Spread Spectrum Frequency Timing Generator

Similar documents
Peak Reducing EMI Solution

ICS LOW EMI CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

Universal Programmable Clock Generator (UPCG)

ICS LOW EMI CLOCK GENERATOR. Features. Description. Block Diagram DATASHEET

P2042A LCD Panel EMI Reduction IC

100-MHz Pentium II Clock Synthesizer/Driver with Spread Spectrum for Mobile or Desktop PCs

Low-Cost Notebook EMI Reduction IC. Applications. Modulation. Phase Detector

ICS LOW EMI CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

One-PLL General Purpose Clock Generator

3.3V Zero Delay Buffer

ASM3P2669/D. Peak EMI Reducing Solution. Features. Product Description. Application. Block Diagram

MK2705 AUDIO CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

MK SPREAD SPECTRUM MULTIPLIER CLOCK. Description. Features. Block Diagram DATASHEET

MK SPREAD SPECTRUM MULTIPLIER CLOCK. Description. Features. Block Diagram DATASHEET

Spread Spectrum Clock Generator

ICS HDTV AUDIO/VIDEO CLOCK SOURCE. Features. Description. Block Diagram DATASHEET

ICS7151A-50 SPREAD SPECTRUM CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

High-Frequency Programmable PECL Clock Generator

MK5811C LOW EMI CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

20MHz to 134MHz Spread-Spectrum Clock Modulator for LCD Panels DS1181L

General Purpose Clock Synthesizer

MK1413 MPEG AUDIO CLOCK SOURCE. Features. Description. Block Diagram DATASHEET

Features VDD. PLL Clock Synthesis and Spread Spectrum Circuitry GND

ICS511 LOCO PLL CLOCK MULTIPLIER. Description. Features. Block Diagram DATASHEET

MK LOW PHASE NOISE T1/E1 CLOCK GENERATOR. Features. Description. Block Diagram DATASHEET. Pullable Crystal

3.3 VOLT COMMUNICATIONS CLOCK PLL MK Description. Features. Block Diagram DATASHEET

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz

LOCO PLL CLOCK MULTIPLIER. Features

MK VCXO-BASED FRAME CLOCK FREQUENCY TRANSLATOR. Features. Description. Block Diagram DATASHEET. Pullable Crystal

FailSafe PacketClock Global Communications Clock Generator

ICS PLL BUILDING BLOCK

PCI-EXPRESS CLOCK SOURCE. Features

ICS PCI-EXPRESS CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

ICS LOW PHASE NOISE ZERO DELAY BUFFER AND MULTIPLIER. Description. Features. Block Diagram DATASHEET

IDT5V60014 LOW PHASE NOISE ZERO DELAY BUFFER. Description. Features. Block Diagram DATASHEET

Quad PLL Programmable Clock Generator with Spread Spectrum

ICS512 LOCO PLL CLOCK MULTIPLIER. Description. Features. Block Diagram DATASHEET

MK2703 PLL AUDIO CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

ICS QUAD PLL CLOCK SYNTHESIZER. Description. Features. Block Diagram PRELIMINARY DATASHEET

ICS660 DIGITAL VIDEO CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

ICS663 PLL BUILDING BLOCK

ICS7152A SPREAD SPECTRUM CLOCK GENERATOR. Description. Features. Block Diagram. Product Lineup DATASHEET

ICS NETWORKING AND PCI CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

NB2879A. Low Power, Reduced EMI Clock Synthesizer

ICS502 LOCO PLL CLOCK MULTIPLIER. Description. Features. Block Diagram DATASHEET

ICS LOW PHASE NOISE ZERO DELAY BUFFER AND MULTIPLIER. Description. Features. Block Diagram DATASHEET

The PL is an advanced Spread Spectrum clock generator (SSCG), and a member of PicoPLL Programmable Clock family.

FIELD PROGRAMMABLE DUAL OUTPUT SS VERSACLOCK SYNTHESIZER. Features VDD PLL1 PLL2 GND

PT7C4511. PLL Clock Multiplier. Features. Description. Pin Configuration. Pin Description

ICS LOW PHASE NOISE CLOCK MULTIPLIER. Features. Description. Block Diagram DATASHEET

ICS NETWORKING CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

ICS571 LOW PHASE NOISE ZERO DELAY BUFFER. Description. Features. Block Diagram DATASHEET

Features. EXTERNAL PULLABLE CRYSTAL (external loop filter) FREQUENCY MULTIPLYING PLL 2

ICS542 CLOCK DIVIDER. Features. Description. Block Diagram DATASHEET. NOTE: EOL for non-green parts to occur on 5/13/10 per PDN U-09-01

LOCO PLL CLOCK MULTIPLIER. Features

ICS309 SERIAL PROGRAMMABLE TRIPLE PLL SS VERSACLOCK SYNTH. Description. Features. Block Diagram DATASHEET

DS1083L PLL WITH CENTER- SPREAD DITHERING CLOCK RATE DETECT CONFIGURATION DECODE AND CONTROL

Programmable Skew Clock Buffer

ICS663 PLL BUILDING BLOCK. Description. Features. Block Diagram DATASHEET

Spread Aware, Ten/Eleven Output Zero Delay Buffer

Programmable Spread Spectrum Clock Generator for EMI Reduction

Dual Programmable Clock Generator

3.3V Zero Delay Buffer

LOW PHASE NOISE CLOCK MULTIPLIER. Features

Features. Phase Detector, Charge Pump, and Loop Filter. External feedback can come from CLK or CLK/2 (see table on page 2)

ICS OSCILLATOR, MULTIPLIER, AND BUFFER WITH 8 OUTPUTS. Description. Features (all) Features (specific) DATASHEET

ICS CLOCK MULTIPLIER AND JITTER ATTENUATOR. Description. Features. Block Diagram DATASHEET

PCS3P73U00/D. USB 2.0 Peak EMI reduction IC. General Features. Application. Product Description. Block Diagram

SERIALLY PROGRAMMABLE CLOCK SOURCE. Features

Spread Spectrum Clock Generator

PCS3P8103A General Purpose Peak EMI Reduction IC

Description. This Clock Multiplier is the most cost-effective way to Input crystal frequency of 5-40 MHz

Automotive Temperature Range Spread-Spectrum EconOscillator

High-accuracy EPROM Programmable Single-PLL Clock Generator

ICS2510C. 3.3V Phase-Lock Loop Clock Driver. Integrated Circuit Systems, Inc. General Description. Pin Configuration.

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features

MK3722 VCXO PLUS AUDIO CLOCK FOR STB. Description. Features. Block Diagram DATASHEET

Features VDD 2. 2 Clock Synthesis and Control Circuitry. Clock Buffer/ Crystal Oscillator GND

ICS CLOCK SYNTHESIZER FOR PORTABLE SYSTEMS. Description. Features. Block Diagram PRELIMINARY DATASHEET

PCS3P73U00/D. USB 2.0 Peak EMI reduction IC. General Features. Applications. Product Description. Block Diagram

ICS Low EMI, Spread Modulating, Clock Generator. Integrated Circuit Systems, Inc. Pin Configuration. Functionality. Block Diagram FSIN_1 FSIN_0

64-Macrocell MAX EPLD

DS1091L Automotive Temperature Range Spread-Spectrum EconOscillator

IDT9170B CLOCK SYNCHRONIZER AND MULTIPLIER. Description. Features. Block Diagram DATASHEET

NETWORKING CLOCK SYNTHESIZER. Features

ICS553 LOW SKEW 1 TO 4 CLOCK BUFFER. Description. Features. Block Diagram DATASHEET

Features. Applications

LOW SKEW 1 TO 4 CLOCK BUFFER. Features

3.3 VOLT FRAME RATE COMMUNICATIONS PLL MK1574. Features. Description. Block Diagram DATASHEET

Note: ^ Deno tes 60K Ω Pull-up resisto r. Phase Detector F VCO = F REF * (M/R) F OUT = F VCO / P

2 TO 4 DIFFERENTIAL CLOCK MUX ICS Features

ICS501 LOCO PLL CLOCK MULTIPLIER. Description. Features. Block Diagram DATASHEET

PCKV MHz differential 1:10 clock driver

Features VDD 1 CLK1. Output Divide PLL 2 OE0 GND VDD. IN Transition Detector CLK1 INB. Output Divide PLL 2 OE0 GND

ICS LOW SKEW 2 INPUT MUX AND 1 TO 8 CLOCK BUFFER. Features. Description. Block Diagram INA INB SELA

MK3727D LOW COST 24 TO 36 MHZ 3.3 VOLT VCXO. Description. Features. Block Diagram DATASHEET

Programmable Clock Generator

NB3N502/D. 14 MHz to 190 MHz PLL Clock Multiplier

PCKV MHz differential 1:10 clock driver

MK VCXO AND SET-TOP CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

Transcription:

Spread Spectrum Frequency Timing Generator Features Maximized EMI suppression using Cypress s Spread Spectrum technology Generates a spread spectrum copy of the provided input Selectable spreading characteristics Integrated loop filter components Operates with a 3.3V or 5V supply SSON# pin enables frequency spreading Low power CMOS design Available in 8-pin SOIC (Small Outline Integrated Circuit) Overview The W166 incorporates the latest advances in PLL spread spectrum frequency synthesizer techniques. By frequency modulating the output with a low-frequency carrier, peak EMI is greatly reduced. Use of this technology allows systems to pass increasingly difficult EMI testing without resorting to costly shielding or redesign. In a system, not only is EMI reduced in the various clock lines, but also in all signals which are synchronized to the clock. Therefore, the benefits of using this technology increase with the number of address and data lines in the system. The Simplified Block Diagram shows a simple implementation. Table 1. Frequency Spread Selection W166 Input FS1 FS0 Frequency (MHz) Output Frequency (MHz) 0 0 50 to 65 f IN ±0.625% 0 1 50 to 65 f IN ±1.25% 1 0 50 to 65 f IN ±2.5% 1 1 50 to 65 f IN 3.75% Simplified Block Diagram Pin Configuration 3.3V or 5V Oscillator or Reference Input W166 Spread Spectrum Output (EMI suppressed) CLKIN NC GND FS1 1 2 3 4 W166 8 7 6 5 SSON# CLKOUT FS0 VDD Cypress Semiconductor Corporation 3901 North First Street San Jose CA 95134 408-943-2600 Document #: 38-07218 Rev. ** Revised September 27, 2001

Pin Definitions Pin Name Pin No. Pin Type Pin Description CLKOUT 7 O Output Modulated Frequency: Frequency modulated copy of the reference input (SSON# asserted). CLKIN 1 I External Reference Frequency Input: Clock input. NC 2 NC No Connect: This pin must be left unconnected. SSON# 8 I Spread Spectrum Control (Active LOW): Asserting this signal (active LOW) turns the internal modulation waveform on. This pin has an internal pull-down resistor. FS0:1 6, 4 I Frequency Selection Bits 0,1: These pins select the frequency spreading characteristics. Refer to Table 1. These pins have internal pull-up resistors. VDD 5 P Power Connection: Connected to 3.3V or 5V power supply. GND 3 G Ground Connection: This should be connected to the common ground plane. Functional Description The W166 uses a Phase-Locked Loop (PLL) to frequency modulate an input clock. The result is an output clock whose frequency is slowly swept over a narrow band near the input signal. The basic circuit topology is shown in Figure 1. The input reference signal is divided by Q and fed to the phase detector. A signal from the VCO is divided by P and fed back to the phase detector also. The PLL will force the frequency of the VCO output signal to change until the divided output signal and the divided reference signal match at the phase detector input. The output frequency is then equal to the ratio of P/Q times the reference frequency. (Note: For the W166 the output frequency is equal to the input frequency.) The unique feature of the Spread Spectrum Frequency Timing Generator is that a modulating waveform is superimposed at the input to the VCO. This causes the VCO output to be slowly swept across a predetermined frequency band. Because the modulating frequency is typically 1000 times slower than the fundamental clock, the spread spectrum process has little impact on system performance. Frequency Selection With SSFTG In Spread Spectrum Frequency Timing Generation, EMI reduction depends on the shape, modulation percentage, and frequency of the modulating waveform. While the shape and frequency of the modulating waveform are fixed, the modulation percentage may be varied. A larger spreading percentage improves EMI reduction. However, large spread percentages may either exceed system maximum frequency ratings or lower the average frequency to a point where performance is affected. For these reasons, narrow and wide modulation selections are provided. VDD Clock Input Reference Input Freq. Divider Q Phase Detector Charge Pump Σ VCO Post Dividers CLKOUT (EMI suppressed) Modulating Waveform Feedback Divider P PLL GND Figure 1. System Block Diagram Document #: 38-07218 Rev. ** Page 2 of 8

Spread Spectrum Frequency Timing Generator The device generates a clock that is frequency modulated in order to increase the bandwidth that it occupies. By increasing the bandwidth of the fundamental and its harmonics, the amplitudes of the radiated electromagnetic emissions are reduced. This effect is depicted in Figure 2. As shown in Figure 2, a harmonic of a modulated clock has a much lower amplitude than that of an unmodulated signal. The reduction in amplitude is dependent on the harmonic number and the frequency deviation or spread. The equation for the reduction is db = 6.5 + 9*log 10 (P) + 9*log 10 (F) Where P is the percentage of deviation and F is the frequency in MHz where the reduction is measured. The output clock is modulated with a waveform depicted in Figure 3. This waveform, as discussed in Spread Spectrum Clock Generation for the Reduction of Radiated Emissions by Bush, Fessler, and Hardin produces the maximum reduction in the amplitude of radiated electromagnetic emissions. The deviation selected for this chip is ±0.45% or 0.6% of the selected frequency. Figure 3 details the Cypress spreading pattern. Cypress does offer options with more spread and greater EMI reduction. Contact your local Sales representative for details on these devices. SSFTG Typical Clock EMI Reduction Amplitude (db) Amplitude (db) Spread Spectrum Enabled Non- Spread Spectrum Frequency Span (MHz) Center Spread Frequency Span (MHz) Down Spread Figure 2. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation MAX. FREQUENCY 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% MIN. Figure 3. Typical Modulation Profile Document #: 38-07218 Rev. ** Page 3 of 8

Absolute Maximum Ratings Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions. above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability Parameter Description Rating Unit V DD, V IN Voltage on any Pin with Respect to GND 0.5 to +7.0 V T STG Storage Temperature 65 to +150 C T A Operating Temperature 0 to +70 C T B Ambient Temperature under Bias 55 to +125 C P D Power Dissipation 0.5 W DC Electrical Characteristics: 0 C < T A < 70 C, V DD = 3.3V ±5% Parameter Description Test Condition Min Typ Max Unit I DD Supply Current 18 32 ma t ON Power Up Time First locked clock cycle after Power 5 ms Good V IL Input Low Voltage 0.8 V V IH Input High Voltage 2.4 V V OL Output Low Voltage 0.4 V V OH Output High Voltage 2.4 V I IL Input Low Current Note 1 20 µa I IH Input High Current Note 1 20 µa I OL Output Low Current @ 0.4V, V DD = 3.3V 15 ma I OH Output High Current @ 2.4V, V DD = 3.3V 15 ma C I Input Capacitance All pins except CLKIN 7 pf C I Input Capacitance CLKIN pin only 6 5 pf R P Input Pull-Up Resistor 500 kω Z OUT Clock Output Impedance 25 Ω Note: 1. Inputs FS1:0 have a pull-up resistor, Input SSON# has a pull-down resistor. Document #: 38-07218 Rev. ** Page 4 of 8

DC Electrical Characteristics: 0 C < T A < 70 C, V DD = 5V ±10% Parameter Description Test Condition Min Typ Max Unit I DD Supply Current 21 40 ma t ON Power Up Time First locked clock cycle after 5 ms Power Good V IL Input Low Voltage 0.8 V V IH Input High Voltage 3.5 V V OL Output Low Voltage 0.4 V V OH Output High Voltage 2.4 V I IL Input Low Current Note 1 20 µa I IH Input High Current Note 1 20 µa I OL Output Low Current @ 0.4V, V DD = 5V 24 ma I OH Output High Current @ 2.4V, V DD = 5V 24 ma C I Input Capacitance All pins except CLKIN 7 pf C I Input Capacitance CLKIN pin only 5 pf R P Input Pull-Up Resistor 500 kω Z OUT Clock Output Impedance 25 Ω AC Electrical Characteristics: T A = 0 C to +70 C, V DD = 3.3V ±5% or 5V±10% Symbol Parameter Test Condition Min Typ Max Unit f IN Input Frequency Input Clock 50 65 MHz f OUT Output Frequency Spread Off 50 65 MHz t R Output Rise Time 15-pF load, 0.8V 2.4V 2 5 ns t F Output Fall Time 15-pF load, 2.4V 0.8V 2 5 ns t OD Output Duty Cycle 15-pF load, test at V DD /2 40 60 % t ID Input Duty Cycle 40 60 % t JCYC Jitter, Cycle-to-Cycle 250 300 ps Harmonic Reduction f out = 50 MHz, third harmonic measured, reference board, 15-pF load 8 db Document #: 38-07218 Rev. ** Page 5 of 8

Application Information Recommended Circuit Configuration For optimum performance in system applications the power supply decoupling scheme shown in Figure 4 should be used. VDD decoupling is important to both reduce phase jitter and EMI radiation. The 0.1-µF decoupling capacitor should be placed as close to the V DD pin as possible, otherwise the increased trace inductance will negate its decoupling capability. The 10-µF decoupling capacitor shown should be a tantalum type. For further EMI protection, the V DD connection can be made via a ferrite bead, as shown. Recommended Board Layout Figure 5 shows a recommended a 2-layer board layout. Reference Input NC GND 1 2 3 4 W166 8 7 6 5 VDD R1 Clock Output C1 0.1 µf 3.3 or 5V System Supply FB C2 10 µf Tantalum Figure 4. Recommended Circuit Configuration C1 = C2 = R1 = High frequency supply decoupling capacitor (0.1 µf recommended). Common supply low frequency decoupling capacitor (10-µF tantalum recommended). Match value to line impedance FB = Ferrite Bead Reference Input NC G C1 R1 G = Via To GND Plane Clock Output G C2 G Power Supply Input (3.3V or 5V) FB Figure 5. Recommended Board Layout (2-Layer Board) Ordering Information Package Ordering Code Name Package Type W166 G 8-pin Plastic SOIC (150-mil) Document #: 38-07218 Rev. ** Page 6 of 8

Package Diagram 8-Pin Small Outlined Integrated Circuit (SOIC, 150-mil) Document #: 38-07218 Rev. ** Page 7 of 8 Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: W166 Spread Spectrum Frequency Timing Generator Document Number: 38-07218 Issue Orig. of REV. ECN NO. Date Change Description of Change ** 110483 10/21/01 SZV Change from Spec number: 38-00878 to 38-07218 Document #: 38-07218 Rev. ** Page 8 of 8