GHz-bandwidth optical filters based on highorder silicon ring resonators

Similar documents
Optical cross-connect circuit using hitless wavelength selective switch

Wavelength tracking with thermally controlled silicon resonators

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

Design and realization of a two-stage microring ladder filter in silicon-on-insulator

A tunable Si CMOS photonic multiplexer/de-multiplexer

Design Consideration Analysis of Optical Filters Based on Multiple Ring Resonator. Imran Khan *

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm

Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Ultra-high quality factor planar Si 3 N 4 ring resonators on Si substrates

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

Modeling of ring resonators as optical Filters using MEEP

Optics Communications

Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement

Opto-VLSI-based reconfigurable photonic RF filter

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

50-Gb/s silicon optical modulator with travelingwave

Compact Trench-Based Silicon-On-Insulator Rib Waveguide Ring Resonator With Large Free Spectral Range

1 Introduction. Research article

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

Figure 1 Basic waveguide structure

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

Compact silicon microring resonators with ultralow propagation loss in the C band

Analysis and Design of Box-like Filters based on 3 2 Microring Resonator Arrays

Hitless tunable WDM transmitter using Si photonic crystal optical modulators

- no emitters/amplifiers available. - complex process - no CMOS-compatible

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15,

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

Silicon Photonic Device Based on Bragg Grating Waveguide

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Optical Integrated Devices in Silicon On Insulator for VLSI Photonics

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing.

Controlling normal incident optical waves with an integrated resonator

Silicon photonic devices based on binary blazed gratings

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

EPIC: The Convergence of Electronics & Photonics

A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control

An integrated recirculating optical buffer

Design and characterization of low loss 50 picoseconds delay line on SOI platform

Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission

Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter

On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

Binary phase-shift keying by coupling modulation of microrings

LASER &PHOTONICS REVIEWS

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing

All-optical logic based on silicon micro-ring resonators

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators

Tunable Photonic RF Signal Processor Using Opto-VLSI

ADD/DROP filters that access one channel of a

Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides

Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits

Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, November 2015, Brussels, Belgium

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

POLITECNICO DI TORINO Repository ISTITUZIONALE

Monolithic, Athermal Optical A/D Filter

Highly sensitive silicon microring sensor with sharp asymmetrical resonance

AMACH Zehnder interferometer (MZI) based on the

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon-insulator

Frequency Tunable Low-Cost Microwave Absorber for EMI/EMC Application

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide

Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides

WAVELENGTH division multiplexing (WDM) is now

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator

A thin foil optical strain gage based on silicon-on-insulator microresonators

Planar lightwave circuit dispersion compensator using a compact arrowhead arrayed-waveguide grating

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Keysight Technologies Using a Wide-band Tunable Laser for Optical Filter Measurements

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

Optical Proximity Communication for a Silicon Photonic Macrochip

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS

Photonic Integrated Beamformer for Broadband Radio Astronomy

Large Scale Silicon Photonic MEMS Switch

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Bandpass-Response Power Divider with High Isolation

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7

Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures

THE WIDE USE of optical wavelength division multiplexing

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters

Experimental realization of an O-band compact polarization splitter and rotator

Demonstration of tunable optical delay lines based on apodized grating waveguides

Transcription:

GHz-bandwidth optical filters based on highorder silicon ring resonators Po Dong, 1* Ning-Ning Feng, 1 Dazeng Feng, 1 Wei Qian, 1 Hong Liang, 1 Daniel C. Lee, 1 B. J. Luff, 1 T. Banwell, 2 A. Agarwal, 2 P. Toliver, 2 R. Menendez, 2 T. K. Woodward, 2 and Mehdi Asghari 1 1 Kotura Inc., 2630 Corporate Place, Monterey Park, CA 91754, USA 2 Telcordia Technologies, Red Bank, NJ 07701, USA *pdong@kotura.com Abstract: Previously demonstrated high-order silicon ring filters typically have bandwidths larger than 100 GHz. Here we demonstrate 1-2 GHzbandwidth filters with very high extinction ratios (~50 db). The silicon waveguides employed to construct these filters have propagation losses of ~0.5 db/cm. Each ring of a filter is thermally controlled by metal heaters situated on the top of the ring. With a power dissipation of ~72 mw, the ring resonance can be tuned by one free spectral range, resulting in wavelength-tunable optical filters. Both second-order and fifth-order ring resonators are presented, which can find ready application in microwave/radio frequency signal processing. 2010 Optical Society of America OCIS codes: (230.3120) Integrated optics devices; (230.5750) Resonators; (060.5625) Radio frequency photonics; (070.1170) Analog optical signal processing. References and links 1. RF photonic Technology in Optical Fiber Links, ed. W.S.C. Chang, (Cambridge University Press, 2002). 2. J. Capmany, B. Ortega, and D. Pastor, A tutorial on microwave photonic filters, J. Lightwave Technol. 24(1), 201 229 (2006). 3. G. T. Reed, Silicon photonics, the state of the art (John Wiley and Sons, 2008). 4. T. K. Woodward, T. C. Banwell, A. Agarwal, P. Toliver, and R. Menendez, Signal processing in analog optical links, Avionics, Fiber Optics, and Photonics Conference (AVFOP 2009 IEEE), pp. 17 18. 5. M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators, J. Lightwave Technol. 27(12), 2105 2110 (2009). 6. P. Toliver, R. C. Menendez, T. C. Banwell, A. Agarwal, T. K. Woodward, N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, and M. Asghari, A programmable optical filter unit cell element for high resolution RF signal processing in silicon photonics (OFC 2010 IEEE), paper OWJ4. 7. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis, a signal processing approach (Wiley 1999). 8. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, Very high-order microring resonator filters for WDM applications, IEEE Photon. Technol. Lett. 16(10), 2263 2265 (2004). 9. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, Fabrication of add-drop filters based on frequency-matched microring resonators, J. Lightwave Technol. 24(5), 2207 2218 (2006). 10. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, Transmission and group delay of microring coupledresonator optical waveguides, Opt. Lett. 31(4), 456 458 (2006). 11. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, High order filter response in coupled microring resonators, IEEE Photon. Technol. Lett. 12(3), 320 322 (2000). 12. S. Xiao, M. H. Khan, H. Shen, and M. Qi, A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion, Opt. Express 15(22), 14765 14771 (2007). 13. S. H. Tao, J. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, 50th order series-coupled micro-ring resonator (IPGC 2008 IEEE), pp. 1 3. 14. F. Xia, L. Sekaric, M. O Boyle, and Y. Vlasov, Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires, Appl. Phys. Lett. 89(4), 041122 041124 (2006). 15. M. Popovic, Theory and design of high-index-contrast microphotonic circuits, PhD thesis, (MIT 2008). 16. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, Low loss shallow-ridge silicon waveguides, Opt. Express 18(14), 14474 14479 (2010). (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23784

17. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, Low power and compact reconfigurable multiplexing devices based on silicon microring resonators, Opt. Express 18(10), 9852 9858 (2010). 18. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, Thermally tunable silicon racetrack resonators with ultralow tuning power, Opt. Express 18(19), 20298 20304 (2010). 1. Introduction Overcoming the limitations of traditional methods of microwave and radio frequency (RF) signal processing has stimulated much activity in the application of photonics to this area [1, 2]. In particular, the use of fully integrated photonic devices and circuits to meet flexible wideband spectral processing requirements for both civilian and military applications is of great interest. Silicon photonics technology [3] has received much attention in recent years for application in long- and short-distance optical communications, including the demonstration of high speed optical modulators and detectors integrated with silicon waveguides, and it is becoming increasingly evident that this platform can also find ready application to previously intractable RF signal processing tasks [4]. The compatibility of silicon-based optics with mature CMOS fabrication techniques enables manufacture of high-performance optical components at low cost and offers the possibility of monolithic electronic-photonic integration. Here, we demonstrate high-order ring resonator based silicon photonics GHzbandwidth filters with large free spectral ranges (FSRs) and high extinction ratios. These are, to the best of our knowledge, the first high-order silicon-based filters with few-ghz bandwidths. This filter can work as a channelizing filter and be cascaded monolithically with other silicon photonic MHz-bandwidth RF filters, such as those demonstrated in Refs [5, 6], resulting in single-chip filter systems with high extinction ratios, narrow bandwidths, and large FSRs. 2. Device design and fabrication Mutually coupled resonators have the ability to synthesize higher-order filter responses with a flat-top passband and high out-of-band signal rejection (extinction ratio), which are important in applications such as WDM and microwave filtering [7]. Flat-top bands minimize group delay variation in the passband and high extinction ratios minimize signal crosstalk between adjacent channels. High-performance high-order rings with a few GHz bandwidth have been demonstrated in silica-based materials [8 11]. High-order silicon coupled rings have been also demonstrated, but usually with bandwidths larger than 100 GHz [12 14]. Here we use coupled ring resonators fabricated on a silicon-on-insulator platform to demonstrate few-ghz bandwidth filters. There are two major challenges to achieving narrow band silicon coupledring filters. First, although significant progress has been made in silicon photonics, silicon waveguide propagation losses are still too high for practical application to RF filters with large FSRs. While large-core silicon waveguides can have a propagation loss of ~0.1 db/cm, they require large bending radii on the order of mm, which limits the FSR to less than 10 GHz. A large device area also results in more power consumption. Submicron silicon waveguides have been demonstrated with a bend radius of a few µm [12 14], but the waveguide propagation loss is usually larger than 1 db/cm. Second, high-order coupled rings are very sensitive to fabrication tolerances. For instance, all mutually coupled rings in the filter are required to have precisely coincident resonant frequencies to achieve maximum efficiency. Unfortunately, the resonances of silicon rings built using submicron waveguides are very sensitive to fabrication imperfections [15]. The propagation loss of silicon waveguides arises mainly due to light scattering from the etched sidewalls. Minimizing the optical field overlap with etched interfaces can effectively reduce the waveguide propagation loss. Increasing waveguide width and decreasing etch depth can both realize this purpose. Here, we design a type of shallow-ridge waveguide [16]. The waveguide width and height are 1 µm and 0.25 µm, respectively, and the etch depth to form the ridge waveguide is 0.06 µm. Simulation indicates that the effective index and group index of the fundamental quasi-te mode are ~2.9 and ~3.8, respectively. Theoretical (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23785

simulation shows that the radiation loss for a bending radius of 100 µm is on the order of 10 4 db/cm. This bending radius can enable a ring resonator with an FSR of ~150 GHz. Based on the proposed waveguide geometry, we designed second and fifth order Butterworth filters with a maximally flat passband response. The FSR and bandwidth are targeted at 50 GHz and 1 GHz, respectively. The coupling ratios between rings are obtained based on Butterworth type response [7]. The ring radius is chosen as 248 µm. Due to fabrication variations, active control of ring resonance has to be used to make all the rings have coincident resonant frequencies. Individual heaters on the top of each ring are designed to fine tune the resonant frequency. We fabricated the devices using silicon-on-insulator wafers with a 0.25 µm thick silicon layer and a 3 µm thick buried oxide layer. An oxide layer was deposited on the wafers by plasma enhanced chemical vapor deposition to act as a hard mask for waveguide etching. Resist patterns were defined by an i-line stepper. The pattern was transferred to the oxide hard mask using a CHF 3 /O 2 chemistry. We then removed the resist and etched the silicon layer using an HBr-based silicon dry etch recipe. Both the oxide and silicon etch recipes were optimized to reduce sidewall roughness. We found that the use of oxide hard mask helps reduce the silicon waveguide loss. A 1.2 µm thick oxide was then deposited on the wafers as a cladding layer. A thin Ti metal was deposited on top of the ring to act as a heating resistor. This heater is connected by Al metals to test pads (shown in Fig. 1). Fig. 1. Optical images of fully fabricated 2 nd -order (a) and 5 th -order ring filters. 3. Waveguide loss measurement Characterizing waveguide loss is particularly important to assess ring performance. Test waveguides with different lengths together with ring filters were fabricated for this purpose. We tested the waveguide loss using an amplified spontaneous emission source with a wavelength centered at 1550 nm and an optical spectrum analyzer. Lensed fibers were used to couple light into and collect light from the waveguides. In Fig. 2(a), we show the insertion losses measured for different waveguide lengths as a function of wavelength. The insertion losses are normalized to the power measured from direct fiber to fiber coupling, and include both the fiber coupling loss to waveguides and the waveguide propagation loss. From the insertion loss at a particular wavelength for different waveguide lengths, we can extract the waveguide propagation loss using linear fitting. The results shown in Fig. 2(b) demonstrate a waveguide loss of ~0.48 db/cm in the C-band. Figure 2(c) presents the average waveguide loss in the C-band for ten different chips across the whole wafer. The wafer-level average waveguide loss is 0.507 db/cm with a standard derivation of 0.015 db/cm, demonstrating uniform waveguide quality on the wafer level. Given this propagation loss, the round trip loss of the ring is about 0.1 db. It is to be noted that the spectra in Fig. 2(a) are very smooth, indicating nearly single mode propagation through the waveguides. Although theoretical simulations predict two quasi-te modes, the coupling from the input fiber mode to the firstorder mode and the fundamental mode to the first-order mode is weak due to opposite (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23786

symmetry. In addition, the large index difference between two waveguide modes prevents efficient coupling between them. Fig. 2. (a) Insertion loss spectra for waveguides with different lengths. (b) Waveguide propagation loss spectrum obtained from linear fitting between insertion losses and waveguide lengths. (c) Average waveguide loss in C-band for ten different chips. 4. Heater characterization We characterized the heater efficiency and thermal crosstalk by measuring the drop-port transmission spectra with different heating powers for the second-order filter as shown in Fig. 1(a). The heaters on two neighboring rings are located on opposite sides of the rings, however, thermal crosstalk may still occur since silicon has very low thermal impedance. Although designed to have the same resonances, transmission spectra at the drop port usually show two resonant peaks corresponding to different resonances of the two rings, as shown in Fig. 3(a). This is due to resonance mismatch from fabrication imperfections. Applying heating power on one ring and monitoring the resonance shifts for both peaks give us information on both tuning efficiency and thermal crosstalk. Here the thermal crosstalk is defined as the ratio between the wavelength/frequency shift of the second to the first ring while heating the first ring. The wavelength shifts as a function of tuning power are shown in Fig. 3(b), from which we determine that the tuning power per unit frequency is 1.44 mw/ghz and the thermal crosstalk is 7.3%. Since the free spectral range (FSR) is 0.4 nm or 50 GHz, ~72 mw is needed to tune one whole FSR of a single ring. The thermal crosstalk can be reduced if air trenches are fabricated around the rings and metal heaters [17]. Fig. 3. (a) Transmission spectra at the drop port with heater off and on. (b) Resonance shifts for both rings as a function of heating power. 5. GHz-bandwidth 2 nd - and 5 th -order ring filters With the current waveguide geometry, the theoretical ring frequency sensitivity to waveguide width is approximately 4 GHz/nm, i.e., a 1 nm variation in waveguide width results in a resonant frequency shift of 4 GHz. The ring frequency is even more sensitive to etch depth (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23787

and silicon thickness, with a theoretical sensitivity of about 26 GHz/nm and 150 GHz/nm, respectively. As the bandwidth of the ring is only ~1 GHz, it would not be practical to expect that the rings resonant frequencies can be identical without any active tuning. Here we use the thermo-optic effect to control the ring resonance. Silicon has a large thermal coefficient of 1.86 10 4 / C, with which value the ring resonant frequency shift is estimated as 9.6 GHz per degree. Therefore, the temperature of the ring has to be controlled with an accuracy of better than 0.02 C in order to align the ring resonant frequencies together. The use of partial heating of the ring relaxes this accuracy requirement to about 0.1 C for local temperature. We use a multi-channel current source to control the heaters, and each heater can be controlled independently. After optimizing the heater currents, we obtain spectra for through and drop with a maximally flat response, shown in Fig. 4 for both 2 nd - and 5 th -order ring filters. The filter demonstrates a 3 db bandwidth f 3dB = 1.0 GHz and 1.9 GHz for the 2 nd - and 5 th -order rings, respectively. The insertion losses (not including fiber coupling loss) are 2 db and 3.5 db. The out-of-band rejection of both filters is more than 50 db. In Fig. 5, we plot the filter response in drop ports for both rings by normalizing the frequency to their own 3dB bandwidths and normalizing the transmission to their own peak values. At a frequency of 2f 3dB, the transmission at the drop port drops to ~46 db and ~25 db for the 5 th -order and 2 nd - order filters, respectively, demonstrating an excellent box-like transmission. The measured bandwidth for the 5 th -order ring is larger than the target value (1 GHz), possibly due to uncertainty of coupling coefficients from fabrication tolerance variations. Since the five rings in the 5 th -order filters are all tunable in wavelength with a thermal tuning efficiency of 72 mw per free spectral range, the resonant wavelength can have a large tunability range with a total power of about 0.36 W. This tuning power can be significantly reduced, using thermal isolation trenches [17] or undercuts beneath the rings [18]. Fig. 4. Transmission spectra for the 2 nd -orer ring filter (a) and 5 th -order ring filter (b) after optimizing the heating power. The transmission is normalized to the maximum power of through ports. Insets: enlarged drop-port spectra at the resonance peaks. (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23788

6. Conclusions Fig. 5. Normalized drop-port transmission spectra for the 2 nd -orer and 5 th -order ring filters. The frequency is normalized to the filter s own 3dB bandwidth and the transmission is normalized to the maximum power of the drop port itself. We have presented the experimental realization of tunable high-order ring-resonator based filters on a silicon photonics platform. The filters have a bandwidth of 1-2 GHz, FSRs of 50 GHz, and out-of-band extinction ratios of 50 db at the drop port. To the best of our knowledge, these filters have the narrowest optical bandwidth for so far demonstrated highorder silicon ring filters. Such filters, when combined with appropriate unit-cell filters [5, 6], are key building blocks suitable for diverse optical signal processing applications [4]. Acknowledgements This material is based upon work supported by the Defense Advanced Research Projects Agency PhASER program under Contract No. HR0011-08-C-0026. The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. Approved for Public Release, Distribution Unlimited. (C) 2010 OSA 8 November 2010 / Vol. 18, No. 23 / OPTICS EXPRESS 23789