IRLR8721PbF IRLU8721PbF

Similar documents
V DSS R DS(on) max Qg

IRFR3709ZPbF IRFU3709ZPbF

IRLR3717 IRLU3717 HEXFET Power MOSFET

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

IRF3709ZCS IRF3709ZCL

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

IRF7821PbF. HEXFET Power MOSFET

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

IRLR8726PbF IRLU8726PbF

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

IRL3714Z IRL3714ZS IRL3714ZL

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

V DSS R DS(on) max Qg

IRL8113 IRL8113S IRL8113L

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

IRFR3806PbF IRFU3806PbF

IRL3714ZPbF IRL3714ZSPbF IRL3714ZLPbF

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF6602/IRF6602TR1 HEXFET Power MOSFET

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

IRF9910PbF HEXFET Power MOSFET R DS(on) max

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC

IRFR24N15DPbF IRFU24N15DPbF

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

SMPS MOSFET. V DSS R DS(on) max I D

IRLS3034PbF IRLSL3034PbF

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

IRFR4105ZPbF IRFU4105ZPbF

IRFR1018EPbF IRFU1018EPbF

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

SMPS MOSFET. V DSS R DS(on) max I D

IRLR3915PbF IRLU3915PbF

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

IRFS4127PbF IRFSL4127PbF

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

SMPS MOSFET. V DSS R DS(on) max (mω) I D

IRFS3004-7PPbF HEXFET Power MOSFET

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 23. V/ns T J. mj I AR

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

IRF2804PbF IRF2804SPbF IRF2804LPbF HEXFET Power MOSFET

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

IRFR24N15D IRFU24N15D

IRFR540ZPbF IRFU540ZPbF

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF HEXFET Power MOSFET

IRF6646 DirectFET Power MOSFET

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

TO-220AB. IRF4104PbF. A I T C = 25 C Continuous Drain Current, V 10V (Package limited)

IRLR3110ZPbF IRLU3110ZPbF

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

AUTOMOTIVE MOSFET TO-220AB IRF I DM. 890 P C = 25 C Power Dissipation 330 Linear Derating Factor. 2.2 V GS Gate-to-Source Voltage ± 20

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 13

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 26

V DSS R DS(on) max Qg 30V GS = 10V 20nC

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

AUTOMOTIVE MOSFET TO-220AB IRFZ44VZ A I DM. 230 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

TO-220AB. IRF2807ZPbF. 350 P C = 25 C Maximum Power Dissipation 170 Linear Derating Factor

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

FASTIRFET IRFHE4250DPbF

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

V DSS R DS(on) max I D

TO-220AB. IRF3205ZPbF. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

AUTOMOTIVE MOSFET IRLZ44Z A I DM. 204 P C = 25 C Power Dissipation 80 Linear Derating Factor V GS Gate-to-Source Voltage ± 16

TO-220AB IRFB4610. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery e 7.6

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

SMPS MOSFET. V DSS R DS(on) max I D

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

SMPS MOSFET. V DSS R DS(on) max I D

TO-220AB. IRF540ZPbF A I DM. 140 P C = 25 C Power Dissipation 92 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DSS R DS(on) max I D

P C = 100 C Power Dissipation Linear Derating Factor

W/ C V GS Gate-to-Source Voltage ±20 dv/dt Peak Diode Recovery f 4.6. V/ns T J. mj I AR. Avalanche Current d A See Fig. 14, 15, 22a, 22b, E AR

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

5.0V 5.0V. 20µs PULSE WIDTH Tj = 25 C. Tj = 150 C. V DS, Drain-to-Source Voltage (V) T J = 150 C 1.5. V GS, Gate-to-Source Voltage (V)

Transcription:

Applications l High Frequency Synchronous Buck Converters for Computer Processor Power l High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use l Lead-Free Benefits l l l Very Low RDS(on) at 4.5V V GS Ultra-Low Gate Impedance Fully Characterized Avalanche Voltage and Current PD - 969 IRLR872PbF IRLU872PbF HEXFET Power MOSFET V DSS R DS(on) max Qg 30V 8.4m: 8.5nC D G S D-Pak IRLR872PbF I-Pak IRLU872PbF G D S G DS Gate Drain Source Absolute Maximum Ratings Parameter Max. Units V DS Drain-to-Source Voltage 30 V V GS Gate-to-Source Voltage ± 20 I D @ T C = 25 C Continuous Drain Current, V GS @ V 65f I D @ T C = 0 C Continuous Drain Current, V GS @ V 46f A I DM Pulsed Drain Current c 260 P D @T C = 25 C Maximum Power Dissipation 65 P D @T C = 0 C Maximum Power Dissipation 33 W Linear Derating Factor 0.43 W/ C T J Operating Junction and -55 to 75 C Storage Temperature Range T STG Thermal Resistance Parameter Typ. Max. Units R θjc Junction-to-Case 2.3 R θja Junction-to-Ambient (PCB Mount)g 50 C/W R θja Junction-to-Ambient Notes through are on page www.irf.com 08//07

IRLR/U872PbF Static @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units BV DSS Drain-to-Source Breakdown Voltage 30 V ΒV DSS / T J Breakdown Voltage Temp. Coefficient 2 mv/ C R DS(on) Static Drain-to-Source On-Resistance 6.3 8.4 mω..8 V GS = 4.5V, I D = 20A f V GS(th) Gate Threshold Voltage.35.9 2.35 V V DS = V GS, I D = 25µA V GS(th) Gate Threshold Voltage Coefficient -6.8 mv/ C I DSS Drain-to-Source Leakage Current.0 µa V DS = 24V, V GS = 0V 50 V DS = 24V, V GS = 0V, T J = 25 C I GSS Gate-to-Source Forward Leakage 0 na V GS = 20V Gate-to-Source Reverse Leakage -0 V GS = -20V gfs Forward Transconductance 46 S V DS = 5V, I D = 20A Q g Total Gate Charge 8.5 3 Q gs Pre-Vth Gate-to-Source Charge.9 V DS = 5V Q gs2 Post-Vth Gate-to-Source Charge.2 nc V GS = 4.5V Q gd Gate-to-Drain Charge 3.4 I D = 20A Q godr Gate Charge Overdrive 2.0 See Fig. 6 Q sw Switch Charge (Q gs2 Q gd ) 4.6 Q oss Output Charge 7.9 nc V DS = 6V, V GS = 0V R G Gate Resistance 2.3 3.8 Ω t d(on) Turn-On Delay Time 8.8 V DD = 5V, V GS = 4.5V f t r Rise Time 30 I D = 20A t d(off) Turn-Off Delay Time 9.4 ns R G =.8Ω t f Fall Time 6.5 See Fig. 4 C iss Input Capacitance 30 V GS = 0V C oss Output Capacitance 350 pf V DS = 5V C rss Reverse Transfer Capacitance ƒ =.0MHz Avalanche Characteristics Parameter Typ. Max. Units E AS Single Pulse Avalanche Energydh 93 mj I AR Avalanche Currentc 20 A E AR Repetitive Avalanche Energy c 6.5 mj Diode Characteristics Parameter Min. Typ. Max. Units I S Continuous Source Current 65f A (Body Diode) I SM Pulsed Source Current 260 (Body Diode)ch V SD Diode Forward Voltage.0 V t rr Reverse Recovery Time 7 26 ns Q rr Reverse Recovery Charge 24 36 nc Conditions V GS = 0V, I D = 250µA Reference to 25 C, I D = ma V GS = V, I D = 25A f Conditions MOSFET symbol D showing the integral reverse G p-n junction diode. S T J = 25 C, I S = 20A, V GS = 0V f T J = 25 C, I F = 20A, V DD = 5V di/dt = 300A/µs f t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LSLD) 2 www.irf.com

I D, Drain-to-Source Current (A) R DS(on), Drain-to-Source On Resistance (Normalized) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) IRLR/U872PbF 00 0 VGS TOP V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V BOTTOM 2.7V 00 0 VGS TOP V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V BOTTOM 2.7V 2.7V 60µs PULSE WIDTH Tj = 25 C 0. 0. 0 V DS, Drain-to-Source Voltage (V) 2.7V 60µs PULSE WIDTH Tj = 75 C 0. 0 V DS, Drain-to-Source Voltage (V) Fig. Typical Output Characteristics Fig 2. Typical Output Characteristics 00 2.0 I D = 25A V GS = V 0 T J = 75 C.5 0. T J = 25 C V DS = 5V 60µs PULSE WIDTH 0 2 4 6 8 V GS, Gate-to-Source Voltage (V).0 0.5-60 -40-20 0 20 40 60 80 020406080 T J, Junction Temperature ( C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature www.irf.com 3

I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) C, Capacitance (pf) V GS, Gate-to-Source Voltage (V) IRLR/U872PbF 000 V GS = 0V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd 5.0 4.0 I D = 20A V DS = 24V V DS = 5V V DS = 6.0V 00 C iss C oss 3.0 0 C rss 2.0.0 0 0.0 0 2 4 6 8 V DS, Drain-to-Source Voltage (V) Q G, Total Gate Charge (nc) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 00 00 OPERATION IN THIS AREA LIMITED BY R DS (on) 0 T J = 75 C 0 msec 0µsec T J = 25 C msec V GS = 0V 0. 0.0 0.5.0.5 2.0 V SD, Source-to-Drain Voltage (V) 0. Tc = 25 C Tj = 75 C Single Pulse 0 0 V DS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com

I D, Drain Current (A) V GS(th), Gate Threshold Voltage (V) IRLR/U872PbF 70 2.5 60 Limited By Package 50 2.0 40 30.5 I D = 25µA 20.0 0 25 50 75 0 25 50 75 T C, Case Temperature ( C) 0.5-75 -50-25 0 25 50 75 0 25 50 75 200 T J, Temperature ( C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig. Threshold Voltage vs. Temperature Thermal Response ( Z thjc ) C/W 0. 0.0 D = 0.50 0.20 0. 0.05 0.02 0.0 SINGLE PULSE ( THERMAL RESPONSE ) R R 2 R 3 R R 2 R 3 τ J τ J τ τ τ 2 τ 3 τ 2 τ 3 Ci= τi/ri Ci i/ri Notes:. Duty Factor D = t/t2 2. Peak Tj = P dm x Zthjc Tc 0.00 E-006 E-005 0.000 0.00 0.0 0. t, Rectangular Pulse Duration (sec) Fig. Maximum Effective Transient Thermal Impedance, Junction-to-Case Ri ( C/W) τi (sec) 0.350 0.000072.877 0.00239 0.7635 0.0527 www.irf.com 5 τ C τ

E AS, Single Pulse Avalanche Energy (mj) IRLR/U872PbF VDS L 5V DRIVER 400 350 300 I D TOP.A.4A BOTTOM 20A R G 20V tp D.U.T I AS 0.0Ω - V DD A 250 200 Fig 2a. Unclamped Inductive Test Circuit 50 0 tp V (BR)DSS 50 0 25 50 75 0 25 50 75 Starting T J, Junction Temperature ( C) Fig 2c. Maximum Avalanche Energy vs. Drain Current I AS Fig 2b. Unclamped Inductive Waveforms V DS R D Current Regulator Same Type as D.U.T. R G V GS D.U.T. - V DD V GS 50KΩ Pulse Width µs Duty Factor 0. % 2V.2µF.3µF D.U.T. V - DS Fig 4a. Switching Time Test Circuit V DS 90% V GS 3mA I G I D Current Sampling Resistors Fig 3. Gate Charge Test Circuit % V GS t d(on) t r t d(off) t f Fig 4b. Switching Time Waveforms 6 www.irf.com

IRLR/U872PbF - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 5. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET Power MOSFETs Id Vds Vgs Vgs(th) Qgodr Qgd Qgs2 Qgs Fig 6. Gate Charge Waveform www.irf.com 7

IRLR/U872PbF Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Special attention has been given to the power losses in the switching elements of the circuit - Q and Q2. Power losses in the high side switch Q, also called the Control FET, are impacted by the R ds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q are given by; P loss = P conduction P switching P drive P output This can be expanded and approximated by; P loss = ( I 2 rms R ds(on ) ) I Q gd V in f I Q gs 2 V in f i g ( ) Q g V g f Q oss 2 V in f This simplified loss equation includes the terms Q gs2 and Q oss which are new to Power MOSFET data sheets. Q gs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q gs and Q gs2, can be seen from Fig 6. Q gs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I dmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in reducing switching losses in Q. Q oss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Q oss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance s C ds and C dg when multiplied by the power supply input buss voltage. i g Synchronous FET The power loss equation for Q2 is approximated by; * P loss = P conduction P drive P output ( ) P loss = I rms 2 R ds(on) ( ) Q g V g f Q oss 2 V in f Q rr V in f *dissipated primarily in Q. ( ) For the synchronous MOSFET Q2, R ds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q oss and reverse recovery charge Q rr both generate losses that are transfered to Q and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and V in. As Q turns on and off there is a rate of change of drain voltage dv/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current. The ratio of Q gd /Q gs must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Q oss Characteristic 8 www.irf.com

IRLR/U872PbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information (;$03/( 7,6,6$,5)5 :,7$66(0%/< /27&2'( $66(0%/('2::,7($66(0%/</,($,7(5$7,2$/ 5(&7,),(5 /2*2,5)5 $ 3$5780%(5 '$7(&2'( <($5 :((. RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH $66(0%/< /27&2'( 25,7(5$7,2$/ 3 '(6,*$7(6/($')5(( 352'8&7237,2$/ $ $66(0%/<6,7(&2'( www.irf.com 9

IRLR/U872PbF I-Pak (TO-25AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-25AA) Part Marking Information (;$03/( 7,6,6$,5)8 :,7$66(0%/< /27&2'( $66(0%/('2::,7($66(0%/</,($ RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH,7(5$7,2$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(,5)8 $ 3$5780%(5 '$7(&2'( <($5 :((. /,($ 25,7(5$7,2$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(,5)8 3$5780%(5 '$7(&2'( 3 '(6,*$7(6/($')5(( 352'8&7237,2$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com

IRLR/U872PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 6.3 (.64 ) 5.7 (.69 ) 6.3 (.64 ) 5.7 (.69 ) 2. (.476 ).9 (.469 ) FEED DIRECTION 8. (.38 ) 7.9 (.32 ) FEED DIRECTION NOTES :. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-48 & EIA-54. 3 INCH NOTES :. OUTLINE CONFORMS TO EIA-48. 6 mm Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting T J = 25 C, L = 0.47mH R G = 25Ω, I AS = 20A. ƒ Pulse width 400µs; duty cycle 2%. Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 50A. When mounted on " square PCB (FR-4 or G- Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (3) 252-75 TAC Fax: (3) 252-7903 Visit us at www.irf.com for sales contact information.08/2007 www.irf.com