The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500 kv Substation

Similar documents
Analysis of lightning performance of 132KV transmission line by application of surge arresters

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS

Parameters Affecting the Back Flashover across the Overhead Transmission Line Insulator Caused by Lightning

Tab 2 Voltage Stresses Switching Transients

Analyzing and Modeling the Lightning Transient Effects of 400 KV Single Circuit Transmission Lines

Simulation of Lightning Transients on 110 kv overhead-cable transmission line using ATP-EMTP

Session Four: Practical Insulation Co-ordination for Lightning Induced Overvoltages

2000 Mathematics Subject Classification: 68Uxx/Subject Classification for Computer Science. 281, 242.2

SURGE PROPAGATION AND PROTECTION OF UNDERGROUND DISTRIBUTION CABLES

Lightning Overvoltages on Low Voltage Circuit Caused by Ground Potential Rise

PREVENTING FLASHOVER NEAR A SUBSTATION BY INSTALLING LINE SURGE ARRESTERS

A Special Ferro-resonance Phenomena on 3-phase 66kV VT-generation of 20Hz zero sequence continuous voltage

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS

EXPERIMENTAL INVESTIGATION OF A TRANSIENT INDUCED VOLTAGE TO AN OVERHEAD CONTROL CABLE FROM A GROUNDING CIRCUIT

Modeling of overhead transmission lines with line surge arresters for lightning overvoltages. Poland

VFTO STUDIES DUO TO THE SWITCHING OPERATION IN GIS 132KV SUBSTATION AND EFFECTIVE FACTORS IN REDUCING THESE OVER VOLTAGES

Topic 6 Quiz, February 2017 Impedance and Fault Current Calculations For Radial Systems TLC ONLY!!!!! DUE DATE FOR TLC- February 14, 2017

Modeling insulation in high-voltage substations

GIS Disconnector Switching Operation VFTO Study

Maximum Lightning Overvoltage along a Cable due to Shielding Failure

The relationship between operating maintenance and lightning overvoltage in distribution networks based on PSCAD/EMTDC

ABSTRACTS of SESSION 6

High voltage engineering

International Journal of Advance Engineering and Research Development. Analysis of Surge Arrester using FEM

Research on Lightning Over-voltage and Lightning Protection of 500kV. HGIS Substation

Insulation Co-ordination For HVDC Station

Study of Tower Grounding Resistance Effected Back Flashover to 500 kv Transmission Line in Thailand by using ATP/EMTP

Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters

ROEVER ENGINEERING COLLEGE ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Lightning performance of a HV/MV substation

Great Northern Transmission Line: Behind the (Electrical) Design

Substation Insulation Coordination Study

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

Modeling for the Calculation of Overvoltages Stressing the Electronic Equipment of High Voltage Substations due to Lightning

Relay Protection of EHV Shunt Reactors Based on the Traveling Wave Principle

Computer Based Model for Design Selection of Lightning Arrester for 132/33kV Substation

Sensitivity Analysis of Maximum Overvoltage on Cables with Considering Forward and Backward Waves

Comparison between Different InstallationLocations of Surge Arresters at Transmission Line Using EMTP-RV

Modelling of Sf6 Circuit Breaker Arc Quenching Phenomena In Pscad

Computation of Lightning Impulse Backflashover Outages Rates on High Voltage Transmission Lines

ArresterFacts 024. Separation Distance for Substations. ArresterFacts 024 Separation Distance for Substations. September 2014 Rev 7 Jonathan Woodworth

SUPPRESSION METHODS FOR VERY FAST TRANSIENT OVER- VOLTAGES ON EQUIPMENT OF GIS

A Simple Simulation Model for Analyzing Very Fast Transient Overvoltage in Gas Insulated Switchgear

A Study on Ferroresonance Mitigation Techniques for Power Transformer

Effects of Transient Recovery Voltages on Circuit Breaker Ratings

Modeling and Analysis of a 3-Phase 132kv Gas Insulated Substation

Effects of Phase-Shifting Transformers, and Synchronous Condensers on Breaker Transient Recovery Voltages

Analysis of current distribution among long-flashover arresters for 10 kv overhead line protection against direct lightning strikes

Software Development for Direct Lightning Stroke Shielding of Substations

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1402 HIGH VOLTAGE ENGINEERING UNIT I

DEPARTMENT OF EEE QUESTION BANK

The line-lightning performance and mitigation studies of shielded steelstructure

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION

ANALYSIS OF A FLASHOVER OPERATION ON TWO 138KV TRANSMISSION LINES

Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines

Transformers connected via a cable Overvoltage protection

Roll No. :... Invigilator s Signature :.. CS/B.TECH(EE)/SEM-5/EE-502/ POWER SYSTEM-I. Time Allotted : 3 Hours Full Marks : 70

OVERVOLTAGE PROTECTION OF POLE MOUNTED DISTRIBUTION TRANSFORMERS

Switching Induced Transients:

Fast Front Transients in Transformer Connected to Gas Insulated Substations: (White+Black) Box Models and TDSF Monitoring

Study of Insulator to Withstand Switching Surges in Conversion Three to Six-Phase Transmission Line: Computer Simulation Analysis

Accuracy of Lightning Surge Analysis of Tower Surge Response

Journal of Asian Scientific Research SUBSTATION PROTECTION AND THE CLIMATIC ENVIRONMENT OF NIGER DELTA. John Tarilanyo Afa

Mitigation of Back-Flashovers for 110-kV Lines at Multi-Circuit Overhead Line Towers

Back-flashover Investigation of HV Transmission Lines Using Transient Modeling of the Grounding Systems

Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers

HIGH VOLTAGE Insulation Coordination

ABSTRACT 1 INTRODUCTION

Power Quality and Reliablity Centre

A3-308 HIGH SPEED GROUNDING SWITCH FOR EXTRA-HIGH VOLTAGE LINES

G. KOEPPL Koeppl Power Experts Switzerland

Calculation of Transients at Different Distances in a Single Phase 220KV Gas insulated Substation

Effect of Surge Arrester on Overhead Transmission Lines as Shield against Over Voltage

TECHNICAL NOTE 2.0. Overvoltages origin and magnitudes Overvoltage protection

Transmission of Electrical Energy

Substation Design Volume VII

IMP/007/011 - Code of Practice for the Application of Lightning Protection

Accurate Modeling of Core-Type Distribution Transformers for Electromagnetic Transient Studies

Ferroresonances during Black Starts - Criterion for Feasibility of Scenarios

Introduce system protection relays like underfrequency relays, rate of change of frequency relays, reverse - power flow

Limitation of Transmission Line Switching Overvoltages using Switchsync Relays

Simplified Approach to Calculate the Back Flashover Voltage of Shielded H.V. Transmission Line Towers

INSTALLATION OF LSA ON A 400 KV DOUBLE-CIRCUIT LINE IN RUSSIA

TECHNICAL REPORT. Insulation co-ordination

Simulation and Analysis of Power System Transients using EMTP-RV

Transient Recovery Voltage (TRV) and Rate of Rise of Recovery Voltage (RRRV) of Line Circuit Breakers in Over Compensated Transmission Lines

Adi Mulawarman, P.E Xcel Energy Minneapolis, MN. Pratap G. Mysore, P.E Pratap Consulting Services, LLC Plymouth, MN

Utility System Lightning Protection

Lightning current field measurement on a transmission line, comparison with electromagnetic transient calculations

Overvoltages While Switching Off a HV- Transformer with Arc-Suppression Coil at No-Load

Effect of Shielded Distribution Cables on Lightning-Induced Overvoltages in a Distribution System

INTERNATIONAL STANDARD

R10. IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec SWITCH GEAR AND PROTECTION. (Electrical and Electronics Engineering)

Simulation and Analysis of Lightning on 345-kV Arrester Platform Ground-Leading Line Models

EE 1402 HIGH VOLTAGE ENGINEERING

Hazard of Induced Overvoltage to Power Distribution Lines Jiang Jun, Zhao Rui, Chen Jingyang, Tian Hua, Han Lin

Electrical Power and Energy Systems

B2-301 IMPROVING DOUBLE CIRCUIT TRANSMISSION LINE RELIABILITY THROUGH LIGHTNING DESIGN

Investigation of Transmission Line Overvoltages and their Deduction Approach

Lecturer: Dr. J B E AL-ATRASH No. of Pages: 4

Transcription:

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500 kv Substation J. W. Woo, J. S. Kwak, H. J. Ju, H. H. Lee, J. D. Moon Abstract--To meet increasing power demand, the 500 kv power systems are under consideration in some regions of Middle Asia country. As the power system voltage becomes higher, the cost for the power system insulation greatly increases. The 500 kv transmission system will become the basis of power system in its country and they require much higher system reliability. Consequently, by the methods of limiting overvoltages effectively, a reasonable insulation design and coordination have to be accomplished. Especially, the Substations will be constructed as outdoor type. We had calculated about the transient phenomena of the 500 kv power systems. In order to determine the various factors for the insulation design, the EMTP (Electro-magnetic transient program) is used for the magnification of transient phenomena in the planned network. In this paper, we would like to explain about the calculation results of lightning overvoltages by EMTP for lightning protection design of 500 kv Substation. To get the reliable results, the multi-story tower model and EMTP/TACS model were introduced for the simulation of dynamic arc characteristics. Keywords: Lightning, Transmission Line, Substation, Overvolt ages, EMTP(Electro-magnetic Transient Program) I. INTRODUCTION o meet increasing power demand, the 500 T kv power systems are under consideration in some regions of Middle Asia country. As the power system voltage becomes higher, the cost for power system insulation is much more increased. As the power system voltage becomes higher, the cost for the power system insulation greatly increases. The 500 kv transmission systems will become the basis of power system in its country and they require much higher system reliability. Consequently, by the methods of limiting overvoltages effectively, a reasonable insulation design and coordination have to be accomplished. We had considered the transient phenomena in the 500 kv transmission system and the insulation coordination criteria. The procedures of insulation coordination for the 500 kv transmission system are; (1) First of all, it is calculated a transmission line charging current and decided a maximum operating voltage and then, reviewed a necessity of phase modifying equipment J. W. Woo, J. S. Kwak and H. J. Ju are with Korea Electric Power Research Ins titute, Daejeon-City, 305-380 Korea (e-mail: jwwoo@kepri.re.kr). H. H. Lee is with the Department of Electrical Engineering, Chung Nam Nat l University, Daejeon-City, 305-764 Korea (e-mail:hhlee@cnu.ac.kr). J.D.Moon is with the Department of Electrical Engineering, Kyung Pook Nat l University, Daegu-City, 702-701 Korea (e-mail:jdmoon@knu.ac.kr). Presented at the International Conference on Power Systems Transients (IPST 05) in Montreal, Canada on June 19-23, 2005 Paper No. IPST05-111 installation s whether or not, and calculated a capacity of circuit breaker according to transmission line charging current, and reviewed a reclosing time after calculation of unbalance factor of transmission line. (2) For transmission line insulation design, first analyzed power frequency temporary overvoltage and decided a overvoltage target value for insulator stain and suggested a surface creepage distance and number of insulators, and also suggested a air insulation distance for insulator after calculation of criteria between phase to phase, phase to ground switching overvoltage, with a utilization of EMTP for a contingency breakdown and calculated a induced current of overhead ground wire and lightning flashover rate. (3) For substation insulation design, first use reviewed results of power frequency temporary overvoltage to calculate a surface distance of bushing and utilized reviewed results of switching overvoltage to calculate air insulation distance. Also, by comparison of international criteria for TRV (Transient Recovery Voltage) and satisfaction of calculation results, have examined a circuit breaker s transient recovery voltage rating. Moreover, have decided a screen rate for substation lightning, criteria for lightning arrestor and BIL for substation s each facility. But, in this paper, we would like to explain only about the calculation results of lightning overvoltages by EMTP for lightning protection design of 500 kv substations. To get the reliable results, the multi story tower model and EMTP/TACS model were introduced for the simulation of dynamic arc characteristics. II. OUTLINE OF LIGHTNING ANALYSIS MODEL We can assume lightning current which comes to the substation as two cases ; one is direct lightning stroke from the power line and the other is back flashover of transmission tower by the lightning stroke on the top of the tower. The commercial transmission line has ground wires to prevent direct lightning stroke, so we consider only back flashover case here. A. Lightning Current Assumption We assumed that the lightning stroke is on the first tower, w hich is nearest to the substation. And the lightning surges woul d travel to the substation if the back flashover occurs in the to wer. The assumed lightning current is 170 ka of peak, 1 micro second wave front and 70 micro second wave tails. Figure 1, 2 and table 1 show the simulation conditions for lightning surge calculation by EMTP.

Lightning Stroke Multi Matching Resistance Matrix # 5 Tower # 2 Tower # 1 Tower AIS R S T CB T/L Model (K.C.LEE) 5 s Model Fig. 1. T/L Tower (3 Sections Model) Concept on the modeling of transmission line Inlet Structure & Line (Single Distributed Model) TABLE I BASIC ANALYSIS CONDITION FOR SUBSTATION BIL DESIGN In the figure 2, the electrical parameters are as follows; Tower heights between arms (H1, H2, H3) are 5.0, 5.7 and 29.3 meters respectively. Equivalent resistance between arms (R1, R2, R3) are 22.95, 26.16 and 33.48 ohms respectively. Equivalent inductance between arms(l1, L2, L3) are 6.12, 6.98 and 8.93 micro-henry respectively. Tower surge impedance between arms(zt1=zt2) is 220 and Z t3 is 150 ohms. B. Transmission Line and Transmission Tower The power line conductor is 330 ACSR 4 bundle conductor has 40 cm spacing, and the ground wire is ACSR 97 with single conductor. Average span was assumed to be 500 meters. The transmission tower is arranged up to 5 towers from the substation, and the rest of the towers are modeled as matching resistance matrix to prevent the reflection of the traveling wave. In the calculation, we got the resistance matrix value by EMTP/LINE CONSTANTS. The frequency independent K.C.Lee model is used because the surge frequency is very high in the lightning phenomena and the calculated result is identical to that of frequency dependent model. The standard of tower footing resistance is 10 ohms for the modeling. The tower model directly affects the wave shapes of lightning surges which appears on the arcing horn gap. So the three section tower model with distributed line parameters is used for high accuracy transmission tower model. Fig. 2. Tower Configuration C. Arching Horn Gap Model with EMTP/TACS The arcing horn gap can be modeled as a time controlled switch or linear arc inductance with time controlled switch or nonlinear arc inductance with controlled switch. Among these models nonlinear arc inductance model is the most accurate one that can represent the dynamic arc characteristics of arcing horn gap. We used the linear inductance model because we do not have any experimental data for that.

Lightning Arching Horn Strength NO Voltage on Arching Horn V_arc V_arc >= V_horn Voltage-Time Curve of Arching Horn V_horn YES TACS Switch on Flashover (Arc Inductance) Fig. 3. Flow Chart of Arcing Horn and TACS Fig. 5 diagram for lightning surge analysis TABLE 2. ARRESTER RATING FOR 500 KV SYSTEMS Fig.4 CIGRE volt-time characteristics for flashover of line insulators D. Substation Layout and Operating Conditions We calculated the surge impedance of substations according by EMTP/LINE CONSTANTS. The type of the model substation is AIS, 1.5 circuit breaker systems, which has one transmission line and two transformer banks. To investigate the most severe operation condition, we classified it as three circuit conditions; the one is for protecting the incoming of AIS which include the surge arresters, the second one is for buses and circuit breakers and the last one is for main transformer. Figure 5 is the line diagram for lightning surge analysis of 500 kv S/S. E. Surge Arrester Characteristics The surge arrester characteristics and its location are very i mportant to simulate the lightning surge. Rated voltages and cu rrent of arrestors for 500 kv systems are recommended as sho wn in table 2. F. Tower Footing Resistance We represented the earth resistance as a concentrated pure resistance considering the most severe condition, because the transient voltage time characteristics of the tower footing resistance are not yet specified. The represented value of the tower footing resistor of transmission tower is 10 ohms, however 10 to 50ohms are used for comparing the result with another whereas the resistance of the mesh of substation is set to 1 ohm. III. ANALYSIS RESULTS We examined the variation of overvoltage at the substation according to the arresters location. Figure 6 is the example of each operating conditions at 500 kv S/S. First, for optimal insulation design, we will install the surge arrester at the incoming point of the line. So, we had considere d the first simple case as case 1 in figure 6, which has one arres ter at incoming point of transmission line and power is charged from line to the front of circuit breaker.

2500000 Fig.6 Example of each operating condition CASE_1>1END (Type 4) CASE_1>1END (Type 4) CASE_1>2END (Type 4) CASE_1>IN_0C (Type 4) CASE_1>IN_1C (Type 4) 1500000 CASE_8>BUSL1 (Type 4) CASE_8>BUSL1 (Type 4) CASE_8>BUSL2A(Type 4) CASE_8>BUSL3 (Type 4) CASE_8>BUSL4 (Type 4) CASE_8>BUSU1 (Type 4) CASE_8>BUSU2 (Type 4) CASE_8>BUSU3 (Type 4) CASE_8>BUSU4 (Type 4) CASE_8>IN_0C (Type 4) CASE_8>IN_1C (Type 4) Voltage (V) 2000000 1500000 1000000 500000 0-500000 Voltage (V) 1000000 500000 0-500000 -1000000 0 5 10 15 20 Time (us) Fig. 7 Example of overvoltages (case 1) -1000000 0 5 10 15 20 Time (us) Fig. 8 Example of overvoltages (case 8) TABLE 3 ANALYSIS RESULTS The maximum overvoltage which appears on the connection point between incoming and bus is 2,184 kv, which is bigger than 1,550 kv(bil). Figure 7 shows the waveform of calculate d overvoltages of case 1. From this result, we conclude that the connection point need s to install the surge arrester for suppression of overvoltages. By installation of the surge arrester at this point in case 2, we can get lower overvoltages. The maximum overvoltage is 1,2 81 kv, which has 21 percent of margin to the test voltage of 1, 550 kv. Case 3, 4, 5, and 6 are for confirming the location of surge arresters at the bus. At first two cases (case 3 and 4), the maximum overvoltages are 1,735 kv and 1,722 kv, which are higher than 1,550 kv(bil). From this, the both ends of each bus need to install the surge arrester. After installation of the surge arrester at these points in case 6, the maximum overvoltage is 987 kv. Without the surge arresters at the MTR in Case 7 and 8, the maximum overvoltage is 1,216 kv. After installation of the arrester, the maximum overvoltage which appears on the transformer is 957 kv, which has 47 percent of margin to the

test voltage of 1,425 kv. Figure 8 shows the waveform of calculated overvoltages of case 8. From these results, we selected the installation location for s urge arrester as follows. Incoming of the line Connection point between incoming and bus Each end of the bus Transformer primary side IV. CONCLUSION It was found from the simulation result that overvoltage at the substation varies according to the arresters location and each operating conditions at 500 kv S/S. From results, we recommended the installation location of the surge arresters for lightning surge protections. With the installation of arresters, we confirmed that the overvoltage does not exceed the insulation level for lightning surge with proper margin. The maximum overvoltage which appears on the incoming point is 1,281 kv, which has 21 % of margin to the test voltage of 1,550 kv. The maximum overvoltage which appears on the bus is 987 kv, which has 57 % of margin to the test voltage of 1,550 kv. The maximum overvoltage which appears on the transformer is 957 kv, which has 47 percent of margin to the test voltage of 1,425 kv. The overvoltage does not exceed the basic insulation level for lightning surge with proper margin to the test voltage. V. REFERENCES [1] A. R. Hileman, "Insulation Coordination", ABB Power Systems Inc., 1991 [2] EPRI, "Transmission Line Reference Book 345 kv and Above", 2nd Edition, 1982 [3] EMTP Rule Book, ATP Salford Version,,, 1987 [4] Dr. Masaru Ishii, Evaluation of Lightning Fault Rate of EHV transmission Line Based on Lightning Parameters Derived from Electromagnetic Field Observation, JIEE 111-5, 1991 [5] Akihiro Ametani, Distributed Parameter Circuit Theory, Tokyo, Japan, 1990 VI. BIOGRAPHIES Jung Wook Woo was born in Daegu, Korea, on Sept. 19, 1968. He received his B.S and M.S. degree in the Department of Electrical Engineering from Kyungpook National University, Korea. He has been worked for Korea Electric Power Research Institute (KEPRI) he is in charge of the Power System Laboratory. His research interests include the analysis of overvoltage characteristics of power system and the analysis of lightning characteristics in Korea.. Ju Sik Kwak was born in Icheon, Korea, on Jan. 10, 1972. He received B.S. and M.S. degree from Chungb uk University, Korea in 1994 and 1996, respectively. He has been worked for Korea Electric Power Researc h Institute since 1996. He is interested in the field of a nalysis of power system overvoltages and lightning pr otection of power system. Hyung Jun Ju was born in Deajon, Korea on Februar y 20, 1972. He received his B.S and M.S. degree in El ectrical Engineering from Chungnam University, Kore a. He is currently pursuing his ph.d. degree at Power & Control system in Chungnam national University. He is working in the Transmission and Substation Gro up of Korea Electric Power Research Institute. Heung Ho Lee was born in Korea on October 28, 195 0. He received his M.S degree in Electrical Engineerin g, ph.d. degree in Computer Science from Seoul Nat l University, Korea, 1977 and 1994, respectively. He has been worked in Chungnam University, as a profes sor. His current research interests include power syste m protection, distributing power system and computer applications. Jae Duk Moon was born in Daegu, Korea on July 2 5, 1946. He received his M.S degree in Electrical Engineering from Kyungpook Nat l University in Korea, ph.d. degree in Electrical Engineering from Tokyo University, Japan, 1975 and 1982, respectively. Hehas been worked in Kyungpook Nat l University, as a professor. His current research interests include power system protection and Electrostatics application.