FEATURES GENERAL DESCRIPTION. CCD Element Linear Image Sensor CCD Element Linear Image Sensor

Similar documents
CCD525 Time Delay Integration Line Scan Sensor

STA1600LN x Element Image Area CCD Image Sensor

PRELIMINARY. CCD 3041 Back-Illuminated 2K x 2K Full Frame CCD Image Sensor FEATURES

CCD1600A Full Frame CCD Image Sensor x Element Image Area

STA3600A 2064 x 2064 Element Image Area CCD Image Sensor

CCD1600LN x Element Image Area Full Frame CCD Image Sensor

IT FR R TDI CCD Image Sensor

Ultra-high resolution 14,400 pixel trilinear color image sensor

KAF- 1401E (H) x 1035 (V) Pixel. Enhanced Response. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company

KAF- 1602E (H) x 1024 (V) Pixel. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company. Image Sensor Solutions

KAF E. 512(H) x 512(V) Pixel. Enhanced Response. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company

KAF-3200E / KAF-3200ME

KAF (H) x 1024 (V) Pixel. Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company

An Introduction to CCDs. The basic principles of CCD Imaging is explained.

Fundamentals of CMOS Image Sensors

CCD30-11 NIMO Back Illuminated Deep Depleted High Performance CCD Sensor

Marconi Applied Technologies CCD30-11 Inverted Mode Sensor High Performance CCD Sensor

KAF-3200E / KAF-3200ME

the need for an intensifier

CCD Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

TOSHIBA CCD Linear Image Sensor CCD (charge coupled device) TCD2561D

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1208AP

KLI x 3 Tri-Linear CCD Image Sensor. Performance Specification

Preliminary TCD2704D. Features. Pin Connections (top view) Maximum Ratings (Note 1)

CCD30-11 Front Illuminated Advanced Inverted Mode High Performance CCD Sensor

KAF- 6302LE (H) x 2034 (V) Pixel. Enhanced Response Full-Frame CCD Image Sensor With Anti-Blooming Protection. Performance Specification

Introduction. Chapter 1

Overview. Charge-coupled Devices. MOS capacitor. Charge-coupled devices. Charge-coupled devices:

CCD55-30 Inverted Mode Sensor High Performance CCD Sensor

TCD2557D TCD2557D FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device)

An Introduction to Scientific Imaging C h a r g e - C o u p l e d D e v i c e s

CCD97-00 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

KAF -0402E/ME. 768 (H) x 512 (V) Enhanced Response Full-Frame CCD DEVICE PERFORMANCE SPECIFICATION IMAGE SENSOR SOLUTIONS. January 29, 2003 Revision 1

CCD30 11 Back Illuminated High Performance CCD Sensor

TCD1209DG TCD1209DG FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW)

CCD42-10 Back Illuminated High Performance AIMO CCD Sensor

Marconi Applied Technologies CCD39-01 Back Illuminated High Performance CCD Sensor

CCD42-40 NIMO Back Illuminated High Performance CCD Sensor

CCD47-10 NIMO Back Illuminated Compact Pack High Performance CCD Sensor

Marconi Applied Technologies CCD47-20 High Performance CCD Sensor

TCD1501D TCD1501D FEATURES PIN CONNECTION. MAXIMUM RATINGS (Note 1) (TOP VIEW) TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device)

Photons and solid state detection

ILX pixel CCD Linear Image Sensor (B/W)

E2V Technologies CCD42-10 Inverted Mode Sensor High Performance AIMO CCD Sensor

CCD97 00 Front Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

KAF-4301E. 2084(H) x 2084(V) Pixel. Enhanced Response Full-Frame CCD Image Sensor. Performance Specification. Eastman Kodak Company

7926-pixel CCD Linear Image Sensor (B/W) For the availability of this product, please contact the sales office.

CCD67 Back Illuminated AIMO High Performance Compact Pack CCD Sensor

Part I. CCD Image Sensors

TCD1711DG TCD1711DG. Features. Pin Connection (top view) Maximum Ratings (Note 1)

Lecture 7. July 24, Detecting light (converting light to electrical signal)

The Charge-Coupled Device. Many overheads courtesy of Simon Tulloch

CCD77-00 Front Illuminated High Performance IMO Device

functional block diagram (each section pin numbers apply to section 1)

CCD47-20 Back Illuminated NIMO High Performance NIMO Back Illuminated CCD Sensor

MAIN FEATURES OVERVIEW GENERAL DATA ORDERING INFORMATION

CCD Characteristics Lab

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1304AP

Introduction to CCD camera

TSL LINEAR SENSOR ARRAY

FPA-320x256-C InGaAs Imager

E2V Technologies CCD42-80 Back Illuminated High Performance CCD Sensor

CCD Analogy BUCKETS (PIXELS) HORIZONTAL CONVEYOR BELT (SERIAL REGISTER) VERTICAL CONVEYOR BELTS (CCD COLUMNS) RAIN (PHOTONS)

Charged Coupled Device (CCD) S.Vidhya

ams AG TAOS Inc. is now The technical content of this TAOS datasheet is still valid. Contact information:

ILX pixel CCD Linear Image Sensor (B/W)

Last class. This class. CCDs Fancy CCDs. Camera specs scmos

KAF-6303 IMAGE SENSOR 3072 (H) X 2048 (V) FULL FRAME CCD IMAGE SENSOR JULY 27, 2012 DEVICE PERFORMANCE SPECIFICATION REVISION 1.

TSL1401R LF LINEAR SENSOR ARRAY WITH HOLD

Block Diagram GND. amplifier 5 GND G R B

TSL1401R LF LINEAR SENSOR ARRAY WITH HOLD

CCD42-40 Ceramic AIMO Back Illuminated Compact Package High Performance CCD Sensor

TSL1406R, TSL1406RS LINEAR SENSOR ARRAY WITH HOLD

TSL201R LF 64 1 LINEAR SENSOR ARRAY

Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device) TCD1205DG

Lecture 8 Optical Sensing. ECE 5900/6900 Fundamentals of Sensor Design

TOSHIBA CCD Linear Image Sensor CCD (Charge Coupled Device) TCD1209DG

Photodiode Detector with Signal Amplification XB8816R Series

Application Notes: Discrete Amplification Photon Detector 5x5 Array Including Pre- Amplifiers Board

CCD42-80 Back Illuminated High Performance CCD Sensor

Properties of a Detector

KAF (H) x 2085 (V) Full Frame CCD Image Sensor

KLI-5001G Element Linear CCD Image Sensor. Performance Specification. Eastman Kodak Company. Image Sensor Solutions

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014

Linear X-Ray Photodiode Detector Array with Signal Amplification

Pixel. Pixel 3. The LUMENOLOGY Company Texas Advanced Optoelectronic Solutions Inc. 800 Jupiter Road, Suite 205 Plano, TX (972)

The Condor 1 Foveon. Benefits Less artifacts More color detail Sharper around the edges Light weight solution

The new CMOS Tracking Camera used at the Zimmerwald Observatory

KAF-3200 IMAGE SENSOR 2184 (H) X 1472 (V) FULL FRAME CCD IMAGE SENSOR JULY 27, 2012 DEVICE PERFORMANCE SPECIFICATION REVISION 1.

ILX554B pixel CCD Linear Sensor (B/W) for Single 5V Power Supply Bar-code Reader

FAN5602 Universal (Step-Up/Step-Down) Charge Pump Regulated DC/DC Converter

CCDS. Lesson I. Wednesday, August 29, 12

Description. TC247SPD-B0 680 x 500 PIXEL IMPACTRON TM MONOCHROME CCD IMAGE SENSOR SOCS091 - DECEMBER REVISED MARCH 2005

PAPER NUMBER: PAPER TITLE: Multi-band CMOS Sensor simplify FPA design. SPIE, Remote sensing 2015, Toulouse, France.

PentaVac Vacuum Technology

S-8604BWI LINEAR IMAGE SENSOR IC FOR CONTACT IMAGE SENSOR

Simulation of High Resistivity (CMOS) Pixels

Applications S S S S 1024

ILX526A pixel CCD Linear Image Sensor (B/W)

Transcription:

CCD 191 6000 Element Linear Image Sensor FEATURES 6000 x 1 photosite array 10µm x 10µm photosites on 10µm pitch Anti-blooming and integration control Enhanced spectral response (particularly in the blue region) Excellent low-light-level performance Low dark signal Very high responsivity High speed operation Dynamic range typical: 15000:1 Over three V peak-to-peak outputs AR coated window RoHS Compliant Special selections available - consult factory GENERAL DESCRIPTION The CCD191 is a 6000 element line image sensor designed for scanning applications which require very high resolution, high sensitivity and very wide dynamic range. Incorporation of on-chip anti-blooming and integration controls allow the CCD191 to be extremely useful in industrial measurement and control environments, or in environments where lighting conditions are difficult to control. The CCD191 is a third generation device having an overall improved performance compared with first and second generation devices, including enhanced blue response and excellent low light level performance. The photoelement size is 10µm (0.39 mils) x 10µm (0.39 mils) on 10µm (0.39 mils) centers. The device is manufactured using Fairchild Imaging s advanced charge-coupled device n-channel isoplanar buried-channel technology. 1801 McCarthy Blvd. Milpitas CA 95035 (800) 325-6975 www.fairchildimaging.com Rev A 1 of 8

FUNCTIONAL DESCRIPTION The CCD191 consists of the following functional elements illustrated in the Block Diagram and Circuit Diagram. Photosites A row of 6000 image sensor elements separated by a diffused channel stop and covered by a silicon dioxide surface passivation layer. Image photons pass through the transparent silicon creating hole-electron pairs. The photon generated electrons are accumulated in the photosites. The amount of charge accumulated in each photosite is a linear function of the incident illumination intensity and the integration period. The output signal will vary in an analog manner from a thermally generated background level at zero illumination to a maximum at saturation under bright illumination. Two Transfer Gates Gate structures adjacent to the row of image sensor elements. The charge packets accumulated in the photosites are transferred in parallel via the transfer gates (X) to the transport shift registers whenever the transfer gate voltages go high. Alternate charge packets are transferred to the A and B transport registers. Two Analog Shift Registers The transport shift registers are used to move the light generated charge packets delivered by the transfer gates. (1A, 1B, 2A, 2B) serially to the charge detector/ amplifier. The parallel layout of the last elements of the two transport registers provides for simultaneous delivery of charge packets at the output amplifiers. A Gated Charge Detector/Amplifier Charge packets are transported to a precharge capacitor whose potential changes linearly in response to the quantity of the signal charge delivered. This potential is applied to the input gate of the two-stage NMOS amplifiers producing a signal at the output VOUT pin. Before each charge packet is sensed, a reset clock (RA, RB) recharges the input node capacitor to a fixed voltage (VRDA, VRDB). Integration and Anti-Blooming Controls In many applications the dynamic range in parts of the image is larger than the dynamic range of the CCD, which may cause more electrons to be generated in the photosite area than can be stored in the CCD shift register. This is particularly common in industrial inspection and satellite applications. The excess electrons generated by bright illumination tend to bloom or spill over to neighboring pixels along the shift register, thus smearing the information. This smearing can be eliminated using two methods: Anti-Blooming Operation: A DC voltage applied to the integration control gate (approximately 1 to 3 volts) will cause excess charge generated in the photosites to be diverted to the anti-blooming sink (VSINK) instead of to the shift registers. This acts as a clipping circuit for the CCD output. Integration Control Operation: Variable integration times which are less than the CCD exposure time may be attained by supplying a clock to the integration control gate. Clocking IC reduces the integration time from texposure to tint. Greater than 10:1 reduction in average photosite signal can be achieved with integration control. The integration-control and anti-blooming features can be implemented simultaneously. This is done by setting the IC, clock-low level to approximately 1 to 3 volts. Prescan Reference Video output level generated from shift register cells which provides a reference voltage equivalent to device operation in the dark. This permits use of external DC restoration circuitry. Dynamic Range The saturation exposure divided by the RMS temporal noise equivalent exposure. Dynamic range is sometimes defined in terms of peak-to-peak noise. To compare the two definitions a factor of four to six is generally appropriate in that peakto-peak noise is approximately equal to four to six times RMS noise. RMS Noise Equivalent Exposure The exposure level that gives an output signal to the RMS noise level at the output in the dark. Saturation Exposure The minimum exposure level that will provide a saturation output signal. Exposure is equal to the light intensity times the photosites integration time. Charge Transfer Efficiency Percentage of valid charge information that is transferred between each successive stage of the transport registers. Responsivity The output signal voltage per unit exposure for a specified spectral type of radiation. Responsivity equals output voltage divided by exposure. Total Photoresponse Non-uniformity The difference of the response levels of the most and the least sensitive element under uniform illumination. Measurement of PRNU excludes first and last elements. Dark Signal The output signal in the dark caused by thermally generated electrons that is a linear function of the integration time and highly sensitive to temperature. Saturation Output Voltage The maximum usable signal output voltage. Charge transfer efficiency decreases sharply when the saturation output voltage is exceeded. Integration Time The time interval between the falling edge of any two successive transfer pulses (X). The integration is the time allowed for the photosites to collect charge. Exposure Time The time interval between the falling edge of the two transfer pulses (X) shown in the timing diagram. The exposure time is the time between transfers of signal charge from the photosites into the transport registers. Pixel A picture element (photosite). DEFINITION OF TERMS Charge-Coupled Device A Charge-coupled device is a semiconductor device in which finite isolated charge-packets are transported from one position in the semiconductor to an adjacent position by sequential clocking of an array of gates. The chargepackets are minority carriers with respect to the semiconductor substrate. 1801 McCarthy Blvd. Milpitas CA 95035 (800) 325-6975 www.fairchildimaging.com Rev A 2 of 8

1801 McCarthy Blvd. Milpitas CA 95035 (800) 325-6975 www.fairchildimaging.com Rev A 3 of 8

1801 McCarthy Blvd. Milpitas CA 95035 (800) 325-6975 www.fairchildimaging.com Rev A 4 of 8

1801 McCarthy Blvd. Milpitas CA 95035 (800) 325-6975 www.fairchildimaging.com Rev A 5 of 8

1801 McCarthy Blvd. Milpitas CA 95035 (800) 325-6975 www.fairchildimaging.com Rev A 6 of 8

1801 McCarthy Blvd. Milpitas CA 95035 (800) 325-6975 www.fairchildimaging.com Rev A 7 of 8

DEVICE CARE AND OPERATION Glass may be cleaned by saturating a cotton swab in alcohol and lightly wiping the surface. Rinse off the alcohol with deionized water. Allow the glass to dry, preferably by blowing with filtered dry N 2 or air. It is important to note in design and applications considerations that the devices are very sensitive to thermal conditions. The dark signal dc and low frequency components approximately double for every 5ºC temperature increase and single-pixel dark signal non-uniformities approximately double for every 8ºC temperature increase. The devices may be cooled to achieve very long integration times and very low light level capability. ORDER INFORMATION Order CCD191DC where D stands for a ceramic package and C for commercial temperature range. WARRANTY Within twelve months of delivery to the end customer, Fairchild Imaging will repair or replace, at our option, any Fairchild Imaging camera product if any part is found to be defective in materials or workmanship. Contact factory for assignment of warranty return number and shipping instructions to ensure prompt repair or replacement. CERTIFICATION Fairchild Imaging certifies that all products are carefully inspected and tested at the factory prior to shipment and will meet all requirements of the specification under which it is furnished. This product is designed, manufactured, and distributed utilizing the ISO 9000:2000 Business Management System. 1801 McCarthy Blvd. Milpitas CA 95035 (800) 325-6975 www.fairchildimaging.com Rev A 8 of 8