control Elements

Subdivision Cross Sections and Quantities

DEVELOPMENT PLAN CHECKLIST

Supporting Guidance Note

CONCEPT REVIEW GUIDELINES

CVE 372 HYDROMECHANICS OPEN CHANNEL FLOW II

< Then click on this icon on the vertical tool bar that pops up on the left side.

Laboratory 1: Motion in One Dimension

SUMMIT COUNTY PLANNING AND ENGINEERING DEPARTMENT

2809 CAD TRAINING: Part 1 Sketching and Making 3D Parts. Contents


Module 1H: Creating an Ellipse-Based Cylindrical Sheet-metal Lateral Piece

MAJOR GRADING PLAN CHECKLIST

Figure 1: NC EDM menu

31, The following isoline map shows the variations in the relative strength of Earth's magnetic field from 1 (strong) to 11 (weak).

Contour An imaginary line on the ground surface joining the points of equal elevation is known as contour.

Transcription:

The Basics HECRAS Basis Input Geometry Data. Flow Data. Perform Hydraulic Computations by G. Parodi WRS ITC The Netherlands Viewing the Output ITC Faculty of Geo-Information Science and Earth Observation of the University of Twente Before you start Layout the model Extent of study area Area of interest Boundary conditions Section locations and orientation Geometry Data - the basics Cross-section information Roughness coefficients Distance between sections Bridge/culvert data 1

Cross Section Locations Cross section orientation Place and measure cross sections when there is a change in: Slope Discharge Roughness Channel shape Very important Survey perpendicular to flow May not be a straight line Control (bridge, levee, weir, etc) to flow Cross Section Spacing: Where to measure? Reach Lengths - Are they constant? X1 X2 In general: Widely spaced for flat, very large rivers and closer for steep small streams Very large rivers (Mississippi) on the order of a mile (1600 m) For large rivers on the order of 1000 feet (300 m) For slower streams on the order of 200 feet (60 m) For small creeks on the order of 25 feet (8 m) For supercritical reaches, on the order of 10 to 50 feet (3 to 15 m) For drop structures, as low as 5 feet (1 m) Can interpolate if reasonable (check results) Not too close (1, may drop friction loses) High flow Low flows to flow 2

Survey Bridge Surveys Survey shots must describe the channel and overbank flow area Section should extend across the entire floodplain Plot cross-section data, especially electronic surveys Take photographs Assume modeler has never seen the stream Note vegetation changes in cross-section e.g. field, trees, grass buffer, etc. No 3-point cross-sections Profile road and bridge deck centerline Pier width, location Low Chord Elevation Skew Angle (bridge - stream) Bridge opening HEC-RAS 3.0 Hydraulic User Manual, Figure 5.1 Starting HEC-RAS Basic Input - the model Double Click on HEC- RAS icon. ITC Faculty of Geo-Information Science and Earth Observation of the University of Twente 3

Starting a Project Starting a Project Select a working directory Then enter project title and file name Establish the Unit first Click on File - New Project from the main menu to start a project Starting a Project Stream Geometry Data To add data, click on Edit and Geometric Data Check the unit system before accepting. Units can be change before or after the model is created. Or, you can click on the Geometry Editor button: 4

Stream Geometry Data River System Schematic Suggested order of data entry: Add River Reach(es) along with any Junctions (actually, this must be first). Add Cross-Section names, elevation-station data, n values, bank stations, reach lengths, loss coefficients, etc. Add Road/Bridge/Culvert and/or Weir/Spillway data. Must be added before any other features. Draw and connect the reaches of the stream system. Draw from upstream to downstream, which will coincide with a flow direction arrow - generally from top of screen to bottom. Double click on last point to end. Connection of 3 reaches is a junction. Can model from single reach to complicated networks. The river can even split apart and then come back together. Can accentuate by adding background bitmap. River System Schematic River System Schematic To add a River Reach, select the River Reach button from the Cross-Section Editor Window. Then add line(s) representing the schematic of the river(s) you are modeling. Single click between each segment of the line. After your last line segment, double click to end. A window then pops up to allow you to enter the: River name Reach name 5

River System Schematic Adding Cross Sections to Reaches The program then displays the river and its name in blue. The reach name is in black. Tributaries and/or additional reaches can be added to the main reach using the same procedure. To add cross-section data, click on the Cross-Section button from the Geometry Data Window. This brings up the Cross Section Data window from where you choose Options and then Add a new Cross-Section Adding Cross Sections to Reaches Entering Cross Section Data Enter the cross-section name (it must be a number It must be in numerical order - upstream = You can enter a lengthy description of the cross-section. highest number) and select OK. Numbering is not related to progressive. To add a cross section between two existing ones, add a number in between. Number can be real or integers. 3 2 1 6

Entering Cross Section Data Entering Cross Section Data This is the main Cross- Section Data window. Here you enter the basic cross-section data such as elevation-station data, reach lengths, n values, bank stations, and contraction and expansion loss coefficients. Note help note There are several options available to further refine the cross section data. File editing tools Geometric transformations and rescaling tools Editor of blocking, no flow and disturbances Editors and rescaling of roughness Note: Orientation is looking downstream Entering Cross Section Data Entering Cross Section Data A quick visual check of the data is available through the Plot Cross Section (in separate window) option. In x the progressive In y the absolute elevation with respect to a datum Dots show stations Red dots separate channel from banks (left and right) n values display on top Coordinates display as the mouse is moved around. ORIENTATION IS LOOKING DOWNSTREAM!! XSections can be plotted from the editor. 7

Entering Cross Section Data Notes on Cross-Section Data Other but present sections can be shown in the same plot. Ideal to check relative shape and elevation differences. X-sections should extend across the entire floodplain and be perpendicular to anticipated flow lines (approximately perpendicular to ground contour lines). X-sections should accurately represent stream and floodplain geometry. Put in where changes occur in discharge, slope, shape, roughness, and bridges. Enter X-Section elevation-station data from left to right as seen when looking downstream. Cross-Sections should start far enough downstream to zero out any errors in boundary conditions assumptions (for sub-critical profile). Far from upstream for super-critical flow. The section of analysis should be farm from boundary errors. Study Area Actual Profile Uncertain WS Notes on Cross-Section Data (cont) Location of X-sections within a reach varies with the intensity of the study and the conditions of the reach The choice of friction loss equations will also affect X-section spacing and predicted flood elevations Higher number X-section river stations are assumed to be upstream of lower number river stations. Slope areas require more X-sections. The left side of the X-section, looking downstream, is assumed to have the lower X values and progress right as the X values increase, (can not narrow the section) Notes on Cross-Section Data (cont.) The left and right channel banks, must be given at a station located in the X- section elevation-station data set. (Figure shows only right bank) Boundaries are fixed, can not reflect changes during a storm (scour deposition). X-section endpoints that are below the computed water surface profile will be extended vertically to contain the routed flows with area/wetted perimeter reflecting this boundary condition. To avoid this, be certain that the cross section extends till a place where flood does not occur. Vertical extension of the section endpoint if the water floods it X original right bank endpoint Better right bank endpoint 8

Notes on Cross-Section Data (cont.) Consider what is being modeled. The program can only reflect what is being entered. Notes on Cross-Section Data (cont.) HEC-RAS has an option to create interpolated cross sections. It can be used to create more in between sections as long as there are not section singularities. By reach For example: unless this hole is blocked, the model will assume that this area conveys flow Notes on Cross-Section Data (cont.) HEC-RAS has an option to create interpolated cross sections in a reach or between two sections Reach Lengths Measured distances between X-Sections, reported as distance to D.S. X-Sections. X1 X2 Original sections Interpol. sections 3 distances!!: Left overbank, right overbank, and channel They can be very different for channels with large meander or in a bend of a river. A discharge weighted total reach length is determined by HECRAS based on the discharges in the main channel and left and right overbank segments. L L= lob Q lob Q + L lob ch + Q Q ch ch + L + Q rob rob Q rob 9

Expansion & Contraction Coefficients Contraction Expansion No Transition 0.0 0.0 Gradual Transition (default) 0.1 0.3 Typical Bridge Transition 0.3 0.5 Typical values for gradual transitions in supercritical flow are 0.05 for contraction and 0.10 for expansions. Constructed prismatic channels should have expansion and contraction coefficients of 0.0 Ineffective Flow Areas Ineffective flow areas are used to model portions of the cross-section in which water will pond, but the velocity of that water in the downstream direction is equal to zero. This water is included in the storage and wetted cross section parameters, but not in the active flow area. No additional wetted parameter is added to the active flow area (unlike encroachments). Once ineffective flow area is overtopped, then that specific area is no longer considered ineffective. Commonly used in culverts, near road crossings. Ineffective Flow Areas Once water surface goes above the established elevations, then that specific area is no longer considered ineffective. Two types of Ineffective Flow Areas : 1. Normal where you supply left and right stations with elevations which block flow to the left of the left station and to the right of the right station Normal Ineffective Flows Once water surface goes above the established elevations of the block, then that specific area is no longer considered ineffective. 2. Blocked where you can have multiple (up to 10) blocked flow areas within the X-section Blocked Ineffective Flows 10

Ineffective Flow Areas Option is from x-section window... Ineffective Flow Areas The plotted x-section looks like this: which brings up this window: Ineffective Flow Areas Blocked Obstructions Used to define areas that will be permanently blocked out. Decreases flow area and increases wetted perimeter when the water comes in contact with it. Two types of blocked obstructions are available - Normal and Multiple. They are very similar to the Ineffective Flow areas, except that the blocked areas are never available as water flow Think of them as dead storage zones areas. Water can get to the off-sides of these obstructions. 11

the blocked areas are never available as water flow areas. Blocked Obstructions Normal Blocked Obstruction Option is from x-section window... which brings up this window: the blocked areas are never available as water flow areas. Multiple Blocked Obstructions Blocked Obstructions Levees The plotted x- section looks like this: No water can get outside of a levee until it is overtopped. Simulated by a vertical wall. Additional wetted perimeter is included when water comes in contact with the levee wall. 12

Levees Levees Option is from x-section window... which brings up this window: Levees Levees vs. Ineffective Flow Areas Are conceptually similar but very different hydraulically The plotted x-section looks like this: Ineffective flow areas is used where water is present to the left/right of the ineffective station but the velocity is zero. Volume included in storage and wetted perimeter calculations but not in conveyance. (think: ponded area) A levee acts as a vertical wall. No water occupied the space to the left/right of the levee unless the levee elevation is exceeded. The distance that the levee is in contact with the water is included in the wetted perimeter calculations. (think: wall) ITC Faculty of Geo-Information Science and Earth Observation of the University of Twente 52 13

Entering Cross Section Data After entering geometry data, it is wise to save it. Recommend doing this often as you enter data. Flow Data Enter Flow Data Enter the Steady Flow Data Editor from the main menu Enter Flow Data This brings up the Steady Flow Data Window. You can have up to 100 profiles. One profile corresponds to one possible flow input configuration for the system. River geometry does not change for different profiles. I.e it brought up 3 boxes when 3 profiles are specified. Or, you can select the Steady Flow Data button: 14

Enter Flow Data Enter the input discharges for each profile in appropriate box. Each river and branch require one the same number of profiles. In the example, you enter 3 profiles, then 3 boxes appear. For the river Test in the Reach Main the 3 input discharges are entered in the profiles. Enter Flow Data User can add flow changes at a certain station along one certain reach. Select River Station Click Add a Flow Change Location, and select the station and enter the added flow to the reach. NOTE: Normally the flow input will be required at least in the most upstream section of each river branch (program default). Enter Flow Data: Boundary Conditions Set the boundary conditions by selecting Reach Boundary Conditions This brings up Steady Flow Boundary Conditions window. You can set the boundary for all profiles at once, or separately. Enter Flow Data There are 4 different methods for specifying the starting water surface at the boundaries in steady flow: known elevation: When the elevation of the water is fixed (big lakes or sea) critical depth: up and downstream of a critical section, the river branch is hydraulically separated and independent, normal depth: The slope of the water surface is known. rating curve: The rating curve at the boundary is known, 15

Enter Flow Data After selecting either the upstream or downstream data box and then selecting method for providing starting conditions, a window appears for entering your data. Boundary conditions are entered: downstream end for sub-critical flow upstream end for super-critical both for mixed (when in the reach there are both sub- and super-critical sections) Enter Flow Data There are several options available in the Options window of the Steady Flow Data window such as changing profile names, applying a ratio to all flows, etc. Make a consultation of the manual for details. Enter Flow Data - Observed Water Surfaces Enter Flow Data - Observed Water Surfaces Under Options, select Observed WS A menu appears. Select River Station Select Add an Obs WS Location Enter observed elevation. The observation of the water elevation must be in accordance with the profile Where do you get observed data? Use calibration data - survey debris lines, mud marks, gage data, etc 16

Enter Flow Data Save Project After entering your flow data, it is suggested you save it to a file. After entering and saving the geometry and flow data, it is suggested that you save your project from the main HEC- RAS File Menu. Saving is not automatic in HECRAS. RED NUMBERS while entering data mean that the data is not saved yet!! Perform the Hydraulic Computations Perform the Hydraulic Computations Enter the Steady Flow Analysis window from the main menu or select the Steady Flow Analysis button: 17

Perform the Hydraulic Computations Perform the Hydraulic Computations In the window: you can set flow regime, select geometry and/or flow files, and start the computations. The user must select the adequate subcritical, supercritical or mixed options depending on the river regime. A mistake in the river regime selection can be corrected after understanding the warnings & graphical output ALWAYS SAVE: Under File, select Save Plan As Create a project title. it brings up a window allowing you to enter a short plan identifier, used in printouts and reports. There are several options available for the hydraulic computations User must refer to the manual for details Perform the Hydraulic Computations After selecting the compute button, HECRAS does it s magic. Simulation creates files of considerable size. Viewing the Output 18

View the Output View the Output Many output formats to view within the view menu: plotted cross-sections, profiles, rating curves 3-D views cross-section profile tabular data Others View Cross-Sections Or, you can select the appropriate button: View the Output Plot Profiles View the Output See observed water surface profiles when you plot the profile You can plot many profiles at the same time. Zoom and Pan possibilities for details. 19

View the Output Plot profiles of different data View the Output Plot Rating Curves for a specified station View the Output View the Output - Plot 3-D View Note: Cross-section widths should be consistent for better presentation. View Cross-Section Table Several geometric, energetic and hydraulic information is available per cross section. 20

View the Output Output: Errors, Warnings, & Notes Errors: problems that prevents the program from running. The user must change something. Warnings: does not prevent the program from running but the user should examine and review. The user may want to change some input. Notes: provides information about how the program is performing the calculations, user should review. Under Options, select Define Table to see more variables Generate Reports Sample view of the report: You can select Generate Report from the HEC-RAS main menu. There are several options available for the report content. The report generated can be viewed or the resulting file printed. 21

Hydraulic Model Accuracy Absolute accuracy: how good is your data? +/- 0.5 foot Relative accuracy: very good (compare one condition to another) 22