Performance of an Indirect Field-Oriented Control for Asynchronous Machine

Similar documents
Induction motor control by vector control method.

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER

Modeling and Simulation of Induction Motor Drive with Space Vector Control

MATLAB/SIMULINK MODEL OF FIELD ORIENTED CONTROL OF PMSM DRIVE USING SPACE VECTORS

A Fuzzy Sliding Mode Controller for a Field-Oriented Induction Motor Drive

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI)

Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller

A Simple Sensor-less Vector Control System for Variable

IN MANY industrial applications, ac machines are preferable

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Vector Approach for PI Controller for Speed Control of 3-Ø Induction Motor Fed by PWM Inverter with Output LC Filter

BECAUSE OF their low cost and high reliability, many

Control of Induction Motor Fed with Inverter Using Direct Torque Control - Space Vector Modulation Technique

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Sensorless Control of a Novel IPMSM Based on High-Frequency Injection

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

Synchronous Current Control of Three phase Induction motor by CEMF compensation

Analysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive

Low Speed Position Estimation Scheme for Model Predictive Control with Finite Control Set

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Direct Torque Control of Induction Motors

Simulation and Analysis of SVPWM Based 2-Level and 3-Level Inverters for Direct Torque of Induction Motor

INDUCTION MOTOR SPEED CONTROL SIMULATION FOR TORQUE SPEED CHARACTERISTIC

SVM-DTC OF AN INDUCTION MOTOR BASED ON VOLTAGE AND STATOR FLUX ANGLE USING FUZZY LOGIC CONTROLLER

EE 560 Electric Machines and Drives. Autumn 2014 Final Project. Contents

Designing An Efficient Three Phase Brushless Dc Motor Fuzzy Control Systems (BLDCM)

Design of Unity Power Factor Controller for Three-phase Induction Motor Drive Fed from Single Phase Supply

Published in A R DIGITECH

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR

Park s Vector Approach to detect an inter turn stator fault in a doubly fed induction machine by a neural network

South Asian Journal of Engineering and Technology Vol.2, No.16 (2016) 21 30

A Sliding Mode Controller for a Three Phase Induction Motor

Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System

Improved direct torque control of induction motor with dither injection

OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIVE USING INTELLIGENT CONTROLLERS

Index Terms: Vector control scheme, indirect vector control scheme, Scalar control, Marine propulsion I. INTRODUCTION

A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

ADVANCED DC-DC CONVERTER CONTROLLED SPEED REGULATION OF INDUCTION MOTOR USING PI CONTROLLER

Digital Control of Permanent Magnet Synchronous Motor

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

Controlling of Permanent Magnet Brushless DC Motor using Instrumentation Technique

1. Introduction 1.1 Motivation and Objectives

SPEED CONTROL OF AN INDUCTION MOTOR USING FUZZY LOGIC AND PI CONTROLLER AND COMPARISON OF CONTROLLERS BASED ON SPEED

Speed Control of Induction Motor using PI and V/F Scalar Vector Controllers

Available online at ScienceDirect. Procedia Computer Science 85 (2016 )

EE 410/510: Electromechanical Systems Chapter 5

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3

International Journal of Current Trends in Engineering & Technology ISSN: Volume : 01, Issue : 05 (July - August 2015)

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES

New Methodology for Chattering Suppression of Sliding Mode Control for Three-phase Induction Motor Drives

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

Efficiency Optimization of Induction Motor Drives using PWM Technique

ON-LINE NONLINEARITY COMPENSATION TECHNIQUE FOR PWM INVERTER DRIVES

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

Design of A Closed Loop Speed Control For BLDC Motor

Matlab Simulation of Induction Motor Drive using V/f Control Method

ROTOR FLUX VECTOR CONTROL TRACKING FOR SENSORLESS INDUCTION MOTOR

FUZZY LOGIC CONTROLLER BASED SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

Comparative Analysis of Space Vector Pulse-Width Modulation and Third Harmonic Injected Modulation on Industrial Drives.

ELE847 Advanced Electromechanical Systems Course Notes 2008 Edition

Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method

Vector control of AC Motor Drive for Active Damping of Output using Passive filter Resonance

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

Induction Motor Drive Using Indirect Vector Control with Fuzzy PI Controller

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

Comparison between Scalar & Vector Control Technique for Induction Motor Drive

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 ISSN

Modeling and Simulation Analysis of Eleven Phase Brushless DC Motor

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor

Indirect Vector Control of Induction Motor Using Pi Speed Controller and Neural Networks

Fuzzy Logic Based Speed Control System Comparative Study

Modeling and Simulation of Field Oriented Control PMSM Drive System using SVPWM Technique

Magnetic Force Compensation Methods in Bearingless Induction Motor

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

ISSN: [Shukla* et al., 6(10): October, 2017] Impact Factor: 4.116

Fuzzy Logic Controller Based Direct Torque Control of PMBLDC Motor

MODIFIED DIRECT TORQUE CONTROL FOR BLDC MOTOR DRIVES

Latest Control Technology in Inverters and Servo Systems

ABSTRACT I. INTRODUCTION

II. PROPOSED CLOSED LOOP SPEED CONTROL OF PMSM BLOCK DIAGRAM

4. Simulation Results

VECTOR CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR BASED ON SLIDING MODE VARIABLE STRUCTURE CONTROL

Keywords - Induction motor, space vector PWM, DTC, sensorless control, reconstruction.

UG Student, Department of Electrical Engineering, Gurunanak Institute of Engineering & Technology, Nagpur

Feed-Forward System Control for Solid- State Transformer in DFIG

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 ISSN

IMPLEMENTATION OF DIRECT TORQUE CONTROL OF PMSM DRIVE USING SVPWM AND THREE LEVEL INVERTER

Indirect Rotor Field Oriented Control (IRFOC) for Three Phase Induction Motor Drive Using MOSFET

DSP Based Speed Control of the Surface Mounted Permanent Magnet Synchronous Motor with Hysteresis current controller

Transcription:

Performance of an Indirect Field-Oriented Control for Asynchronous Machine Zineb Mekrini #1, Seddik Bri #2 # Materials and instrumentation (MIM), High School of Technology, Moulay Ismail University, Meknes-Morocco 1 zineb.mekrini@gmail.com 2 briseddik@gmail.com Abstract This paper presents an analysis method for achieving control torque and speed with indirect field oriented control for asynchronous motors, by the three-axis to two-axis current transformation. But the drive performance often degrades for the machine parameter variations. The aim is to apply two techniques for controlling independently the induction machines; the performance of this system is tested and compared by simulation in terms of reference tracking. A PI controller is used to control the rotor speed of the induction machine and a hysteresis current controller is applied for controlling the output voltage of the PWM inverter. To achieve desired speed and torque performance, these two models controls are implemented in Matlab Simulink. Keyword- Asynchronous machine, Indirect Field Oriented, Hysteresis current, Speed controller I. INTRODUCTION Asynchronous motors are widely used as actuators in many industrial and research applications. Along the last decades the evolution of digital processing systems and power electronics made possible the extended use of high-performance induction motor control systems such as field oriented control (FOC). The main difficulty in the asynchronous machine control resides in the fact that complex coupling exists between the field and the torque. Conversely, induction motors inherently have complex, non-linear, and highly interacting multi-variable control structure [1]. The space vector control in FOC ensures decoupling between these variables, and the torque is made similar to that of a DC machine [2]. Theoretically, the field oriented control for the induction motor drive can be mainly categorized into two types; indirect and direct. The field to be oriented could be rotor, stator, or flux linkage. In the indirect field oriented control, the slip estimation with measured or estimated rotor speed is required in order to compute the synchronous speed. There is no flux estimation appearing in the system. For the direct scheme, the synchronous speed is computed basing on the flux angle which is available from flux estimator or flux sensors. The indirect field oriented control (IFOC) technique is very useful for implementing high performance induction motor drive systems [3]. These two methods of vector control, direct and indirect, are different in the angle calculation of Park (teta) (essential magnitude in the control, representing the phase of the field directed in the reference related to the stator and in the indirect control [4], this angle is calculated from the stator pulsation it ( ws) even reconstituted using the autopilot relationship addition the electric speed (w ) and (wg) slip pulse, while direct control, directly calculates this angle from quantities, measured or estimated [5], in this paper, we treat indirect field oriented control of induction machine with two types of regulators. The proposed control strategy is that of Indirect Field control that incorporates the control circuits of the current Isd and Isq and the speed; with a supply voltage and controlled current. Different regulators have been dimensioned from the parameters of the machine that have been identified. Here in this study, an indirect field oriented control is modeled by a system generator in Matlab/Simulink and with appropriate simulations, and the results are analyzed [6]. II. THEORETICAL STUDY OF AN INDIRECT FIELD-ORIENTED CONTROL The Field Orientated Control consists of controlling the stator currents represented by a vector. This control is based on the three-phase to two-axis current transformation system into a two coordinate (d and q axes). These projections lead to a structure similar to that of a DC machine control. The FOC machines need two constants as input references: the torque component (aligned with the q coordinate) and the flux component (aligned with d coordinate) [7]. The objective of space vector control is to assimilate the operating mode of the asynchronous machine at the one of a DC machine with separated excitation, by decoupling the torque and the flux control. Starting from the operating equations of the asynchronous machine [8], the first model was developed taking into account certain simplifying assumptions; model describing the operation of the MAS is given by: p-issn : 2319-8613 Vol 8 No 2 Apr-May 216 726

diqs dt dids dt 1 M. Rr M Rsr. iqs s.. Ls. ids. qr.. dr Vsq Ls Lr² Lr 1 M. Rr M Rsr. ids s. * Ls. ids dr.. qr Vsd Ls Lr² Lr ddr M * Rr Rr ids dr g. qr dt Lr Lr Te M np Lr M ² Rsr Rs Rr Lr² ( rd. iqs rq. ids) d J f Ce Cr dt M ² Ls * Lr g s (1 ) dqr M. Rr Rr * isq. qr g. dr dt Lr Lr (1) (2) (3) (4) (5) (6) - ids, iqs (A): d-axis and q-axis components of the stator current vectors is. - idr, iqr (A): d-axis and q-axis components of the rotor current vectors ir. - Vds, Vqs (A): d-axis and q-axis components of the stator voltage vectors Vs. - Rr (Ω): Rotor resistance. - Rs (Ω): Stator resistance. - s, r (rad / s): Stator and rotor electrical heartbeat. - s, r (Web): Stator and rotor fluxes linkage. - dr,qr : d-axis and q-axis components of the rotor fluxes linkage. - Ls (H): Stator inductance. - Lr (H): Rotor inductance. - M (H): Mutual Inductance between the stator and the rotor. - Ce (Nm): Electromagnetic torque. - s, r : Stator and rotor time constant. - : Coefficient leakage blondel. - J : Moment of inertia. - Cr ( Nm) : Mechanical torque. - Te (Nm) : Electromagnetic torque. - F : Coefficient of viscous friction. - s (rad / s): Stator angular electrical frequency. - g (rad / s): Slip pulse. - (rad / s): Electric rotor speed. - r (rad / s): Mechanical rotor speed. - P: Pole number. - s : Laplace operator. The IFOC consists in making Φqr= while the rotor direct flux Φdr converges to the reference Φr* [3]. The drawback of the indirect flow estimate is that its precision is affected by the variation in rotor resistance due to temperature variation. It is immediately apparent that any error on the relative value of the rotor time constant Tr direct impact on the estimated quantities [4]. The equations of the indirect field oriented control strategy are defined from the equations that link the rotor flux vector to stator current vector: p-issn : 2319-8613 Vol 8 No 2 Apr-May 216 727

-Flux calculation : r 1 M Ids Tr * s (7) - Angle calculation of Park (teta) : s s * dt s g M Iqs Tr.r * (8) - Id* calculation : r * Ids* (9) M 2 2 Lr Te * -Iq* calculation : Iqs* (1) 3 p M r The current control methods play an important role in power electronic circuits particularly in current regulated PWM inverter switch are widely applied of an induction machine [9], The Basic implementation of hysteresis current control is based on deriving the switching signals from the comparison of the current error with tolerance band. This control is based on the comparison of the actual phase current with the tolerance band around the reference current associated with that phase [1]. Figure 1. The model of PWM inverter [3] III. MODEL OF AN INDIRECT FIELD ORIENTED CONTROL The effectiveness of the proposed system model is validated using Matlab/Simulink utilized for the indirect field orientation control of induction machine. This control system includes the realization of the mathematical model to represent the natural behaviour of the system controlled. The rotor speed is compared to rotor speed command * and the resulting error is process in the controller. The controller generates the q-axis reference current Iqs. For hysteresis current controller in figure 3, both stator reference current in d-axis and q-axis are converted to three phase stationary reference frame through Inverse Park Transformation and compared to the current from the feedback of the motor. Then the current errors are fed to hysteresis current controllers which generate switching signal for the voltage source inverter [1]. In this section, it is basically designed in the Matlab, the various blocks and then assembles them to build the simulation block-diagram of the indirect field oriented control of an induction machine. Thus, the work will begin in a first time, by the design of the various sub blocks. The block diagram of complete system model including the controller in Matlab Simulink developed for the indirect field oriented controlled induction machine is shown in Figure 2 and the general view of vector control in Figure 3. p-issn : 2319-8613 Vol 8 No 2 Apr-May 216 728

Figure2. The block diagram of complete system model including the controller of an indirect field oriented controlled induction machine The induction motor is fed by a current-controlled PWM inverter which is built using a block. The motor drives a mechanical load characterized by inertia J, and load torque Tr.The speed control loop uses a proportional-integral controller to produce the two-axis current reference iq* which controls the motor torque. The motor flux is controlled by the direct-axis current reference id*. The block dq-abc is used to convert id* and iq* into current references ia*, ib*, and ic* for the current regulator. The current and voltage measurement blocks provide signals for visualization purpose in figure 3. Figure3. The sub block diagram of an indirect field oriented controlled induction machine A. Hysteresis current controller block A simplified diagram of the proposed three-phase PWM current controller is shown in Figure 4. The current controller involves three independent hysteresis comparators and three logic gates with NOT function. The drive signals for the inverter power switches are derived from the output signals other controller. In the current controller, the three-phase current commands (ias*,ibs*, and ics *) are compared with the actual stator currents (ias ibs,and ics ), and then the resulting errors are fed into the two-level hysteresis comparators, respectively. Figure 4. The hysteresis current controller p-issn : 2319-8613 Vol 8 No 2 Apr-May 216 729

B. speed controller block The indirect field orientation control of the induction machine is realized with a speed regulator. A speed controller block is a straight forward block where the difference between the reference speed and measured speed is calculated. Inputs of this block are reference speed and the measured speed. The output of this block is the torque reference as shown in figure 5. Figure 5. The speed controller block C. Rotor field angle generation block In the asynchronous machine the rotor speed is not equal to the rotor flux speed (there is a slip speed), then it needs a particular method to calculate θ. The basic method is the use of the current model which needs two equations (8) of the motor model.the block which is designed to generate the rotor field angle shown in Figure 6 as teta block. Figure 6.The Rotor field angle generation block D. Transformation block from the d, q reference frame to the a, b, c reference frame The transform block from the d, q reference frame to the a, b, c stator reference frame, denoted by (d,q to a,b,c conversion ) is shown in Figure 3 as the dq-abc transformation sub-block. The sub-blocks required to complete the transformation are shown in Figure 7. Figure7. d,q to a,b,c conversion IV. RESULTS AND DISCUSSIONS In the simulation, online analysis has been performed using MATLAB /SIMULINK. The "Constant speed» and "Constant torque" blocks are used. The Reference speed wref changed from 12 to 16 rad/s at t =.2 s and load torque changed from to 2 Nm at t= 1.8s. The simulation shows the drive response to successive changes in speed reference and load torque. The main objective is to choose the best answer that gives us a better quality of establishment of the couple in this system control. The motor phase voltage has rectangular shapes in figure 8, stator current; rotor speed and torque are measured. p-issn : 2319-8613 Vol 8 No 2 Apr-May 216 73

1 5-5 -1.5.1.15.2.25.3.35.4.45.5 Time(s) Figure 8. The motor phase voltage (a, b) The two components (d,q) of the stator current are calculated and they are the inputs of the Park inverse transformation that gives the current (a,b,c) reference frame. The Isd and Isq components are compared respectively to the references flux and reference torque at figure 9. At this point, this control structure shows an interesting advantage: it can be used to control either synchronous or induction machines by simply changing the flux reference and obtaining rotor flux position [11]. 1.8.6 Flux (web).4.2 -.2.5 1 1.5 2 2.5 3 Figure 9. Comparison of measured flux and flux reference The simulation result of dynamic performance of the asynchronous machine at load torque are presented in figures 1 and 11, we note that for a time t = 2s at Cr = 2N, and for various speed values (ω = 1, 8, 2 (rad / sec), the time of establishment of the torque in the case of indirect field control, is much faster. The choice of the indirect field oriented control method provides the best answer. At time t = s, the speed set point is 175 rad/s. Observe that the speed follows precisely the acceleration. At t = 2 s, the full load torque is applied to the motor shaft while the motor speed is still ramping to its final value. This forces the electromagnetic torque to increase to the user-defined maximum value (34N.m) and then to stabilize at 2 Nm once the speed is completed and the motor has reached 16 rad/s. p-issn : 2319-8613 Vol 8 No 2 Apr-May 216 731

Speed rad/s 18 16 14 12 1 8 6 4 2 Torque Te (Nm) 35 3 25 2 15 1 5-5 -2.5 1 1.5 2 2.5 3 Time (s) -1.5 1 1.5 2 2.5 3 Time(s) Figure 1. Speed characteristic (IFOC) Figure 11. Torque characteristic (IFOC) During starting motor draws high stator current in figure 12 with low frequency to develop the necessary starting torque and once the motor picks up speed the frequency increases and the magnitude of current reduces. When the load is increased of rated torque at t = 2 sec, the speed controller maintains the motor at rated speed. The electromagnetic torque developed by the motor increases to the rated value 2 Nm to satisfy the load torque requirement with a proportional increase in the stator current. The direct axis current is a constant value depending up on the rated flux value and the quadrature axis current is proportional to the load torque. But when the drive is operated at light load condition, the efficiency is poor as the iron losses is maximum corresponding to the rated flux. 5 4 3 2 Current iabc(a) 1-1 -2-3 -4-5.5 1 1.5 2 2.5 3 Time (s) Figure12. Stator current characteristic of an indirect field oriented control There are small ripples in the stator current and hence in the developed electromagnetic torque due to switching in hysteresis PWM current controller. The figure 13 shows the pulsations of the outputs of the current regulators witch applied from the inverse Park transformation. These are the inputs of the Space Vector PWM. It can be seen that the number of switching torque has been decreased when the hysteresis band was increased. However the torque and current ripple increases as seen from figure1 and figure 11 [7]. 1.8.6.4.2.5.1.15.2.25.3.35.4.45.5 Time (s) Figure 13: Variation in the gate signal generation pattern for change in hysteresis p-issn : 2319-8613 Vol 8 No 2 Apr-May 216 732

V. CONCLUSION The model system of indirect field oriented control is performer the two regulators speed and current regulators are used. After the completion of the design stage of the controller, the whole system including the motor, the power converter and the controller is modelled using Matlab/Simulink environment, its obtained results by using regulators hysteresis of point of view insensitivity towards the variations of the external and internal disturbances (that is parametric variations) are very satisfactory. This confirmed our approach. This model is simulated to see the effect of the controller in the control of the system. The Simulink measurement tools are used to observe and follow-up the output signals of each sub-block of the design and these signals are analysed and evaluated until obtaining the proper operation. It has been shown that the designed controller can achieve the desired torque control with appropriate speed regulation in both transient and steady state. The simulation model of indirect for induction motor shows excellent performance in both steady and transient state conditions. The indirect field oriented control is a good approach for controlling the induction machine. As a result, the induction machine responses to torque changes very quickly and precisely. ACKNOWLEDGMENT This work is supported by the presidency of the University Moulay Ismail, Meknes Morocco REFERENCES [1] F.Blaschke, The principle of field orientation as applied to the new transvector closed-loop control system for rotating field Machines, Siemens Review, vol.34, pp.217-22, May.1972. [2] J. Holtz, Sensorless Control of Induction Motor Drive, Proceedings of the IEEE, Vol. 9, No. 8, pp. 1359 1394, Aug. 22. [3] R. D. Lorenz, T. A. Lipo, and D. W. Novotny. Motion control with induction motors. Proceedings of IEEE: especial issue on power electronic and motion control 82(8):1215-124, Aug. 1994. [4] D. Cdi, G. Grd, G. Serra, A. Tmi, Effects of Flux and Torque Hysteresis Band Amplitude in Direct Torque Control of Induction Machines, Proceedings of the IEEE, 1994. [5] Baghli L, Razik H, Rezzoug A, A field oriented control method using decoupling terms for induction motors, In Proc. 2nd EPE Chapter symposium on electric drive design and applications, p.147-151, Nancy, France, 1996. [6] Rami A. Maher, Walid Emar, Mahmoud A, Indirect Field Oriented Control of an Induction Motor Sensing DC-link Current with PI Controller, International Journal of Control Science and Engineering, Vol 2, pp. 19-25,212. [7] Ozkan AKIN, Irfan ALAN, The use of FPGA in field-oriented control of an induction machine, Turk J Elec Eng & Comp Sci, Vol.18, No.6, 21. [8] G. K. Singh, K. Nam and S. K. Lim A Simple Indirect Field-oriented Control Scheme for Multiphase induction machine, IEEE Trans. Ind. Elect, Vol. 52, No. 4, pp. 1177-1184, August 25. [9] E. Y. Y. HO and P. C. SEN, Decoupling control of induction motor drives, IEEE Trans. Ind. Elect., vol. 35, no 2, pp. 253 262, May 1988. [1] F. AINI PATAKOR,M.SULAIMAN,Z. IBRAHIM, comparison performance of induction motor using svpwm and hysteresis current controller,journal of Theoretical and Applied Information Technology, Vol. 3,, No.1,pp.1-17, August 211. [11] Raad S. Fayath Mostafa, M.Ibrahim, Majid A, Haroutuon A, Simulation of Indirect Field-Oriented Induction Motor Drive System Using Matlab/Simulink Software Package, J.Basrah Researches (Sciences),Vol.31, pp 83-94, 25. [12] Jebali T, Jemli M., Boussak M., Gossa M. et Kamoun M.B.T, Dspace-based experimental results of indirect field oriented control (IFOC) PWM VSI fed induction motor, in proceedings IEEE ICIT 4, International Conference on Industrial Technology, vol. 2, p. 569-573,24. [13] M.Boussak, Jarray K, A high-performance sensorless indirect stator flux orientation con-trol of induction motor drive, IEEE Trans. Ind. Electron, vol.53, no.1, pp. 41 46, February 26. [14] Jarray K, Laakam M, Sbita L, Robust speed control for stator flux oriented controlled induction motor drive, CD- JTEA, 21-22, Hammamet, (Tunisie), Mai 24. AUTHOR PROFILE Mekrini Zineb was born in Morocco in 1988. She received Engineer Degree in Electrical Engineering from FST béni-mellal, in 211. She prepared the Phd thesis in Materials, instrumentations group, Electrical Engineering Department, Superior School of Technology, Meknes - Morocco. Seddik Bri is a Professor in Electrical Engineering Department in the Superior School of Technology, Meknes - Morocco. His research interest the optimization control system in industrial applications. p-issn : 2319-8613 Vol 8 No 2 Apr-May 216 733