VOLTAGE REGULATORS. A simplified block diagram of series regulators is shown in the figure below.

Similar documents
LM125 Precision Dual Tracking Regulator

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018

Block diagram of Basic Three Terminal IC Regulator The figure shows the functional block diagram of basic three terminal IC regulator.

LM125 Precision Dual Tracking Regulator

CLD Application Notes Connection Options

Concepts to be Covered

Lecture #3: Voltage Regulator

Transistor Characteristics

Gechstudentszone.wordpress.com

Module 4 Unit 4 Feedback in Amplifiers

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

Op Amp Booster Designs

Analyzing the Dynaco Stereo 120 Power Amplifier

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101)

Lecture 3: Transistors

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

Chapter 15 Power Supplies (Voltage Regulators)

Document Name: Electronic Circuits Lab. Facebook: Twitter:

Shankersinh Vaghela Bapu Institute of Technology INDEX

(A) im (B) im (C)0.5 im (D) im.

HOME ASSIGNMENT. Figure.Q3

Microelectronic Circuits

transformer primary voltage load current ambient temperature.

Prof. Anyes Taffard. Physics 120/220. Diode Transistor

Operational Amplifier BME 360 Lecture Notes Ying Sun

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

10. Output Stages and Power Supplies. 10. Output Stages and Power Supplies TLT-8016 Basic Analog Circuits 2005/2006 1

LM2935 Low Dropout Dual Regulator

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

LM340 Series Three Terminal Positive Regulators

Integrated circuits: linear voltage regulator

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

REV. B. NOTES 1 At Pin 1. 2 Calculated as average over the operating temperature range. 3 H = Hermetic Metal Can; N = Plastic DIP.

Biasing of BJT IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

UNIT I Introduction to DC & AC circuits

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

ZLDO VOLT ULTRA LOW DROPOUT REGULATOR ISSUE 2 - JUNE 1997 DEVICE DESCRIPTION FEATURES APPLICATIONS

Analog Circuits Part 2 Semiconductors

A 7ns, 6mA, Single-Supply Comparator Fabricated on Linear s 6GHz Complementary Bipolar Process

HIGH LOW Astable multivibrators HIGH LOW 1:1

Field Effect Transistors (npn)

Small signal Amplifier stages. Figure 5.2 Classification of power amplifiers

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Summer 2016 EXAMINATIONS.

EXPERIMENT #3 TRANSISTOR BIASING

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

Lecture 4: Voltage References

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

Electronics Prof D. C. Dube Department of Physics Indian Institute of Technology, Delhi

NJM4151 V-F / F-V CONVERTOR

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

ELC224 Final Review (12/10/2009) Name:

IC Preamplifier Challenges Choppers on Drift

Capacitors, diodes, transistors

Experiments #6. Differential Amplifier

EEE225: Analogue and Digital Electronics

Fast IC Power Transistor with Thermal Protection

PART MAX1658C/D MAX1659C/D TOP VIEW

DISCONTINUED PRODUCT FOR REFERENCE ONLY COMPLEMENTARY OUTPUT POWER HALL LATCH 5275 COMPLEMENTARY OUTPUT POWERHALL LATCH FEATURES

EXPERIMENT 7: DIODE CHARACTERISTICS AND CIRCUITS 10/24/10

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

Features. NOTE: Non-designated pins are no connects and are not electrically connected internally.

PART-A UNIT I Introduction to DC & AC circuits

SAMPLE FINAL EXAMINATION FALL TERM

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

KH103 Fast Settling, High Current Wideband Op Amp

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

Each question is worth 2 points, except for problem 3, where each question is worth 5 points.

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #5: More Transistor Amplifier Circuits

OBJECTIVE TYPE QUESTIONS

WINTER 14 EXAMINATION. Model Answer. 1) The answers should be examined by key words and not as word-to-word as given in the

LM79XX Series 3-Terminal Negative Regulators

By: Dr. Ahmed ElShafee

Low Cost 10-Bit Monolithic D/A Converter AD561

Advanced Monolithic Systems

FAN A Adjustable/Fixed Ultra Low Dropout Linear Regulator. Description. Features. Applications. Typical Applications.

Chapter 15 Goals. ac-coupled Amplifiers Example of a Three-Stage Amplifier

Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators

High Speed BUFFER AMPLIFIER

Advanced Power Electronics Corp. APU1150M-HF-3TR. 4A Ultra-low Dropout Regulator. Applications. Ordering Information. Typical Application APU1150-3

Advanced Monolithic Systems

Lecture 8: More on Operational Amplifiers (Op Amps)

LINEAR IC APPLICATIONS

Improving Amplifier Voltage Gain

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

(b) 25% (b) increases

PartIIILectures. Multistage Amplifiers

(a) BJT-OPERATING MODES & CONFIGURATIONS

Micrel, Inc Fortune Drive San Jose, CA USA tel + 1 (408) fax + 1 (408)

TONE DECODER / PHASE LOCKED LOOP PIN FUNCTION 1 OUTPUT FILTER 2 LOW-PASS FILTER 3 INPUT 4 V + 5 TIMING R 6 TIMING CR 7 GROUND 8 OUTPUT

GM6155 GM6155V1.01. Description. Features. Application. Typical Application Circuits. 150mA LOW NOISE CMOS LDO WITH ENABLE FUNCTION

Lecture #2 Operational Amplifiers

LM148/LM248/LM348 Quad 741 Op Amps

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS

Operational Amplifiers

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

Transcription:

VOTAGE EGATOS Voltage regulators provide a constant DC output voltage which is almost completely unaffected by changes in the load current, the input voltage or the temperature. They form the basis of most electronic power supplies which derive their power from AC line voltage. The input voltage to a regulator is the filtered output from a diode rectifier. The diode rectifier converts the AC supply to DC but with a large ripple voltage which is very dependent on the load current. The voltage regulator removes the ripple and provides a DC voltage which is largely independent of variations in the load resistance. There are two main categories of regulator, linear regulator and switching regulators. The simplest linear regulator uses a resistor and a Zener diode, as described earlier, but its performance is limited and most practical linear regulators use a transistor as a control element and an amplifier to provide an error signal within a negative feedback loop. The switching regulator incorporates a high speed switching which is controlled by a feedback loop which monitors the output voltage. The switch produces a train of pulses whose duty ratio or frequency is controlled by the feedback loop. These pulses are averaged then to provide a DC output. Because all mains powered electronic equipment requires a voltage regulator, there are many linear and switching type regulators which are manufactured as integrated circuits and it is unlikely that a designer will be required to design a voltage regulator. Manufacturers application notes provide detailed design rules for each type and the purpose of this lectures is to provide an understanding of the operating principles to enable a sensible choice to be made. inear regulators The linear voltage regulator uses a transistor to regulate the flow of current and the voltage supplied to the load from an unregulated source. The purpose of the regulator is to monitor the output voltage and, by means of feedback, to maintain it as constant as possible for all load currents. Transistors can be incorporated into a regulator either as a series control element or as a shunt element. Series regulator A simplified block diagram of series regulators is shown in the figure below. Control is achieved by comparing the required output with a fixed voltage reference. If the output voltage changes, for example as a result of a variation in the load current, the input to the comparator from the sampling circuit changes in the same direction. The output generated by the comparator, resulting from the error signal, causes the control element to vary the

output voltage in the opposite direction. This action continues until the comparator detects no difference between the reference voltage and the sampled voltage. The figure below is a circuit diagram of a simple series regulator in which the control element is an npn bipolar transistor and a Zener diode acts as the voltage reference. The comparator function is performed by the base emitter junction which controls current flow through the transistor. The output voltage is: = Z BE If increases then BE decreases and the transistor conducts less. The reduction in the load current will cause the voltage across the load to fall, which will restore the balance. The voltage regulation is given by the same expression as or the simple Zener diode regulator: However, the variation of the Zener current result from the variation of the base current which is β times less than the possible change of the load current. The fact that the load current does not have to flow through means that it can have a much larger value. Thus the regulation is greatly improved. Further improvement in stability of the output voltage and more freedom in the choice of the Zener voltage is achieved by adding an op amp gain stage as shown in the following figure.

In this circuit the Zener voltage is more stable because the variation of the load current does not affect the Zener current. In addition, the large loop gain, resulting from the op amp, ensures that very small changes of the output voltage are detected ad rapidly corrected. The output voltage settles to a value at which the input differential voltage of the op amp id almost zero so: Z + Then the output voltage is: + = Z And it can be easily adjusted from a minimum value of Z by changing the resistor ratio. The ripple rejection is improved by a factor +(k d0 β), where k d0 is the open loop gain of the amplifier and β is the feedback factor, β = + The output resistance is decreased by the same factor down to a few mω, typically. Short circuit protection A serious limitation of the series regulator is that the transistor will be damaged if the output is short circuited. nder short circuit conditions the output current considerably increases (no feedback signal is applied to the op amp) and the full input voltage appears across the transistor. As a result the power dissipated in the transistor may increase tens of times in comparison with normal operating conditions, leading to the destimation of the transistor. Some means is thus required to limit the output short circuit current. A simple form of current limiter and the corresponding load current versus load voltage characteristic are shown below. When BE = I * SC reaches = 0.7V T begins to conduct heavily and consequently current which should be flowing into the base of T is diverted to the collector of T an thus T is protected. The current through T is limited by the current sourcing capability of the operational amplifier, which may be a few tens of ma.

Beyond I m SC the output voltage reduces to zero with only a relatively small additional increase in current. With this protection circuit the short circuit power dissipation in the transistor is still a few times more than under normal operating condition so to ensure reliable operation the power rating for the transistor should correspond to the short circuit conditions. A further development of short circuit protection is to reduce the current as well as the voltage when a short circuit occurs. The idea of this type of current limiting, known as fold back current limiting, is shown it the following figure. The circuit is similar to the basic, current limiting circuit except that the base of T is taken to a potential divider comprising 3 and. The base emitter voltage of T is: BE = 3 - SC nder normal operating conditions SC is smaller than 3 and the base emitter junction of T is reverse biased. As the load current increases the voltage drop across SC increases more rapidly than that across 3 until, at the maximum load current, the difference reaches = 0.7V. T begins to conduct and limits the current through T. However, as the output voltage decreases the voltage across 3 decreases too and then a smaller value of SC is required to maintain BE at. The reduction of SC is achieved by a reduction in the load current. The resulting graph of load current versus load voltage is shown below.

The maximum load current I M is reached when the following condition is met: BE = = + 3 ( nom + I msc ) + I msc And from this point on the relationship between the output voltage and the load current is: = + I 3 3 The short circuit load current can be found by substituting =0 and then: 3 I + 3 SC = Thanks to a considerable decrease in the short circuit load current the short circuit power dissipation in T may even be smaller than under normal operating conditions. Shunt regulators A block diagram of a shunt regulator is shown in the following figure. As for the series regulator the current through the control element is determined by the output voltage sample which is applied to the comparator. However, instead of controlling the load current directly, the shunt regulator bypasses current to ground. The operation of the shunt regulator is similar to that of the simple Zener diode regulator; the current through the resistor is approximately constant and the transistor controls the distribution of this current between itself and the load. An example circuit diagram of a shunt regulator with an operational amplifier is shown below.

One important advantage of the shunt regulator is that it is not damaged by a short circuited output. The short circuit current is limited to IN / and provided the power rating for the resistor is sufficient to withstand the short circuit current, then there is no damage. Integrated circuit regulators For most applications it is not necessary to custom design a voltage regulator, but rather to use any of the many off the self integrated circuit regulators. The IC regulators are available as either fixed or adjustable regulators. Typical of fixed voltage regulators are 78xx (positive output) and 79xx (negative output), where xx is the nominal output voltage and can be and of the following: 05, 06, 08, 0,, 5, 8 or. The application of such fixed regulators is very simple and only requires connecting two additional capacitors of at least 00µF directly to the input and toe output terminal, as shown in the figure. Adjustable regulators are used, for example, when a nonstandard regulated voltage is required. A simplified circuit diagram of a tree terminal adjustable regulator (without protection circuits shown), of which M37 is a classic representative, is shown below together with its application.

This regulator has no GOND terminal. It adjust OT to maintain a constant voltage of EF ( EF =.5 for M37) between the output terminal and the adjustment terminal. It can be easily shown that the output voltage is: + OT = EF When choosing an IC voltage regulator for a specific application the following parameters should be considered (the values in brackets are typical): - output voltage and its tolerance (-%) - minimum dropout voltage (the minimum voltage drop must be maintained between the input and the output)(0.5 V) - maximum input voltage (35 0V) - maximum output current (0.A 5A) - ripple rejection = 0log ripple(in) / ripple(out) (60 80db) - load regulation =( no load full load )/ no load (0. 0.5%) - line regulation (DC input rejection) = / nom for a given in (0. 0.%) - temperature stability = / nom for a given T, for example 0 00 o C - output impedance (0.0 0.Ωat low frequency of variable load current, for example 0Hz, increases with frequency).