Drive and Layout Requirements for Fast Switching High Voltage MOSFETs

Similar documents
AN-9005 Driving and Layout Design for Fast Switching Super-Junction MOSFETs

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

Symbol Parameter Typical

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated)

Symbol Parameter Typical

Advanced Silicon Devices Applications and Technology Trends

Recommended External Circuitry for Transphorm GaN FETs. Zan Huang Jason Cuadra

18 N Amps, 500 Volts N-CHANNEL MOSFET. Power MOSFET DESCRIPTION FEATURES SYMBOL

HCS70R1K6 700V N-Channel Super Junction MOSFET

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

HCD80R600R 800V N-Channel Super Junction MOSFET

V DS I D (at V GS =10V) R DS(ON) (at V GS =4.5V) 100% UIS Tested 100% R g Tested SOIC-8 D1. Top View. S2 Pin1

2N65 650V N-Channel Power MOSFET

TO-247-3L Inner Circuit Product Summary C) RDS(on) Parameter Symbol Test Conditions Value Unit

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

STO36N60M6. N-channel 600 V, 85 mω typ., 30 A, MDmesh M6 Power MOSFET in a TO LL HV package. Datasheet. Features. Applications.

TO-220-3L Inner Circuit Product Summary C) RDS(on) Parameter Symbol Test Conditions Value Unit

UNISONIC TECHNOLOGIES CO., LTD

HCS90R1K5R 900V N-Channel Super Junction MOSFET

Features. Description. Table 1. Device summary. Order code Marking Package Packaging. STL6N3LLH6 STG1 PowerFLAT 2x2 Tape and reel

35mW V SiC Cascode UJ3C120040K3S Datasheet. Description. Typical Applications. Maximum Ratings

HCS80R850R 800V N-Channel Super Junction MOSFET

N-CHANNEL POWER MOSFET TRANSISTOR APPLICATION. Auotmobile Convert System Networking DC-DC Power System Power Supply etc..

UNISONIC TECHNOLOGIES CO., LTD

Features. Description. AM15572v1. Table 1. Device summary. Order code Marking Package Packaging. STD7N65M2 7N65M2 DPAK Tape and reel

V T j,max. I DM R DS(ON),max < 0.19Ω Q g,typ E 400V. 100% UIS Tested 100% R g Tested G D S S. Package Type TO-220F Green.

V DS I D (at V GS =10V) R DS(ON) (at V GS =4.5V) 100% UIS Tested 100% R g Tested DFN5X6 D. Top View

27mW - 650V SiC Cascode UJ3C065030K3S Datasheet. Description. Typical Applications. Maximum Ratings

80mW - 650V SiC Cascode UJ3C065080K3S Datasheet. Description. Typical Applications. Maximum Ratings

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

Features. Description. Table 1: Device summary Order code Marking Package Packaging STW38N65M5-4 38N65M5 TO247-4 Tube

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

HCD6N70S / HCU6N70S 700V N-Channel Super Junction MOSFET

STD7N60M2, STP7N60M2, STU7N60M2

TO-220F. 1. Gate 2. Drain 3. Source. Item Sales Type Marking Package Packaging 1 SW P 4N60 SW4N60 TO-220 TUBE 2 SW F 4N60 SW4N60 TO-220F TUBE

V DS I D (at V GS =10V) R DS(ON) (at V GS =7V) 100% UIS Tested 100% R g Tested

IRHNJ67130 SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/746. Absolute Maximum Ratings PD-95816D. Features: n Low RDS(on) n Fast Switching

V DS I D (at V GS =10V) R DS(ON) (at V GS =4.5V) 100% UIS Tested 100% R g Tested. Top View. Symbol Drain-Source Voltage 30 Gate-Source Voltage V GS

V DS I D (at V GS =10V) R DS(ON) (at V GS = 4.5V) 100% UIS Tested 100% R g Tested

AOT2618L/AOB2618L/AOTF2618L

100% avalanche tested Extremely high dv/dt capability Very low intrinsic capacitance Improved diode reverse recovery characteristics Zener-protected

Power MOSFET FEATURES. IRFP23N50LPbF SiHFP23N50L-E3 IRFP23N50L SiHFP23N50L

Symbol Drain-Source Voltage -30 Gate-Source Voltage Continuous Drain T A =25 C T A =70 C Pulsed Drain Current C V DS V GS

V DS I D (at V GS =-4.5V) R DS(ON) (at V GS =-1.8V) D1 G2 Bottom

V DS. 100% UIS Tested 100% R g Tested. Top View S2 G2 S1 G1

HFP4N65F / HFS4N65F 650V N-Channel MOSFET

2N7624U3 LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) 60V, P-CHANNEL TECHNOLOGY. Absolute Maximum Ratings

AOD2910E 100V N-Channel MOSFET

N-channel Enhancement mode TO-262/TO-263/TO-220F MOSFET TO-262 TO Gate 2. Drain 3. Source

V DS I D (at V GS =10V) R DS(ON) (at V GS = 4.5V) 100% UIS Tested 100% R g Tested DFN5X6 D. Top View

TO-220. Item Sales Type Marking Package Packaging 1 SW P 640 SW640 TO-220 TUBE 2 SW W 640 SW640 TO-3P TUBE

AOD V N-Channel MOSFET

2N7606U3 LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) 60V, N-CHANNEL TECHNOLOGY. Absolute Maximum Ratings

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 60 V V GS Gate-Source Voltage ±20 V

POWER MOSFET SURFACE MOUNT (SMD-1) 200V, N-CHANNEL. Absolute Maximum Ratings PD-94236C

UNISONIC TECHNOLOGIES CO., LTD

General Description. Symbol Parameter Value Units. dv/dt Peak Diode Recovery dv/dt (Note 3) 4.5 V/ns

HCS80R1K4E 800V N-Channel Super Junction MOSFET

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

Order code V DS R DS(on) max. I D

UNISONIC TECHNOLOGIES CO., LTD

8N Amps, 600/650 Volts N-CHANNEL POWER MOSFET 8N60 MOSFET N 600V 7.5A 1,2 OHM. Power MOSFET. DESCRIPTION FEATURES

IRHF57034 THRU-HOLE (TO-39) REF: MIL-PRF-19500/701. Absolute Maximum Ratings PD-93791D

N-channel 600 V, 1.06 Ω typ., 4.5 A MDmesh M2 Power MOSFETs in D 2 PAK and DPAK packages. Features. Description. AM15572v1. Table 1.

Order code V DS R DS(on) max. I D P TOT

AOTF380A60L/AOT380A60L

V DS I D (at V GS =10V) R DS(ON) (at V GS =4.5V) 100% UIS Tested 100% Rg Tested

IRHNJ67234 SURFACE MOUNT (SMD-0.5) PD-97197C REF: MIL-PRF-19500/746. Absolute Maximum Ratings. Product Summary

SW8N80K N-channel Enhancement mode TO-220F/TO-251/TO-251N/TO-252/TO-262 MOSFET

AON7422E 30V N-Channel MOSFET

VDSS (V) 650. V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2

Order code V DS R DS(on) max. I D

Top View. Max n-channel Max p-channel Units Drain-Source Voltage V. Symbol V DS V GS ±12 I DM P D T J, T STG Maximum Junction-to-Lead

V DS. 100% UIS Tested 100% R g Tested. Symbol. Gate-Source Voltage Continuous Drain Current Pulsed Drain Current C V GS I DM T A =25 C I D

12N60 12N65 Power MOSFET

HCS80R380R 800V N-Channel Super Junction MOSFET

AOD4132 N-Channel Enhancement Mode Field Effect Transistor

STB18N60M2, STI18N60M2 STP18N60M2, STW18N60M2 Datasheet

V DS. Pin 1 G1 D2. Maximum Drain-Source Voltage -12 Gate-Source Voltage Continuous Drain Current G Pulsed Drain Current C V GS I D I DM P D

AOTF5N50FD. 500V, 5A N-Channel MOSFET with Fast Recovery Diode. V DS I D (at V GS =10V) R DS(ON) (at V GS =10V)

UNISONIC TECHNOLOGIES CO., LTD

Features. Features. Description. Table 1: Device summary Order code Marking Package Packaging STL33N60M2 33N60M2 PowerFLAT 8x8 HV Tape and reel

Features Package Applications Key Specifications Internal Equivalent Circuit Absolute maximum ratings

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

SURFACE MOUNT (SMD-1) 100V, P-CHANNEL. Absolute Maximum Ratings. Product Summary

AOTF7N60FD. 600V, 7A N-Channel MOSFET with Fast Recovery Diode. V DS I D (at V GS =10V)

Features. Description. AM01476v1. Table 1. Device summary. Order codes Marking Package Packaging. STW70N60M2 70N60M2 TO-247 Tube

STD4N52K3, STP4N52K3, STU4N52K3

IRHNJ57133SE SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/704 TECHNOLOGY. Absolute Maximum Ratings

Top View S1 G1 S2 G2. Orderable Part Number Package Type Form Minimum Order Quantity AO4630 SO-8 Tape & Reel Symbol V DS ±12 V GS I D

AO V Complementary MOSFET

AOD414 N-Channel Enhancement Mode Field Effect Transistor

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

P-channel -30 V, 48 mω typ., -2 A STripFET H6 Power MOSFET in a SOT-23. Order code V DS R DS(on) max. I D

VGS = 4.5V, TC = 25 C Continuous Drain Current 2.6 A

HCA80R250T 800V N-Channel Super Junction MOSFET

AOW V N-Channel MOSFET

Description. Symbol Parameter FCMT180N65S3 Unit V DSS Drain to Source Voltage 650 V. - Continuous (T C = 25 o C) 17 - Continuous (T C = 100 o C) 11

Features. Description. AM01476v1. Table 1. Device summary. Order code Marking Packages Packaging. STF6N95K5 6N95K5 TO-220FP Tube

Transcription:

Drive and Layout Requirements for Fast Switching High Voltage MOSFETs

Contents Introduction SuperJunction Technologies Influence of Circuit Parameters on Switching Characteristics Gate Resistance Clamp diodes Ferrite Bead Drive IC External C gd Source Inductance Practical Layout Requirements Summary 2

EField Distribution of SJ Technology SJ Technology Allows Twice BV for Same Doping Planar MOSFET SuperJunction MOSFET EField EField A B A B BV B A A B BV Area is proportional to BV Si limitation : On resistance and BV is tradeoff Area is twice so BV is twice for same doping thanks to charge balance On resistance is in linear relation on BV 3

Specific Rdson [mohmcm 2 ] Silicon Limit of HV MOSFETs? 60 55 50 45 40 35 30 25 20 15 10 5 0 5 Ron A near linear relation between Rds(on) and Breakdown Voltage A significant reduction of conduction and switching losses High power density for highend application. 0 100 200 300 400 500 600 700 Breakdown Voltage (V) 9 2.5, sp 6 10 BV Rds(on)is linear relation on BV Results in 10times lower Rds(on) at 600V Planar MOSFET A ` B EField BV A B Area is proportional to BV SuperJunction MOSFET A B EField BV A B Area is twice so BV is twice for same doping thanks to charge balance 4

Nonlinear Coss in SJ MOSFET C o r A d a b c Coss curve of superjunction MOSFET is highly nonlinear Extremely fast dv/dt and di/dt and voltage and current oscillation 10000 SJ MOSFET Planar MOSFET Vgs : 5V/div 50ns/div Coss [pf] 1000 100 Vds:100V/div Id:2A/div SJ MOSFET @ Ron=120Ω, Roff=30Ω vs Planar MOFET @ Ron=22Ω, Roff=10Ω(Ref.) a b c 0.1 1 10 100 Vds [V] 5

SuperFET3 vs SuperFET2 DUTs SuperFET 3 SuperFET 2 FCH040N65S3 FCH041N60E BV DSS @ T J =25 650 V 600 V I D @ T C =25 68.0A 77.0 A R DS(ON) max. I D =34A 40mΩ 41mΩ V GS(th) 2.5V ~ 4.5V 2.5V ~ 3.5V V GSS @ DC ±30V ±20V *Q g @ V dd =400V, I D =34A, V gs =10V * 158 nc * 330 nc *R g @ f = 1 MHz * 0.7 Ω 1.2 Ω *E OSS @ 400V DS * 13.7 uj * 25.7 uj *Q OSS @ 400V DS * 521 nc * 596 nc Peak diode recovery dv/dt 20V/ns 52% 47% 13% 20V/ns MOSFET dv/dt 100V/ns 100V/ns 6

Gate Charge Characteristic SuperFET3 Low Gate Charge and Input Capacitance Vgs [V] 12 10 SuperFET3 SuperFET2 30000 25000 SuperFET 3 SuperFET 2 20000 8 6 4 Ciss [pf] 15000 10000 2 0 0 50 100 150 200 250 300 350 Gate Charge [nc] FCH040N65S3 FCH041N60E C iss = C gs C gd (C ds = shorted) Notes : 1. V GS = 0 V 2. f = 1 MHz 5000 0.1 1 10 100 V DS, DrainSource Voltage [V] DUTs FCH040N65S3 FCH041N60E Q gs 39.8 57.1 Q gd 63.8 121.0 Q g 157.9 330.2 7

Clamped Inductive Switching Circuit & Waveforms and Loss Definition Test Circuit which is used for the following measurements. 8

Effects of Gate Resistance at Turn On Transient GateSource Voltage [V] 30 20 10 0 Rg=3.3ohm Rg=6.8ohm Rg=10ohm Rg=27ohm Rg=47ohm Pon [W] 12000 10000 8000 6000 4000 2000 Rg=3.3ohm Rg=6.8ohm Rg=10ohm Rg=27ohm Rg=47ohm 10 0 100 80 60 40 20 0 20 40 Time [ns] 2000 100 80 60 40 20 0 20 40 Time [ns] 40 400 DrainSource Voltage [V] 300 200 100 0 Rg=3.3ohm Rg=6.8ohm Rg=10ohm Rg=27ohm Rg=47ohm Drain Current [A] 30 20 10 Rg=3.3ohm Rg=6.8ohm Rg=10ohm Rg=27ohm Rg=47ohm 0 100 100 80 60 40 20 0 20 40 Time [ns] 100 80 60 40 20 0 20 Time [ns] 9

Effects of Gate Resistance at Turn Off Transient GateSource Voltage [V] 20 10 0 Rg=3.3ohm Rg=6.8ohm Rg=10ohm Rg=27ohm Rg=47ohm Poff [W] 6000 5000 4000 3000 2000 1000 Rg=3.3ohm Rg=6.8ohm Rg=10ohm Rg=27ohm Rg=47ohm 0 10 100 80 60 40 20 0 20 40 60 Time [ns] 1000 100 80 60 40 20 0 20 40 60 Time [ns] 600 20 DrainSource Voltage [V] 500 400 300 200 100 Rg=3.3ohm Rg=6.8ohm Rg=10ohm Rg=27ohm Rg=47ohm Drain Current [A] 18 16 14 12 10 8 6 4 2 0 Rg=3.3ohm Rg=6.8ohm Rg=10ohm Rg=27ohm Rg=47ohm 2 0 100 80 60 40 20 0 20 40 60 Time [ns] 4 100 80 60 40 20 0 20 40 60 Time [ns] 10

Effects of Gate Resistance 120 110 100 90 80 Eon Eoff Eon& Eoff @ Id=9A, Vds=380V Eon[uJ] 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 R g, Gate Resistor [ohm] Critical control parameter in gatedrive design is external series gate resistor (Rg). From an application standpoint, selecting the optimized Rg is very important. Efficiency vs dv/dt or voltage spikes. 11

Reverse Recovery Effect Si Diode vs SiC Schottky Diode 10 8 6A SiC Schottky diode 8A Si diode 6 Current [A] 4 2 0 2 4 6 80.0n 60.0n 40.0n 20.0n 0.0 20.0n 40.0n 60.0n 80.0n 100.0n Time[s] 12

Effect of Clamp Diodes at Turn On Si Diode vs SiC Schottky Diode IF : 2A/div. Vds : 100V/div. Eon=50.72uJ Vr: 100V/div. Id : 2A/div. Time : 20ns/div. Diode & MOSFET waveforms @ Turnon with SiC Schottky diode Eon=90.33uJ Diode & MOSFET waveforms @ Turnon with Si diode 13

Effect of Clamp Diodes at Turn Off Si Diode vs SiC Schottky Diode Vgs : 5V/div. Eoff Id : 0.5A/div. Vds : 100V/div. 6A SiC SBD 8A Si Diode Time : 100ns/div. 6A SiC diode Turn off @ Id=1A, Rg=4.7 Ω with 6A SiC SBD (Ref : 8A Si Diode) 8A Si Diode 14

Effect of Clamp Diodes Si Diode vs SiC Schottky Diode 80 70 With Si Diode With SiC Schottky MOSFET Eon @ Id=9A, Vdd=380V 100 With Si Diode With SiC Schottky Diode 60 80 Eon[uJ] 50 40 dv/dt [V/ns] 60 30 20 40 10 20 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 R g, Gate Resistor [ohm] Rg [ohm] SiC Schottky diode is optimized device for extremely fast switching MOSFET. 15

Effects of Ferrite Bead Vgs with ferrite bead Vgs without ferrite bead Vgs : 10V/div. Vgs without ferrite bead Vgs : 10V/div. Vgs with ferrite bead Time :10ns/div. (a) Vgs at Turnon Transient (b) Vgs at Turnoff Transient 16

Equivalent Circuit of Ferrite Bead Z Gate Ferrite Bead C para R X R bead L bead R para Z R jx 17

Effects of Current Capability of Driver IC TABLE I. Comparisons of Critical Specification of Gate Drivers DEVICE CONDITION I PK_SINK I PK_SOURCE FAN3122T C LOAD =1.0uF,f=1kHz,Vdd=12V 11.4[A] 10.6[A] FAN3224T C LOAD =1.0uF,f=1kHz,Vdd=12V 5.0[A] 5.0[A] FAN3111C C LOAD =1.0uF,f=1kHz,Vdd=12V 1.4[A] 1.4[A] * DUT : FCP16N60N with 6A SiC SBD 12.0 11.5 11.0 FAN3122T FAN3224T FAN3111C Eoff @ Rg=2.2ohm 36 33 30 FAN3122T FAN3224T FAN3111C Eon @ Rg=20ohm 10.5 27 10.0 24 Eoff[uJ] 9.5 9.0 Eon[uJ] 21 18 8.5 15 8.0 12 7.5 9 7.0 0 2 4 6 8 10 Drain Current [A] 6 0 2 4 6 8 10 Drain Current [A] 18

Effects of Gate Drive Circuit Vcc OUT GND Don Ron Doff Roff Vcc OUT GND Don Ron Roff Qoff PNP Tr turnoff can reduce gate ringing. It s possible to reduce parasitic components in PCB. Keep loop area as small as possible to avoid worse EMI and switching behavior. * Ron=10hom, Roff=4.7ohm 19

Measurement Technique R L Probe C C Oscilloscope R L Ground Lead Probes are circuits composed of distributed R,L, and C for AC signals. A total probe impedance varies with switching frequency. Ringing Standard gate probing R 1 RL C P 8pF R P 10M L G The probe ground lead adds inductance to the circuit. 20

Keep the Loop Probe Small! 15 10 Measuremet with standard setup Measuremet with Probe tip Vgs pkpk =26V Measurement with standard setup S D G 5 Vgs [V] 0 Vgs pkpk =11.2V 5 Measurement with Probe Tip 10 S D G 15 100 80 60 40 20 0 20 40 60 80 100 Time [ns] 21

Package and Layout Parasitics Package parasitics 1cm / 0.25mm trace (L/W) 610nH L=10nH, di/dt=500a/μs V ind =5V L=10nH, di/dt=1,000a/μs V ind =10V Layout parasitics A lot of layout parasitic has to be considered! 22

MOSFET Oscillation Circuit L R Gext. =5.1O C gd_ext. L G Osc illation circuit given by external couple capacitance L g1 R g_int. C gd_int. C gs L D L d1 C ds D boost C O MOSFET R LOAD Cgd_ext. Rg Resonant circuit given by external coupling capacitance L G L G1 C GD C GS L D L D1 C DS L S1 MOSFET Resonant circuit L s1 L S L S A lot of layout parasitic has to be considered! 23

Layout Capacitance Example with High External C GD y d C x A x y 0 d r A Capacity between trace pitches Gate External C GD External C GD too high!! Drain Drain Gate External C GD (a) Single layer PCB External C GD External C GD (b) Double layer PCB 24

Layout Capacitance Examples with Reduced External C GD Gate Drain External C GD Drain Gate External C GD Gndplane or Shieldplane reduces C GD Minimized external C GD Minimized external C GD (a) double layer PCB Both solutions allow use of SJ Devices (b) multi layer PCB 25

Layout Example Large External C GD Vgs Shows Higher Spikes During Turn Off PCB example with large external C GD Coupling area Gate V DS Drain V GS DV GS ~ 18V 26

Layout Example Small External C GD Vgs Shows Lower Spikes During Turn Off PCB example with small external C GD Coupling area V DS Gate Drain V GS DV GS ~ 4V 27

Turnoff Gate Oscillation Mechanism VDS During T 2 LD Id 10000 SJ MOSFET RG VGS VGS_int Coss [pf] 1000 LG LG_int VGS_int 100 LS_int Discharging VGS VDS LS di VLS LS dt Id Negative di/dt 0.1 1 10 100 Vds [V] D t V GS : 5V/div V DS : 100V/div I D : 2A Keep the commutation loop as small as possible! Minimize the source inductance and sensing resistor inductance 28

Effects of Source Inductance LS=1n and 10nH V gs V gs (a) V gs waveform for low L S (b) V gs waveform for High L S V ds I d * Topology : 500W Interleaved CRM PFC * MOSFET : FCPF13N60N * Diode : FFPF20UP60DN * Gate Resistor : Ron=51ohm, Roff=10ohm (c) V ds and I d waveform 29

Gate oscillation vs Package Through hole vs SMD vs Kelvin source SMD I D =8A 600V/199mΩ, Power88 600V/199mΩ, D2PAK 600V/199mΩ, TO220 Kelvin Source SMD SMD Through hole Turnoff Transient Gate Oscillation Gate Oscillation 30

Design Tips Practical Layout Example Boost PFC Bad Layout: Good Layout: Increased external GD capacitance Driver and gate resistor far away from gate pin of MOSFET Connect the driverstage Gnd directly to the source pin to achieve best performance Driver & Rg as close as possible to the gate pin of MOSFET G D S G D S Ron Qoff Don Roff Ron Roff Long gate path Separate Power GND and gate driver GND 31

Design Tips Practical Layout Example Paralleling MOSFETs Minimized source inductance to reference Two independent totem pole drivers very close to MOSFET gate point for gate drive minimized Minimized Cgd: Gate and Drain trace at 90 angle 32

Summary How to Use SuperJunction MOSFET in Practical Layouts To achieve the best performance of SuperJunction MOSFETs, optimized layout is required Gate driver and Rg must be placed as close as possible to the MOSFET gate pin Separate POWER GND and GATE Driver GND Minimize parasitic C gd capacitance and source inductance on PCB For paralleling SuperJunction MOSFETs, symmetrical layout is mandatory Slow down dv/dt, di/dt by increasing Rg or using ferrite bead 33

34