SPCM-AQ4C Single Photon Counting Module Array

Similar documents
Table 1 Specifications 22 ºC, unless otherwise indicated Parameter Min Typ Max Unit Supply @+30V Maximum power consumption

SPCM-EDU CD3375. Customer: Members of ALPhA (Advanced Laboratory Physics Association) Educational Use Single Photon Counting Module SPCM-EDU CD3375

SPCM-AQRH Single Photon Counting Module

SPCM-AQRH Single Photon Counting Module

Long Wavelength Enhanced Silicon APD C30954EH, C30955EH and C30956EH Series

SPCM-AQRH Single Photon Counting Module

SPCM-AQRH Single Photon Counting Module

Table 1. Mechanical and Optical Characteristics C30724EH C30724EH-2 C30724PH Unit Shape Circular Circular Circular Useful Area mm

905 nm Multi-Quantum Well Strained InGaAs Pulsed Laser Diodes PGA Series

C30884EH Silicon Avalanche Photodiode With Very High Modulation Capability

C30617 and C30618 Series High Speed InGaAs Pin Photodiodes

C306XXL Series High Speed Ceramic Surface Mount InGaAs PIN Photodiodes

Silicon Avalanche Photodiodes C30902 Series

Table 1. Package and Chip Dimensions Parameter Measurement Unit Package Size 8.50 x 8.00 x 1.55 mm Chip size 6.5 x 6.5 mm Active area 5.6 x 5.6 mm Tab

C30807EH, C30808EH, C30822EH, C30809EH and C30810EH Types N-type Silicon PIN Photodetectors

C30954EH, C30955EH and C30956EH Series Long Wavelength Enhanced Silicon Avalanche Photodiodes

Surface Mount 905 nm Pulsed Semiconductor Laser 4-channel Array High Power Laser-Diode Family for LiDAR and Range Finding

Thermopile Sensor TPS 232 / 3214

Surface Mount 905 nm Pulsed Semiconductor Lasers High Power Laser-Diode Family for Commercial Range Finding

PGEW Series of Single- and Multi-epi 905 nm Pulsed Semiconductor Lasers Low-Cost High-Power Laser-Diode Family for Commercial Range Finding

C30659 Series 900/1060/1550/1550E Si and InGaAs APD Preamplifier Modules

Coherent InGaAs PIN balanced receiver module

Silicon Avalanche Photodiodes (APDs) for range finding and laser meters plastic and leadless ceramic carrier packages

C30737 Array Series Silicon Avalanche Photodiode Arrays (APD Arrays) for LiDAR, range finding and laser meters

DATASHEET Photon Detection. Key Features

Table of Contents Table 1. Electrical Characteristics 3 Optical Characteristics 4 Maximum Ratings, Absolute-Maximum Values (All Types) 4 - TC

C30902 and C30921 Series High-speed solid state detectors for low light level applications

LLAM Series 900/1060/1060E/1550/1550E Si and InGaAs Low-Light Analog APD Receiver Modules (LLAM)

High-Speed InGaAs PIN C30616, C30637, C30617, C30618 InGaAs PIN Photodiodes

InGaAs SPAD freerunning

OTFI 0285 XLM Plus High CRI LED Fiber Optic Light Module with Electronics Key Features

InGaAs SPAD BIOMEDICAL APPLICATION INDUSTRIAL APPLICATION ASTRONOMY APPLICATION QUANTUM APPLICATION

Additional optics can be easily attached. For ESD sensitive chip types, safe and reliable ESD protection is enabled using Zener diodes.

ACULED VHL UV ACL01-SC-UUUU-E05-C01-L-0000

Silicon Avalanche Photodiode SAR-/SARP-Series

PRELIMINARY. Specifications are at array temperature of -30 C and package ambient temperature of 23 C All values are typical

Features. Applications

Fiber Pigtailed Pulsed Laser Diodes

Electrical Specifications

Fiber Pigtailed Pulsed Laser Diodes

Redefining Measurement ID101 OEM Visible Photon Counter

NON-AMPLIFIED PHOTODETECTOR USER S GUIDE

Electrical Specifications

CBT-90-UV-405 LEDs. CBT-90-UV-405 CBT-120 Product Datasheet. Features: Table of Contents. Applications

850NM SINGLE MODE VCSEL TO-46 PACKAGE

Dual thermopile sensor with two spectral filters for gas detection

Product Bulletin. SDL-2400 Series 2.0 & 3.0 W, 798 to 800/808 to 812 nm High-brightness Laser Diodes

FIBER105.TIF OUTLINE DIMENSIONS in inches (mm) .176 (4.47).165 (4.19) .500 MIN (12.7) FIBER203.DIM. Pinout 1. Capacitor 2. VÙÙ 3.

High-Power 8.0 W 9xx nm Fiber-Coupled Diode Laser 6397-L3 Series

Product Specification

HIGH ISOLATION VOLTAGE HIGH SPEED PHOTOCOUPLER

PSW-002. Fiber Optic Polarization Switch. User Guide

NON-AMPLIFIED HIGH SPEED PHOTODETECTOR USER S GUIDE

12 Megabaud Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and 200 μm HCS. Features. Applications

915/940 nm Fiber-Coupled Diode Lasers. L4S-Series

Features MIN. CATHODE LEAD ± 0.10 Sq Typ ± MAX. EPOXY MENISCUS

Universal Control Module Operating Instructions

20 GHz High Power, High Linearity Photodiode Part #ARX zz-DC-C-FL-FC

Data Sheet. AFBR-S10TR001Z Compact 650 nm Analog Transceiver with Compact Versatile-Link Connector for Sensing Over POF. Description.

XENON FLASH LAMP MODULES

Non-amplified High Speed Photodetectors

Optocoupler, Phototransistor Output, High Reliability, 5300 V RMS

Transmissive Optical Sensor with Phototransistor Output

BPD-003. Instruction Note

80-MHz Balanced Photoreceivers Model 18X7

CBT-90-UV LEDs. CBT-90-UV CBT-120 Product Datasheet Preliminary. Features: Table of Contents. Applications

High-Power 2.0 W 830 nm Fiber-Coupled Diode Laser 2486-L3 Series

HLMP-EG2E, HLMP-EG3E Data Sheet Description Features Applications Benefits

Application Notes: Discrete Amplification Photon Detector 5x5 Array Including Pre- Amplifiers Board

GPD. Germanium Photodetectors. GPD Optoelectronics Corp. OPTOELECTRONICS CORP. Small & Large Area pn, pin detectors Two-color detectors

Optocoupler, Phototransistor Output, High Reliability, 5300 V RMS, 110 C Rated

Photon Count. for Brainies.

FT10MHNR FT10MVNR. 650 nm DC 10 MBd RedLink Fiber Optic Transmitter Data Sheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

Non-amplified Photodetectors

Laser Diode in TO-220 Package with FC-Connector 1.5 W cw Version 1.1 SPL 2F94-2S

FT01MHNG FT01MVNG. 530 nm DC-1 MBd RedLink Fiber Optic Transmitter Datasheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

Optocoupler, Phototransistor Output, High Reliability, 5300 V RMS, Low Input Current

FT05MHNR FT05MVNR. 650 nm DC 5 MBd RedLink Fiber Optic Transmitter Data Sheet DESCRIPTION FEATURES APPLICATIONS AVAILABLE OPTIONS

5 W XENON FLASH LAMP MODULES

Pulsed 1064nm / 1030nm Narrow Bandwidth FBG High Power Laser Diode Module

HFD /XXX. h 479. Schmitt Input, Non-Inverting TTL Output Receiver

CBT-120-UV LEDs. CBT-120-UV Product Datasheet. Features: Table of Contents. Applications

Amplified High Speed Photodetectors

OLS500: Hermetic Surface Mount High CMR, High-Speed Logic Gate Optocoupler

Appendix A: Specifications

Optocoupler, Phototransistor Output, High Reliability, 5300 V RMS

Amplified Photodetectors

Ultra Wide Band Low Noise Amplifier GHz. Electrical Specifications, TA = +25⁰C, With Vg= -5V, Vcc = +4V ~ +7V, 50 Ohm System

Overview Full Featured Silicon Photomultiplier Module for OEM and Research Applications The is a solid state alternative to the Photomultiplier Tube (

80-MHz Balanced Photoreceivers Model 18X7

LOC110STR. Single Linear Optocoupler INTEGRATED CIRCUITS DIVISION

HY-3002/5948A-Replacement Hydrogen Filled Triode Thyratron

PEAK OUTPUT CURRENT 1. MAP V 4.7V to 5.8V 8A 11A 0.2% ±1% 1% 4.9V to 5.1V PEAK OUTPUT CURRENT 4 LINE REGULATION

FX-4400 High-Output Xenon Flashlamps

directly on each side of the crystal to form a rugged, monolithic oscillator that is end pumped by a CW diode laser.

Sapphire FP. Fiber Pigtailed Lasers from Deep Blue to Orange FEATURES

Preliminary Ultraviolet Emitter

Optocoupler, Phototransistor Output, Dual Channel, SOIC-8 Package

HFD3029. Schmitt Input, Non-Inverting TTL Output Receiver

OLI110: Phototransistor Optocoupler

Transcription:

SPCM-AQ4C Single Photon Counting Module Array BIOMEDICAL SOLUTIONS D A T A S H E E T Overview The SPCM-AQ4C is a 4-channel photon counting card capable of detecting single photons of light over the wavelength range from 400 nm to 1060 nm. Each channel is independent from the others. The SPCM-AQ4C uses a unique silicon avalanche photodiode (SliK ) that has a circular active area with a peak photon detection efficiency exceeding 60% at 650nm. Each photodiode is both thermoelectrically cooled and temperature controlled, ensuring stabilized performance despite changes in the ambient temperature. The SPCM-AQ4C card uses an improved circuit with a peak count rate >4 M c/s for short bursts of time on all 4 channels and a count rate of 1.5 M c/s for continuous operation. There is a "dead time" of 50 nanoseconds (ns) between pulses. The SPCM-AQ4C requires +2 Volt, +5 Volt, and +30 Volt power supplies. The output of each channel a TTL pulse that is 4.5 Volts high (into a 50 Ω load) and 25 ns wide is available at the card edge behind the circuit board. Each TTL pulse corresponds to a detected photon. All input and output signals are available at the card connector. To avoid a degradation of the module linearity and stability, the heat sink temperature should be kept between 5 C and 40 C during operation. Saturation The count decreases at higher incoming light levels. The count at which the output rate starts to decrease is called the saturation point. As an extreme example, if the module is exposed to intense light, the count rate will fall to zero. Consequently, in certain applications, some tests should be performed by the operator to ensure that a low count rate is not caused by detector saturation. Precautions should be taken to avoid any excessive light level that will damage the SPCM. Applications Single molecule detection High throughput DNA sequencing LIDAR Photon correlation spectroscopy Astronomical observation Optical range finding Adaptive optics Ultra sensitive fluorescence Particle sizing Key Features and Benefits Peak photon detection efficiency at 650 nm: 60% typical Afterpulsing probability 0.5% Gated input TTL output FC fiber connector mounted and aligned on each detector 4 channels in one package Self-contained APD module with integrated electronics www.optoelectronics.perkinelmer.com

SPCM-AQ4C Fiber connection option The SPCM-AQ4C has an "FC" fiberoptic receptacle pre-aligned to the optical detector. Optical fibers with an FC connector on one end are available separately (see Fiber Type Ordering Guide on page 7). The photon detection efficiency is typically 60% at 650nm. Fiber shielding When used with optical fibers, both the fiber and the connector shrouds must be completely opaque; if not, stray light will increase the count rate. The SPCM-QCX pigtails conform to this requirement (see Fiber Type Ordering Guide on page 7). Gating function A gating function is provided with each channel. It is useful when looking for a signal that occurs only in a small timeframe window. Also, in some applications the background light flux is higher than the signal. In this case, the gating option could be used to improve the S/N ratio by opening a window only when the light signal is present. The output of the module is enabled when a TTL low level is applied to the module gate input. Gated count rate is = n-1. The module is gated OFF when a TTL high level signal is applied to the gate input. Light emission during photon detection One peculiarity of silicon avalanche photodiodes is that as an incoming photon is detected, a small amount of light is emitted from the avalanche region. The light emitted has a broad spectral distribution. In most cases, this is not a problem. However, it can cause some confusion if another detector is monitoring light, or if the optical system is such that light emitted from the SPCM-AQ4C is reflected back on itself. If these photons return more than 30 ns after the initial event, they will be detected. Safety The SPCM-AQ4C contains a high voltage power supply. All internal settings are pre-set; there are no user adjustments. Units which appear defective or have suffered mechanical damage should not be used because of possible electrical shorting of the highvoltage power supply. Warranty A standard 12-month warranty following shipment applies. Any warranty is null and void if the module case has been opened. ESD warning Modules should only be handled at an ESD safe work station. 2

Table 1. Specifications SPCM-AQ4C at 22 C, all models, unless otherwise indicated Note: *At power on and 40 C **At maximum count rate Parameter Minimum Typical Maximum Units Supply at +2 V 1.0 4.0* Amps currents: 3.0** Amps at +5 V 0.20 1.0** Amps at +30 V 0.01 0.04** Amps Maximum at +2 V 2 6** Watts power at +5 V 1 5** Watts consumption at +30 V 0.3 1.2** Watts Supply voltages 1.95 2 2.05 V 4.75 5 5.25 V 29 30 31 V Operating temperature (heatsink) 5 40 C Photon detection efficiency (per channel) at 400nm 1 2.5 % at 650nm 45 60 % at 830nm 35 45 % at 1060nm 1 2 % Average Pd variation per channel at constant ±1 ±3 % heat sink temperature (6 hrs at 25 C) Average Pd variation per channel at 5 C to 40 C ±4 ±10 % heat sink temperature Dark count (per channel) 500 Counts/Sec. Average dark count variation per channel at constant heat sink ±10 % temperature (6 hours at 25 C) Average dark count variation per channel at 5 C to 40 C ±20 % heat sink temperature Dead time (Count rates below 5 Mc/s) nanoseconds 50 ns Output pulse width 25 ns Maximum Continuous 1.5 Mc/s count rate (per channel) 500ms duration, 25% duty cycle 4 Mc/s Afterpulsing probability 0.3 0.5 % Gate threshold voltage (at V Sup= 5V) Low level (sink 5mA) = Gate On 0 0.4 V High level = Gate Off 3.5 5.25 V Gate turn-on delay before first edge of true output pulse 60 75 ns Gate turn-off delay for minimum last output pulse width of 10ns 4 15 ns Linearity correction factor [7] See fig. 3 at 200 kc/s 1.01 1.10 at 1 Mc/s 1.08 1.15 at 1.5 Mc/s 1.12 1.20 Absolute maximum ratings Parameter Maximum Units Supply voltage +2 V 2.1 V +5 V 5.5 V +30V 31.5 V Mean count rate, continuous (per channel) 2 Mc/s Peak count rate, at 25% duty cycle to 500ms (per channel) 5 Mc/s Peak light intensity Maximum 10 4 photon/pulse and pulse width less than 1ns (per channel) Temperature: -45 to 50 C storage, 5 C to 40 C operating heat sink. www.optoelectronics.perkinelmer.com 3

Operating Instructions 1. Connection to incorrect voltage or reverse voltage may destroy the module. If such damage occurs, the warranty becomes invalid. 2. These modules are not qualified for shock or vibration other than normal instrumentation environments. 3. The module dissipates a mean power of 3.5W, and a maximum power of 14W at high count rate and 40 C. Adequate heat sinking must be provided by clamping the module to a suitable heat sink via the holes in the module base. For the specification performance, the module case temperature must not exceed 40 C. 4. Bi-stability of the dark count: On a small percentage of delivered modules, bi-stability of the dark count has been observed. Research indicates that this bistability is probably due to transitions at a single impurity site between a low energy and a high energy state. The phenomenon is seen as an abrupt change in the dark count rate, e.g. 350 to 390 c/s, and the dark count switches between the two states at a rate dependent on the detector temperature. Multilevel switching has also been observed, where more than one impurity site is switching. 5. Long-term bi-stability is related to fundamental semiconductor physics and is outside PerkinElmer s control. Warranty claims will not be entertained against bi-stability alone. Warranty claims will only be considered if the high level of the dark count exceeds the maximum level in the specification. 6. In the dark, the module generates random counts that follow a Poisson distribution. In a Poissonian process, the standard deviation is equal to the square root of the average counts. In this specification, the dark count variation refers to the stability of the average count of the module. 7. When connecting power to the module, good grounding techniques must be observed. All ground connections for the +30V and +5V supplies should connect through a single point on the user s interface. All ground pins on the card edge connector should be used. The +2V grounds should be connected together at a single point, but should be seperate and isolated from the grounds of the other supplies. 8. The actual photon rate could be calculated using the following equation, as indicated below: ACTUALCOUNTRATE Photons = (OUTPUT ModuleCountRate x CORRECTIONFACTOR @ the Module CountRate) - DARK COUNT Module PHOTON DETECTION EFFICIENCY Module The theoretical value, at low count rate, of the Correction Factor follows this equation: Correction Factor = 1 Where: t d = Module Dead Time 1- (t d X C R ) C R = Output Count Rate The deviation from an ideal linear system is another way of looking at the saturation effect. The following equations show how to calculate this departure from the linearity: OUTPUT ModuleCountRate LINEARITY = -1 (PHOTONS Actual Count Rate x PHOTON DETECTION EFFICIENCY Module) + DARK COUNT Module 1 = -1 Correction Factor 4

Card edge connector parameters The electrical connections to the card edge connector are shown below. Each connector has 72 contacts, 36 on each side. The contact spacing is 0.100. Mating connector is Sullins Electronics Corp, P/N EZC36DCAN, 801 E. Mission Rd., San Marcos, CA. 92069 888-774-3100 Http://www.edgecards.com/dsww100.php Any equivalent connector may be used. Card edge connector Component Side Card edge connector Solder Side Contact # Value 1 +2 V 3 +2 V 5 +30 V 7 2 V GROUND 9 TTL OUT 0 11 GROUND 13 GATE 0 15 GROUND 17 +5 V Key Slot 19 +2 V 21 +2 V 23 +30 V 25 2V GROUND 27 TTL OUT 1 29 GROUND 31 GATE 1 33 GROUND 35 +5 V 37 +2 V 39 +2 V 41 +30 V 43 2 V GROUND 45 TTL OUT 2 47 GROUND 49 GATE 2 51 GROUND 53 +5 V 55 +2 V 57 +2 V 59 +30 V 61 2 V GROUND 63 TTL OUT 3 65 GROUND 67 GATE 3 69 GROUND 71 +5 V Contact # Value 2 NC 4 NC 6 NC 8 2 V GROUND 10 NC 12 NC 14 NC 16 NC 18 NC Key Slot 20 NC 22 NC 24 NC 26 2 V GROUND 28 NC 30 NC 32 NC 34 NC 36 NC 38 NC 40 NC 42 NC 44 2 V GROUND 46 NC 48 NC 50 NC 52 NC 54 NC 56 NC 58 NC 60 NC 62 2 V GROUND 64 NC 66 NC 68 NC 70 NC 72 NC www.optoelectronics.perkinelmer.com 5

Figure 1. Detector scan without FC fiber adaptor Figure 2. Photon detection efficiency (pd) vs. wavelength Figure 3. Typical correction factor Figure 4. Optical power vs. number of photons Figure 5. Mechanical dimensions 6

Fiber type ordering guide Diameter Part Number Fiber Type Core Cladding Outer Numerical Aperture SPCM-QC4 Single Fiber 62.5µm 125µm 2.5mm 0.29 Multimode SPCM-QC6 Single Fiber 100µm 140µm 2.5mm 0.27 Multimode SPCM-QC9 Single Fiber As SPCM-QC6 but FC connector on free end Multimode Please contact PerkinElmer Optoelectronics for other fiber configurations. Your Partner of Choice With a broad customer base in all major markets, built on ninety years of solid trust and cooperation with our customers, PerkinElmer is recognized as a reliable partner that delivers high quantity, customized, and superior "onestop" solutions. Our products - from single photocells to complex x-ray inspection systems - meet the highest quality and environmental standards. Our worldwide Centers of Excellence, along with our Customer and Technical Support teams, always work with you to find the best solutions for your specific needs. PerkinElmer Optoelectronics PerkinElmer Optoelectronics is a global technology leader providing marketdriven, integrated solutions for a wide range of applications, which leverage our lighting, sensors, and imaging expertise. Our technologies, services and support are fueling the medical, genomic and digital revolutions by enhancing our customers' productivity, optimizing performance, and accelerating time to market. So contact us and put PerkinElmer's expertise to work in your demanding applications. We will show how our innovations will help you deliver the perfect product. North American Customer Support Center PerkinElmer Optoelectronics 22001 Dumberry Road Asia Headquarters Vaudreuil, QC J7V 8P7 European Headquarters PerkinElmer Optoelectronics Canada PerkinElmer Optoelectronics 47 Ayer Rajah Crescent #06-12 Telephone: (+1) 450-424-3300 Wenzel-Jaksch-Str.31 Singapore 139947 Toll Free Telephone: (+1) 866-574-6786 65199 Wiesbaden, Germany Telephone: (+65) 6775-2022 Fax: (+1) 450-424-3345 Telephone (+49) 611-492-430 Telephone: (+65) 6770-4366 Toll Free Fax: (+1) 877-574-1329 Fax: (+49) 611-492-165 Fax: (+65) 6775-1008 opto@perkinelmer.com opto.europe@perkinelmer.com opto.asia@perkinelmer.com For a complete listing of our global offices, visit www.optoelectronics.perkinelmer.com 2005 PerkinElmer, Inc. All rights reserved. The PerkinElmer logo and design are registered trademarks of PerkinElmer, Inc. Slik is a registered trademark of PerkinElmer, Inc. or its subsidiaries, in the United States and other countries. All other trademarks not owned by PerkinElmer, Inc. or its subsidiaries that are depicted herein are the property of their respective owners. PerkinElmer reserves the right to change this document at any time without notice and disclaims liability for editorial, pictorial or typographical errors. 600016_02 DTS1005

Appendix I Declaration of Conformity Declaration stating that PerkinElmer has conformed to CSA (Canadian Standards Association) which provides the right to bear the CSA mark on this product. This product is eligible to bear the CSA mark with adjacent indicator C and US. Products: CLASS 8721 84 CLASS 8721 04 ELECTRICAL EQUIPMENT FOR LABORATORY USE Certified to US standards LABORATORY EQUIPMENT Electrical. Four channel photon counting module SPCM-AQ4C, rated 2 Vdc, 4.0 A; rated 5 Vdc, 1.0 A ; rated 30 Vdc, 0.04 A, Continuous operation, installation category l, pollution degree 2 APPLICABLE REQUIREMENTS: CAN/CSA-C22.2 No. 1010.1-92 (R1999) Safety requirements for electrical equipment for measurement, control, and laboratory use, part 1: General requirements CAN/CSA-C22.2 No. 1010.1B-92 Amendment 2:1997 to CAN/CSA 22.2 No. 101.1-92, Safety requirements for electrical equipment for measurement, control and laboratory use, Part 1: General requirements UL std no. 61010A-1 Electrical equipment for laboratory use ; part 1:General requirements ---------------------------------------------------------------------------------- This product is eligible to bear the CE mark in accordance with: EN 61326:1997 Electrical equipment for measurement, control and laboratory use EN 61010-1:2001 Safety requirements for electrical equipment for measurement, control and laboratory use This product has been tested as per the following standards: Emission CISPR 11 IEC 61000-4-2 ESD IEC 61000-4-3 Radiated susceptibility IEC 61000-4-4 Burst IEC 61000-4-5 Surge IEC 61000-4-6 Conducted susceptibility IEC 61000-4-11 Voltage dips and interruptions www.optoelectronics.perkinelmer.com